
MA 105 D1 &D2 Lecture 14

Ravi Raghunathan

Department of Mathematics

December 15, 2020



Recap: Limits of functions of severable variables

Limits and continuity

Differentiation



Ideas introduced yesterday

1. Natural domain

2. Level sets

3. Contour lines

4. Limits

5. Continuity
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Limits

Definition: A function f : U → R is said to tend to a limit l as
x = (x1, x2) approaches c = (c1, c2) in U if for every ε > 0, there
exists a δ > 0 such that

|f (x)− l | < ε,

whenever 0 < ‖x − c‖ < δ with x ∈ U.

(Note that we have taken c ∈ U in the definition. This is not really
necessary. We will say more about this later.)

We recall that

‖x‖ =
√
x21 + x22 .

Definition: The function f : U → R is said to be continuous at a
point c if

lim
x→c

f (x) = f (c).
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The rules for limits and continuity

The rules for addition, subtraction, multiplication and division of
limits remain valid for functions of two variables (or three variables
for that matter). Nothing really changes in the statements or the
proofs.

Using these rules, we can conclude, as before, that the sum,
difference, product and quotient of continuous functions are
continuous (as usual we must assume that the denominator of the
quotient is non zero).
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Partial Derivatives
As before, U will denote a subset of R2. Given a function
f : U → R, we can fix one of the variables and view the function f
as a function of the other variable alone. We can then take the
derivative of this one variable function.

To make things precise, fix x2.
Definition: The partial derivative of f : U → R with respect to x1
at the point (a, b) is defined by

∂f

∂x1
(a, b) := lim

x1→a

f ((x1, b))− f ((a, b))

x1 − a
.

Similarly, one can define the partial derivative with respect to x2.
In this case the variable x1 is fixed and f is regarded only as a
function x2:

∂f

∂x2
(a, b) := lim

x2→b

f ((a, x2))− f ((a, b))

x2 − b
.
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Directional Derivatives

The partial derivatives are special cases of the directional
derivative. Let v = (v1, v2) be a unit vector. Then v specifies a
direction in R2.

Definition: The directional derivative of f in the direction v at a
point x = (x1, x2) is denoted by ∇v f (x) and is defined as

lim
t→0

f (x + tv)− f (x)

t
= lim

t→0

f ((x1 + tv1, x2 + tv2))− f ((x1, x2))

t
.

∇v f (x) measures the rate of change of the function f at x along
the path x + tv .

If we take v = (1, 0) in the above definition, we obtain ∂f
∂x1

(x),

while v = (0, 1) yields ∂f
∂x2

(x).
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Consider the function

f (x1, x2) =

{
1 if x1 = 0 or if x2 = 0

0 otherwise.

It should be clear to you that since this function is constant along
the two axes,

∂f

∂x1
(0, 0) = 0 and

∂f

∂x2
(0, 0) = 0

On the other hand, f (x1, x2) is not continuous at the origin! Thus,
a function may have both partial derivatives (and, in fact, any
directional derivative - see the next slide) but still not be
continuous. This suggests that for a function of two variables, just
requiring that both partial derivatives exist is not a good or useful
definition of “differentiability”.
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Recall again, the following function from Exercise 5.5:

x2y2

x2y2 + (x − y)2
for (x , y) 6= (0, 0).

Let us further set f (0, 0) = 0. You can check that every directional
derivative exists and is equal to 0, except along y = x when the
directional derivative is not defined. However, we have already
seen that the function is not continuous at the origin since we have
shown that lim(x ,y)→0 f (x , y) does not exist. For an example with
directional derivatives in all directions see Exercise 5.3(i).

Conclusion: All directional derivatives may exist at a point even if
the function is discontinuous.
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Let us go back and examine the notion of differentiability for a
function of f (x) of one variable. Suppose f is differentiable at the
point x0, What is the equation of the tangent line through
(x0, f (x0))?

y = f (x0) + f ′(x0)(x − x0)

If we consider the difference f (x)− f (x0)− f ′(x0)(x − x0) we get
the distance of a point on the tangent line from the curve
y = f (x). Writing h = (x − x0), we see that the difference can be
rewritten

f (x0 + h)− f (x0)− f ′(x0)h

The tangent line is close to the function f - how close?- so close
that even after dividing by h the distance goes to 0. A few lectures
ago we wrote this as

|f (x0 + h)− f (x0)− f ′(x0)h| = ε1(h)|h|

where ε1(h) is a function that goes to 0 as h goes to 0.
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The preceding idea generalises to two (or more) dimensions. Let
f (x , y) be a function which has both partial derivatives. In the two
variable case we need to look at the distance between the surface
z = f (x , y) and its tangent plane.

Let us first recall how to find the equation of a plane passing
through the point P = (x0, y0, z0). It is the graph of the function

z = g(x , y) = z0 + a(x − x0) + b(y − y0).

Let us determine the tangent plane to z = f (x , y) passing through
a point P = (x0, y0, z0) on the surface. In other words, we have to
determine the constants a and b.
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If we fix the y variable and treat f (x , y) only as a function of x , we
get a curve. Similarly, if we treat g(x , y) as function only of x , we
obtain a line. The tangent to the curve must be the same as the
line passing through (x0, y0, z0), and, in any event, their slopes
must be the same. Thus, we must have

∂f

∂x
(x0, y0) =

∂g

∂x
(x0, y0) = a.

Arguing in exactly the same way, but fixing the x variable and
varying the y variable we obtain

∂f

∂y
(x0, y0) =

∂g

∂y
(x0, y0) = b.

Hence, the equation of the tangent plane to z = f (x , y) at the
point (x0, y0) is

z = f (x0, y0) +
∂f

∂x
(x0, y0)(x − x0) +

∂f

∂y
(x0, y0)(y − y0)
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Differentiability for functions of two variables
We now define differentiability for functions of two variables by
imitating the one variable definition, but using the “p(h)” version.
We let (x , y) = (x0, y0) + (h, k) = (x0 + h, y0 + k)
Definition A function f : U → R is said to be differentiable at a
point (x0, y0) if ∂f

∂x (x0, y0), and ∂f
∂y (x0, y0) exist and

lim
(h,k)→0

∣∣∣f (x0 + h, y0 + k)− f (x0, y0)− ∂f
∂x (x0, y0)h − ∂f

∂y (x0, y0)k
∣∣∣

‖(h, k)‖
= 0,

This is saying that the distance between the tangent plane and the
surface is going to zero even after dividing by ‖(h, k)‖. We could
rewrite this as∣∣∣∣f ((x0, y0) + (h, k))− f (x0, y0)− ∂f

∂x
(x0, y0)h − ∂f

∂y
(x0, y0)k

∣∣∣∣
= p(h, k)‖(h, k)‖

where p(h, k) is a function that goes to 0 as ‖(h, k)‖ → 0.This
form of differentiability now looks exactly like the one variable
version case.
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The derivative as a linear map

We can rewrite the differentiability criterion once more as follows.
We define the 1× 2 matrix

Df (x0, y0) =
(
∂f
∂x (x0, y0) ∂f

∂y (x0, y0)
)
.

A 1× 2 matrix can be multiplied by a column vector (which is
2× 1 matrix) to give a real number. In particular:

(
∂f
∂x (x0, y0) ∂f

∂y (x0, y0)
)(h

k

)
=
∂f

∂x
(x0, y0)h +

∂f

∂y
(x0, y0)k

that is,

Df (x0, y0)

(
h
k

)
=
∂f

∂x
(x0, y0)h +

∂f

∂y
(x0, y0)k

The definition of differentiability can thus be reformulated using
matrix notation.
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Definition: The function f (x , y) is said be differentiable at a point
(x0, y0) if there exists a matrix denoted Df ((x0, y0)) with the
property that

f ((x0, y0) + (h, k))− f (x0, y0)−Df (x0, y0)

(
h
k

)
= p(h, k)‖(h, k)‖,

for some function p(h, k) which goes to zero as (h, k) goes to zero.
Viewing the derivative as a matrix allows us to view it as a linear
map from R2 → R. Given a 1× 2 matrix A and two column
vectors v and w , we see that

A · (v + w) = A · v + A · w and A · (λv) = λ(A · v),

for any real number λ. As we have seen before, functions satisfying
the above two properties are called linear functions or linear maps.
Thus, the map v → A · v gives a linear map from R2 to R.

The matrix Df (x0, y0) is called the Derivative matrix of the
function f (x , y) at the point (x0, y0).
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The Gradient

When viewed as a row vector rather than as a matrix, the
Derivative matrix is called the gradient and is denoted ∇f (x0, y0).
Thus

∇f (x0, y0) =

(
∂f

∂x
(x0, y0),

∂f

∂y
(x0, y0)

)
.

In terms of the coordinate vectors i and j the gradient can be
written as

∇f (x0, y0) =
∂f

∂x
(x0, y0)i +

∂f

∂y
(x0, y0)j.
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A criterion for differentiability

Before we state the criterion, we note that with our definition of
differentiability, every differentiable function is continuous.

Theorem 26: Let f : U → R. If the partial derivatives ∂f
∂x (x , y) and

∂f
∂y (x , y) exist and are continuous in a neighbourhood of a point
(x0, y0) (that is in a region of the plane of the form
{(x , y) | ‖(x , y)− (x0, y0)‖ < r} for some r > 0. Then f is
differentiable at (x0, y0).

We omit the proof of this theorem. However, we note that a
function whose partial derivatives exist and are continuous is said
to be continuously differentiable or of class C1. The theorem says
that every C1 function is differentiable.
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