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Quiz related instructions

Limits

Continuity

Differentiation

Integration



General Advice

1. Concentrate on understanding the statements of the
theorems. You will not be asked to reproduce long proofs.

2. When trying to understand a definition, make sure you know
plenty of examples.

3. When trying to understand a theorem, make sure you know
counter-examples to the conclusion of the theorem when you
drop some of the hypotheses.

4. In general, the statement of the theorem is more important
than its proof. And examples are more important than
theorems!
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Advice when doing the quiz

Download the question paper from SAFE early. Do not wait until
the morning of the quiz.

Upload your answers as you finish them. Do not wait until the end.

If you are running short of time, upload even incomplete solutions.
You will get partial credit. On the other hand, if nothing is
uploaded, we cannot give you any marks.

The test is only about 1 hour long. Avoid using the bathroom
during this time if possible.



Advice when doing the quiz

Download the question paper from SAFE early. Do not wait until
the morning of the quiz.

Upload your answers as you finish them. Do not wait until the end.

If you are running short of time, upload even incomplete solutions.
You will get partial credit. On the other hand, if nothing is
uploaded, we cannot give you any marks.

The test is only about 1 hour long. Avoid using the bathroom
during this time if possible.



Advice when doing the quiz

Download the question paper from SAFE early. Do not wait until
the morning of the quiz.

Upload your answers as you finish them. Do not wait until the end.

If you are running short of time, upload even incomplete solutions.
You will get partial credit. On the other hand, if nothing is
uploaded, we cannot give you any marks.

The test is only about 1 hour long. Avoid using the bathroom
during this time if possible.



Advice when doing the quiz

Download the question paper from SAFE early. Do not wait until
the morning of the quiz.

Upload your answers as you finish them. Do not wait until the end.

If you are running short of time, upload even incomplete solutions.
You will get partial credit. On the other hand, if nothing is
uploaded, we cannot give you any marks.

The test is only about 1 hour long. Avoid using the bathroom
during this time if possible.



Quiz instructions

These will be the instructions at the start of the quiz:

Read these instructions carefully before proceeding.

1. Answers unsupported by satisfactory reasoning may not be
awarded marks. In “True or False” questions, you must give
adequate justification if your answer is “True” and provide a
counter-example if your answer is “False”.

2. Very important: Let a denote the last digit of your roll
number and let b be the second last digit of your roll number.
Let A = 10− a and B = 10− B. Note that 0 ≤ a, b ≤ 9 and
1 ≤ A,B ≤ 10. Record your values for a,A, b,B below. You
must use these values of a, b,A,B in your quiz. If you use any
other values, you will be immediately awarded 0 marks for
that question.
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Limits of sequences

1. Learn the definition.

2. When proving a fact/theorem/etc. about some limit being l
start with an ε > 0 and find an N so that the sequence xn you
are dealing with satisfies

|xn − l | < ε,

for every n > N.

3. To prove that a sequence does not converge you have to show
that no real number can be a limit. Thus you must take an
arbitrary l and find some fixed ε > 0 - this ε can be chosen to
your convenience so that |an − l | > ε for infinitely many n.

4. Theorems to remember for showing that limits exist: the sum,
difference, product and quotient and the Sandwich Theorem.
In this case you will already know that some sequence has a
limit and deduce that another sequence has a limit by
comparing it to the known one.
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Theorems that abstractly guarantee that the limit of a sequence
exists:

A monotonically increasing/decreasing sequence bounded
above/below converges to its supremum/infimum.

Every Cauchy sequence converges. It is a good idea to know the
definition of a Cauchy sequence. However, you will not be asked
questions on Cauchy sequences.

Unless we explicitly mention that you must use the ε-N definition
to prove that a limit exists, you do not have to. You may use the
rules for limits and other theorems instead. You can use simple
facts without proving them: e.g. limn→∞

1
nα = 0 if α > 0.
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Exercise 1

If an ≥ 0 and limn→∞ an = 0, show that limn→∞
√
an = 0 using

epsilon-N definition.

Solution: Fix ε > 0 arbitrarily. We want to find an N such that
n ≥ N =⇒ |√an| < ε.

Since limn→∞ an = 0, for ε2, the square of ε that we fixed earlier,
there exists N1 such that

n ≥ N1 =⇒ |an| < ε2.

Then for N = N1 we have

n ≥ N =⇒ |
√
an| < ε.
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Limits of functions

Limits of functions should be treated like limits of sequences.

Do not use ε− δ to prove something unless you are asked to.

The ideas behind proving or disproving the existence of limits are
the same as for sequences (of course, there is no analogue of
monotonic bounded sequences or Cauchy sequences).

You can use the basic limits you learnt in 11th/12th standard like
limx→0 sin x/x = 1.
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Continuity

Of course, you have to know the definition. Again, unless asked do
not use ε− δ. You may use basic facts about limits of functions to
prove what you want.
The basic theorems are:

1. A continuous function on a closed bounded interval is
bounded and attains its infimum and supremum

2. Continuous functions have the IVP

The sum, difference, product etc. of continuous functions is
continuous. The composition of continuous functions is
continuous.
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Differentiation

Know the definition. Again, here you can use the basic facts about
limits.

The basic theorems are:

1. Fermat’s Theorem,

2. Rolle’s theorem and the MVT,

Know the basic examples and counter-examples: a function that is
continuous but not differentiable, a function that is differentiable
but not continuously differentiable.
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Exercise 3

Show that x3 − 10x + 4 has three real roots.

Solution: Let f (x) = x3 − 10x + 4. Then fx = 3x2 − 10 which has
two roots, namely, ±

√
10/3.

By the second derivative test we find that −
√

10/3 is a local
maximum for f and

√
10/3 is a local minimum.

Since we have only two critical points, it follows that

f (−
√

10/3) > 0 > f (
√

10/3).

By the IVP of f , there exists a zero of f in the interval
(−
√

10/3,
√

10/3).
Since the given function is a cubic, f (x)→ ±∞ as x → ±∞,
hence again by IVP we get two more zeros of f in the intervals
(−∞,−

√
10/3) and (

√
10/3,∞).

Alternate solution: Show that f (x) changes sign three times. Note
that f (−10) < 0, f (−1) > 0, f (1) < 0 and f (10) > 0.
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Exercise 4

Show that the function x4 + 3x + 1 has exactly one zero in the
interval [−2,−1].

Solution: By observing that f (−2) > 0 and f (−1) < 0, we
conclude by IVP that f has a zero in the interval [−2,−1].

Further, the derivative, 4x3 + 3, is non-zero on [−2,−1], so by
Rolle’s theorem, f has no more zeros in the given interval.
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Maxima, minima, convex, concave

Remember that the definitions of maxima, minima, concavity,
convexity, inflection points etc. have nothing to do with
differentiation.

IF the function is (twice) differentiable then one can apply the
various derivative tests. Otherwise, one can’t.

Note that the existence of maxima and minima usually follows
from the fact that we are dealing with continuous functions on a
closed bounded interval.

Remember the difference between supremum and maximum (and
of course, between infimum and minimum - know the relevant
examples).

Taylor’s theorem: Know how to compute the Taylor polynomials.
Know the form of the Remainder term. Recall that there are
smooth functions for which the Taylor series about a point
converges but does not converge to the function (e−1/x).
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of course, between infimum and minimum - know the relevant
examples).

Taylor’s theorem: Know how to compute the Taylor polynomials.
Know the form of the Remainder term. Recall that there are
smooth functions for which the Taylor series about a point
converges but does not converge to the function (e−1/x).



Exercise 5

Find the first three terms of the Taylor series of the function 1/x2

at 1.

Solution: If the Taylor series of the function f at x = a is
∞∑
n=0

an(x − a)n, then an =
f (n)(a)

n!
.

Using these notations, for f (x) = 1/x2 and a = 1, we get a0 = 1,
a1 = −2 and a2 = 3.

Remember the form of the remainder:

Rn(b) =
f (n+1)(c)(b − a)n+1

(n + 1)!

To estimate the remainder, you will need to bound f (n+1)(c) some
number. Remember that c ∈ (a, b). If f (n+1)(c) grows slower than
n!, then by taking n large we can make the remainder small.
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Integration

Remember what partitions and tagged partitions are.

Recall the definitions of the (Darboux) lower sums, upper sums,
lower integrals, upper integrals and Riemann sums.

Learn all three definitions of the Riemann integral.

Basic fact: Bounded functions on closed intervals with at most a
finite number of discontinuities are Riemann/Darboux integrable.

The Fundamental Theorem of calculus.
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Exercise 6
3. For the function f (x) = 3x2 and the partition

Pn =

{
0 <

1

n
<

2

n
< . . . <

n − 1

n
< 1

}
of [0, 1] find the lower sum, L(f ,Pn), upper sum, U(f ,Pn).
Compute supn L(f ,Pn) and infn U(f ,Pn).

Solution:

L(f ,Pn) =
n−1∑
i=0

3
i2

n2
1

n
= 3

1

n3
n(n − 1)(2n − 1

6

So

L(f ,Pn) =
2n2 − 3n + 1

2n2
and U(f ,Pn) =

2n2 − 3n + 1

2n2

and
sup
n

L(f ,Pn) = 1 and inf
n
U(f ,Pn) = 1.
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Exercise 7
Evaluate limn→∞

∑n
i=1

n
i2+n2

by identifying it as a Riemann sum
for a certain continuous function on a certain interval and with
respect to a certain partition.

Solution: We observe that

n∑
i=1

n

i2 + n2
=

1

n

n∑
i=1

1

(i/n)2 + 1
.

Thus, the given sum is the Riemann sum for the function
1

x2 + 1
over the interval [0, 1] with respect to the partition

0 <
1

n
<

2

n
< · · · < n − 1

n
< 1.

Since the function 1/(1 + x2) is continuous on [0, 1], it is Riemann
integrable.

Hence the limit of the given sum is

∫ 1

0

1

x2 + 1
dx = π/4.
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