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The formula for arc length
Let us denote the arc length of the curve y = f (x) by S . The
length of any given hypotenuse in the previous slide is given by the
Pythagorean Theorem:

√
∆x2 + ∆y2.

Intuitively, the sum of the lengths of the n hypotenuses appears to
approximate S:

S ∼
n∑

i=1

√
∆x2

i + ∆y2
i =

n∑
i=1

√
1 +

(
∆yi
∆xi

)2

∆xi ,

where “∼” means approximately equal. We can use this idea to
define the arc length as

S := lim
∆xi→0

∞∑
i=1

√
1 +

(
∆yi
∆xi

)2

∆xi =

∫ b

a

√
1 +

(
dy

dx

)2

dx ,

provided this limit exists (in particular, we demand that the limit is
a finite number).
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Rectifiable curves

Not all curves have finite arc length! Here is an example of a curve
with infinite arc length.

Example: Let γ : R→ R2 be the curve given by γ(t) = (t, f (t)),
where

f (t) =

{
t cos

(
π
2t

)
, if t 6= 0

0 if t = 0

If
http://math.stackexchange.com/questions/296397/nonrectifiable-
curve
is correct, you should be able to check that this curve has infinite
arc length. Try it as an exercise.

Notice that the curve above is given by a continuous function.
Curves for which the arc length S is finite are called rectifiable
curves. You can easily check that the graphs of piecewise C1

functions are rectifiable.
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Things can get even stranger

In fact, there exist space filling curves, that is curves
γ : [0, 1]→ [0, 1]× [0, 1] which are continuous and surjective.
Obviously the graph of this curve “fills up” the entire square. Such
curves are not rectifiable (can you prove this?)

The existence of such curves should make you question whether
your intuitive notion of dimension actually has any mathematical
basis. If a line segment can be mapped continuously onto a square,
is it reasonable to say that they have different dimensions? After
all, this means we can describe any point on the square using just
one number.

We will answer this question (without a proof) in MA 111
(maybe). We will also come back to the arc length of a curve
when studying multivariable calculus.
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The logarithm

For x ∈ (0,∞) we define

f (x) =

∫ x

1

1

t
dt.

Then, for any y , define g(x) = f (xy)

Differentiating with respect to x we see that g ′(x) = f ′(x) Hence,

f (x) = g(x) + C ,

for some constant C . Set x = 1 to obtain C = −f (y). Thus,

f (xy) = f (x) + f (y).
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The logarithm and exponential functions

The function f (x) is usually denoted ln x . Since f ′(x) = 1
x > 0,

whenever x > 0, we see that f is (strictly) monotonic increasing
and concave.

By computing the Darboux lower sums associated to ln x , we can
easily check that ln x > 1 if x ≥ 3. By the intermediate value
theorem, it follows that there exists a real number e, such that
ln e = 1.

It is not hard to see that f must have an inverse function. This is
the exponential function sometimes denoted exp(x). Clearly
exp(x + y) = exp(x) · exp(y). Again, it requires some work to see
that

exp(x) =
∞∑
n=0

xn

n!
.

When x = 1 we will obtain a formula for e!
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The Mean Value Theorem for Integration

Let f : [a, b]→ R be a continuous function and assume that f is
differentiable in (a, b).

We apply the Mean Value Theorem to the
function

F (x) =

∫ x

a
f (t)dt.

This says that there exists c ∈ (a, b) such that

F (b)− F (a)

b − a
= F ′(c).

But this is the same as saying

∫ b

a
f (t)dt = f (c)(b − a).

This is the Mean Value Theorem for integration.
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Functions with range contained in R

We will be interested in studying functions f : Rm → R, when
m = 2, 3. We have already mentioned how limits of such functions
can be studied in the first few lectures. Before doing this in detail,
however, we will study certain other features of functions in two
and three variables.

The most basic thing one needs to understand about a function is
the domain on which it is defined. Very often a function is given
by a formula which makes sense only on some subset of Rm and
not on the whole of Rm. When studying functions of two or more
variables given by formulæ it makes sense to first identify this
subset, which is sometimes call the natural domain of the function,
and to describe it geometrically if possible.
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Exercise 5.1: Find the natural domains of the following functions:
(i) xy

x2−y2

Clearly this function is defined whenever the denominator is not
zero, in other words when x2 − y2 6= 0.
The natural domain is thus

R2 \ {(x , y) | x2 − y2 = 0},

that is, R2 minus the pair of straight lines with slopes ±1.
(ii) f (x , y) = log (x2 + y2)
This function is defined whenever x2 + y2 6= 0, in other words, in
R2 \ {(0, 0)}.
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Level curves and contour lines

The second thing one should do with a function from R2 → R is to
study its range. This is done in different ways.

One way is to study the level sets of the functions. These are the
sets of the form {(x , y) ∈ R2 | f (x , y) = c}, where c is a constant.
The level set “lives” in the xy -plane.

One can also plot (in three dimensions) the surface z = f (x , y).
By varying the value of c in the level curves one can get a good
idea of what the surface looks like.

When one plots the f (x , y) = c for some constant c one gets a
curve. Such a curve is usually called a contour line (the contour
“lives” in the z = c plane).

I have a couple of pictures in the next two slides to illustrate the
point.
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This is the graph of the function z =
√
x2 + y2 lying above the

xy -plane. It is a right circular cone.
The contour lines z = c give circles lying on planes parallel to the
xy -plane.The curves given by z = f (x , 0) and z = f (0, y) give
pairs of straight lines in the planes y = 0 and x = 0.



0

20
−10

0
10

0

10

20

This is the graph of the function z =
√
x2 + y2 lying above the

xy -plane. It is a right circular cone.

The contour lines z = c give circles lying on planes parallel to the
xy -plane.The curves given by z = f (x , 0) and z = f (0, y) give
pairs of straight lines in the planes y = 0 and x = 0.



0

20
−10

0
10

0

10

20

This is the graph of the function z =
√
x2 + y2 lying above the

xy -plane. It is a right circular cone.
The contour lines z = c give circles lying on planes parallel to the
xy -plane.

The curves given by z = f (x , 0) and z = f (0, y) give
pairs of straight lines in the planes y = 0 and x = 0.



0

20
−10

0
10

0

10

20

This is the graph of the function z =
√
x2 + y2 lying above the

xy -plane. It is a right circular cone.
The contour lines z = c give circles lying on planes parallel to the
xy -plane.The curves given by z = f (x , 0) and z = f (0, y) give
pairs of straight lines in the planes y = 0 and x = 0.



0

20
−10

0
10

0

200

400

This is the graph of the function z = x2 + y2 lying above the
xy -plane. It is a paraboloid of revolution.
The contour lines z = c give circles lying on planes parallel to the
xy -plane.The curves z = f (x , 0) or z = f (y , 0) give parabolæ lying
in the planes y = 0 and x = 0. Exercise 5.2.(ii).
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Limits

We have already said what it means for a function of two or more
variables to approach a limit. We simply have to replace the
absolute value function on R by the distance function on Rm. We
will do this in two variables. The three variable definition is entirely
analogous. We will denote by U a set in R2.

Definition: A function f : U → R is said to tend to a limit l as
x = (x1, x2) approaches c = (c1, c2) if for every ε > 0, there exists
a δ > 0 such that

|f (x)− l | < ε,

whenever 0 < ‖x − c‖ < δ.

We recall that

‖x‖ =
√
x2

1 + x2
2 .
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We have already said what it means for a function of two or more
variables to approach a limit. We simply have to replace the
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Continuity

Before talking about continuity we remark the following. In the
plane R2 it is possible to approach the point c from infinitely many
different directions - not just from the right and from the left. In
fact, one may not even be approaching the point c along a straight
line! Hence, to say that a function from R2 to R possesses a limit
is actually imposing a strong condition - for instance, the limits
along all possible curves leading to the point must exist and all
these (infinitely many) limits must be equal.

Once we have the notion of a limit, the definition of continuity is
just the same as for functions of one variable.

Definition: The function f : U → R is said to be continuous at a
point c if

lim
x→c

f (x) = f (c).



Continuity

Before talking about continuity we remark the following. In the
plane R2 it is possible to approach the point c from infinitely many
different directions - not just from the right and from the left. In
fact, one may not even be approaching the point c along a straight
line! Hence, to say that a function from R2 to R possesses a limit
is actually imposing a strong condition - for instance, the limits
along all possible curves leading to the point must exist and all
these (infinitely many) limits must be equal.

Once we have the notion of a limit, the definition of continuity is
just the same as for functions of one variable.

Definition: The function f : U → R is said to be continuous at a
point c if

lim
x→c

f (x) = f (c).



Continuity

Before talking about continuity we remark the following. In the
plane R2 it is possible to approach the point c from infinitely many
different directions - not just from the right and from the left. In
fact, one may not even be approaching the point c along a straight
line! Hence, to say that a function from R2 to R possesses a limit
is actually imposing a strong condition - for instance, the limits
along all possible curves leading to the point must exist and all
these (infinitely many) limits must be equal.

Once we have the notion of a limit, the definition of continuity is
just the same as for functions of one variable.

Definition: The function f : U → R is said to be continuous at a
point c if

lim
x→c

f (x) = f (c).



The rules for limits and continuity

The rules for addition, subtraction, multiplication and division of
limits remain valid for functions of two variables (or three variables
for that matter). Nothing really changes in the statements or the
proofs.

Using these rules, we can conclude, as before, that the sum,
difference, product and quotient of continuous functions are
continuous (as usual we must assume that the denominator of the
quotient is non zero).
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Continuity through examples

Once again, we emphasise that continuity at a point c is a very
powerful condition (since the existence of a limit is implicit).

Exercise 5.3.(i) asks whether the function

f (x , y) =

{
x3y

x6+y2 if (x , y) 6= (0, 0)

0 if (x , y) = (0, 0)

is continuous at (0, 0).

Solution: Let us look at the sequence of points zn = ( 1
n ,

1
n3 ), which

goes to 0 as n→∞. Clearly f (zn) = 1
2 for all n, so

lim
n→∞

f (zn) =
1

2
6= 0.

This shows that f is not continuous at 0.
But does the limit exist?
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Iterated limits

When evaluating a limit of the form lim(x1,x2)→(c1,c2) f (x1, x2) one
may naturally be tempted to let x1 go to c1 first, and then let x2

go to c2. Does this give the limit in the previous sense?

Exercise 5.5: Let

f (x , y) =
x2y2

x2y2 + (x − y)2
.

we have

lim
x→0

lim
y→0

x2y2

x2y2 + (x − y)2
= lim

x→0
0 = 0

Similarly, one has limy→0 limx→0 f (x , y) = 0.

However, choosing zn = ( 1
n ,

1
n ), shows that f (zn) = 1 for all n ∈ N.

Now choose zn = ( 1
n ,

1
2n ) to see that the limit cannot exist.
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