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Recap: Directional derivatives

The total derivative

More variables



Partial Derivatives
As before, U will denote a subset of R2. Given a function
f : U → R, we can fix one of the variables and view the function f
as a function of the other variable alone. We can then take the
derivative of this one variable function.

To make things precise, fix x2.
Definition: The partial derivative of f : U → R with respect to x1
at the point (a, b) is defined by

∂f

∂x1
(a, b) := lim

x1→a

f ((x1, b))− f ((a, b))

x1 − a
.

Similarly, one can define the partial derivative with respect to x2.
In this case the variable x1 is fixed and f is regarded only as a
function of x2:

∂f

∂x2
(a, b) := lim

x2→b

f ((a, x2))− f ((a, b))

x2 − b
.



Directional Derivatives

The partial derivatives are special cases of the directional
derivative. Let v = (v1, v2) be a unit vector. Then v specifies a
direction in R2.

Definition: The directional derivative of f in the direction v at a
point p = (p1, p2) is denoted by ∇v f (x) and is defined as

lim
t→0

f (p + tv)− f (x)

t
= lim

t→0

f ((p1 + tv1, p2 + tv2))− f ((p1, p2))

t
.

∇v f (x) measures the rate of change of the function f at x along
the path p + tv .

If we take v = (1, 0) in the above definition, we obtain ∂f
∂x1

(p),

while v = (0, 1) yields ∂f
∂x2

(p).



A function may have both partial derivatives, and even all
directional derivatives, at a point but it need not be continuous.
Exercise 5.5 gives an example of the former situation. Here is an
example of the latter situation.

f (x , y) =

{
xy2

x2+y4 if x 6= 0

0 if x = 0

Exercise 5.8 gives an example of a function in two variables for
which neither partial derivative exists at (0, 0) but such that the
function is continuous at (0, 0).

Exercise 5.11 gives an example of a function f (x , y) such that fx
and fy exist at (0, 0) but none of the other directional derivatives
exist.



The tangent plane in a picture

https://openstax.org/books/calculus-volume-3/pages/

4-4-tangent-planes-and-linear-approximations

https://openstax.org/books/calculus-volume-3/pages/4-4-tangent-planes-and-linear-approximations
https://openstax.org/books/calculus-volume-3/pages/4-4-tangent-planes-and-linear-approximations


The tangent plane

Let f (x , y) be a function which has both partial derivatives. In the
two variable case we need to look at the distance between the
surface z = f (x , y) and its tangent plane.

Let us first recall how to find the equation of a plane passing
through the point P = (x0, y0, z0). It is the graph of the function

z = g(x , y) = z0 + a(x − x0) + b(y − y0).

Let us determine the tangent plane to z = f (x , y) passing through
a point P = (x0, y0, z0) on the surface. In other words, we have to
determine the constants a and b.



If we fix the y variable and treat f (x , y) only as a function of x , we
get a curve. Similarly, if we treat g(x , y) as function only of x , we
obtain a line. The tangent to the curve must be the same as the
line passing through (x0, y0, z0), and, in any event, their slopes
must be the same. Thus, we must have

∂f

∂x
(x0, y0) =

∂g

∂x
(x0, y0) = a.

Arguing in exactly the same way, but fixing the x variable and
varying the y variable we obtain

∂f

∂y
(x0, y0) =

∂g

∂y
(x0, y0) = b.

Hence, the equation of the tangent plane to z = f (x , y) at the
point (x0, y0) is

z = f (x0, y0) +
∂f

∂x
(x0, y0)(x − x0) +

∂f

∂y
(x0, y0)(y − y0)



Differentiability for functions of two variables
We now define differentiability for functions of two variables by
imitating the one variable definition, but using the “ε1(h)” version.
We let (x , y) = (x0, y0) + (h, k) = (x0 + h, y0 + k)
Definition A function f : U → R is said to be differentiable at a
point (x0, y0) if ∂f

∂x (x0, y0), and ∂f
∂y (x0, y0) exist and

lim
(h,k)→0

∣∣∣f (x0 + h, y0 + k)− f (x0, y0)− ∂f
∂x (x0, y0)h − ∂f

∂y (x0, y0)k
∣∣∣

‖(h, k)‖
= 0,

This is saying that the distance between the tangent plane and the
surface is going to zero even after dividing by ‖(h, k)‖. We could
rewrite this as∣∣∣∣f ((x0, y0) + (h, k))− f (x0, y0)− ∂f

∂x
(x0, y0)h − ∂f

∂y
(x0, y0)k

∣∣∣∣
= ε1(h, k)‖(h, k)‖

where ε1(h, k) is a function that goes to 0 as ‖(h, k)‖ → 0. This
form of differentiability now looks exactly like the one variable
version.



The derivative as a linear map

We can rewrite the differentiability criterion once more as follows.
We define the 1× 2 matrix

Df (x0, y0) =
(
∂f
∂x (x0, y0) ∂f

∂y (x0, y0)
)
.

A 1× 2 matrix can be multiplied by a column vector (which is
2× 1 matrix) to give a real number. In particular:(

∂f
∂x (x0, y0) ∂f

∂y (x0, y0)
)(h

k

)
=
∂f

∂x
(x0, y0)h +

∂f

∂y
(x0, y0)k

that is,

Df (x0, y0)

(
h
k

)
=
∂f

∂x
(x0, y0)h +

∂f

∂y
(x0, y0)k

The definition of differentiability can thus be reformulated using
matrix notation.



Definition: The function f (x , y) is said be differentiable at a point
(x0, y0) if there exists a matrix denoted Df ((x0, y0)) with the
property that

f ((x0, y0) + (h, k))− f (x0, y0)−Df (x0, y0)

(
h
k

)
= ε1(h, k)‖(h, k)‖,

for some function ε1(h, k) which goes to zero as (h, k) goes to
zero. Viewing the derivative as a matrix allows us to view it as a
linear map from R2 → R. Given a 1× 2 matrix A and two column
vectors v and w , we see that

A · (v + w) = A · v + A · w and A · (λv) = λ(A · v),

for any real number λ. As we have seen before, functions satisfying
the above two properties are called linear functions or linear maps.
Thus, the map v → A · v gives a linear map from R2 to R.

The matrix Df (x0, y0) is called the total derivative of the function
f (x , y) at the point (x0, y0).



The Gradient

When viewed as a row vector rather than as a matrix, the
Derivative matrix is called the gradient and is denoted ∇f (x0, y0).
Thus

∇f (x0, y0) =

(
∂f

∂x
(x0, y0),

∂f

∂y
(x0, y0)

)
.

In terms of the coordinate vectors i and j the gradient can be
written as

∇f (x0, y0) =
∂f

∂x
(x0, y0)i +

∂f

∂y
(x0, y0)j.



A criterion for differentiability

Before we state the criterion, we note that with our definition of
differentiability, every differentiable function is continuous.

Theorem 26: Let f : U → R. If the partial derivatives ∂f
∂x (x , y) and

∂f
∂y (x , y) exist and are continuous in a neighbourhood of a point
(x0, y0) (that is in a region of the plane of the form
{(x , y) | ‖(x , y)− (x0, y0)‖ < r} for some r > 0. Then f is
differentiable at (x0, y0).

We omit the proof of this theorem. However, we note that a
function whose partial derivatives exist and are continuous is said
to be continuously differentiable or of class C1. The theorem says
that every function that is C1 in a small disc around a point is
differentiable at that point.



Three variables
For the next few slides, we will assume that f : U → R is a function
of three variables, that is, U is a subset of R3. In this case, if we
denote the variables by x , y and z , we get three partial derivatives
as follows: we hold two of the variables constant and vary the
third. For instance if y and z are kept fixed while x is varied, we
get the partial derivative with respect to x at the point (a, b, c):

∂f

∂x
(a, b, c) = lim

x→a

f (x , b, c)− f (a, b, c)

x − a
.

In a similar way we can define the partial derivatives

∂f

∂y
(a, b, c) and

∂f

∂z
(a, b, c).

Once we have the three partial derivatives we can once again
define the gradient of f :

∇f (a, b, c) =

(
∂f

∂x
(a, b, c),

∂f

∂y
(a, b, c),

∂f

∂z
(a, b, c)

)
.



Differentiability in three variables

Exercise 1: Formulate a definition of differentiability for a function
of three variables.

Exercise 2: Formulate the analogue of Theorem 26 for a function
of three variables.

We can also define differentiability for functions from Rm to Rn

where m and n are any positive integers. We will do this in detail
in this course when m and n have the values 1 and 2 and 3.

Finally, the rules for the partial derivatives of sums, differences,
products and quotients of functions f , g : U → R, (U ⊂ Rm,
m = 2, 3) are exactly analogous to those for the derivative of
functions of one variable.
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