MA 109: D1\&D2 Lecture 17

Ravi Raghunathan

Department of Mathematics
December 22, 2020

Recap

The Chain Rule

The Chain Rule and gradients

Differentiability for functions of two variables

We let $(x, y)=\left(x_{0}, y_{0}\right)+(h, k)=\left(x_{0}+h, y_{0}+k\right)$. The function $f(x, y)$ is said to be differentiable at $\left(x_{0}, y_{0}\right)$ if both partial derivatives exist at that point and if

$$
\begin{aligned}
\left\lvert\, f\left(\left(x_{0}, y_{0}\right)+(h, k)\right)-f\left(x_{0}, y_{0}\right)-\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) h\right. & \left.-\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) k \right\rvert\, \\
= & p(h, k)\|(h, k)\|
\end{aligned}
$$

where $p(h, k)$ is a function that goes to 0 as $\|(h, k)\| \rightarrow 0$. This form of differentiability now looks exactly like the one variable version case. In matrix notation we have:

Differentiability for functions of two variables

We let $(x, y)=\left(x_{0}, y_{0}\right)+(h, k)=\left(x_{0}+h, y_{0}+k\right)$. The function $f(x, y)$ is said to be differentiable at $\left(x_{0}, y_{0}\right)$ if both partial derivatives exist at that point and if

$$
\begin{aligned}
\left\lvert\, f\left(\left(x_{0}, y_{0}\right)+(h, k)\right)-f\left(x_{0}, y_{0}\right)-\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) h\right. & \left.-\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) k \right\rvert\, \\
= & p(h, k)\|(h, k)\|
\end{aligned}
$$

where $p(h, k)$ is a function that goes to 0 as $\|(h, k)\| \rightarrow 0$. This form of differentiability now looks exactly like the one variable version case. In matrix notation we have:
Definition: The function $f(x, y)$ is said be differentiable at a point $\left(x_{0}, y_{0}\right)$ if there exists a matrix denoted $\operatorname{Df}\left(\left(x_{0}, y_{0}\right)\right)$ with the property that

$$
f\left(\left(x_{0}, y_{0}\right)+(h, k)\right)-f\left(x_{0}, y_{0}\right)-D f\left(x_{0}, y_{0}\right)\binom{h}{k}=p(h, k)\|(h, k)\|
$$

for some function $p(h, k)$ which goes to zero as (h, k) goes to zero.

A criterion for differentiability

Before we state the criterion, we note that with our definition of differentiability, every differentiable function is continuous.

A criterion for differentiability

Before we state the criterion, we note that with our definition of differentiability, every differentiable function is continuous.
Theorem 26: Let $f: U \rightarrow \mathbb{R}$. If the partial derivatives $\frac{\partial f}{\partial x}(x, y)$ and $\frac{\partial f}{\partial y}(x, y)$ exist and are continuous in a neighbourhood of a point $\left(x_{0}, y_{0}\right)$ (that is in a region of the plane of the form $\left\{(x, y) \mid\left\|(x, y)-\left(x_{0}, y_{0}\right)\right\|<r\right\}$ for some $\left.r>0\right)$. Then f is differentiable at $\left(x_{0}, y_{0}\right)$.

A criterion for differentiability

Before we state the criterion, we note that with our definition of differentiability, every differentiable function is continuous.

Theorem 26: Let $f: U \rightarrow \mathbb{R}$. If the partial derivatives $\frac{\partial f}{\partial x}(x, y)$ and $\frac{\partial f}{\partial y}(x, y)$ exist and are continuous in a neighbourhood of a point $\left(x_{0}, y_{0}\right)$ (that is in a region of the plane of the form $\left\{(x, y) \mid\left\|(x, y)-\left(x_{0}, y_{0}\right)\right\|<r\right\}$ for some $\left.r>0\right)$. Then f is differentiable at $\left(x_{0}, y_{0}\right)$.
We omit the proof of this theorem. However, we note that a function whose partial derivatives exist and are continuous is said to be continuously differentiable or of class \mathcal{C}^{1}. The theorem says that every \mathcal{C}^{1} function is differentiable.

The Chain Rule

We now study the situation where we have composition of functions. We assume that $x, y: I \rightarrow \mathbb{R}$ are differentiable functions from some interval (open or closed) to \mathbb{R}. Thus the pair $(x(t), y(t))$ defines a function from $/$ to \mathbb{R}^{2}. Suppose we have a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ which is differentiable. We would like to study the derivative of the composite function $z(t)=f(x(t), y(t))$ from $/$ to \mathbb{R}.

The Chain Rule

We now study the situation where we have composition of functions. We assume that $x, y: I \rightarrow \mathbb{R}$ are differentiable functions from some interval (open or closed) to \mathbb{R}. Thus the pair $(x(t), y(t))$ defines a function from $/$ to \mathbb{R}^{2}. Suppose we have a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ which is differentiable. We would like to study the derivative of the composite function $z(t)=f(x(t), y(t))$ from $/$ to \mathbb{R}.

Theorem 27: With notation as above

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

The Chain Rule

We now study the situation where we have composition of functions. We assume that $x, y: I \rightarrow \mathbb{R}$ are differentiable functions from some interval (open or closed) to \mathbb{R}. Thus the pair $(x(t), y(t))$ defines a function from $/$ to \mathbb{R}^{2}. Suppose we have a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ which is differentiable. We would like to study the derivative of the composite function $z(t)=f(x(t), y(t))$ from $/$ to \mathbb{R}.

Theorem 27: With notation as above

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

For a function $w=f(x, y, z)$ in three variables the chain rule takes the form

$$
\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t}
$$

Clarifications on the notation

The form in which I have written the chain rule is the standard one used in many books (both in engineering and mathematics). However, it is not very good notation. For instance, in the formula

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

the letter z is being used for two different functions: both as a function $z(t)$ from \mathbb{R} to \mathbb{R} on the left hand side, and as a function $z(x, y)$ from \mathbb{R}^{2} to \mathbb{R}. If one wants to be precise one should write the chain rule as

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

Similarly, for the function w we should write

$$
\frac{d w}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}
$$

Verifying the chain rule in a simple case

Example: Let us verify this rule in a simple case. Let $z=x y$, $x=t^{3}$ and $y=t^{2}$.

Verifying the chain rule in a simple case

Example: Let us verify this rule in a simple case. Let $z=x y$, $x=t^{3}$ and $y=t^{2}$.
Then $z=t^{5}$ so $z^{\prime}(t)=5 t^{4}$. On the other hand, using the chain rule we get

$$
z^{\prime}(t)=y \cdot 3 t^{2}+x \cdot 2 t=3 t^{4}+2 t^{4}=5 t^{4}
$$

Verifying the chain rule in a simple case

Example: Let us verify this rule in a simple case. Let $z=x y$, $x=t^{3}$ and $y=t^{2}$.
Then $z=t^{5}$ so $z^{\prime}(t)=5 t^{4}$. On the other hand, using the chain rule we get

$$
z^{\prime}(t)=y \cdot 3 t^{2}+x \cdot 2 t=3 t^{4}+2 t^{4}=5 t^{4}
$$

Example: A continuous mapping $c: I \rightarrow \mathbb{R}^{n}$ of an interval $/$ to \mathbb{R} is called a curve in $\mathbb{R}^{n},(n=2,3)$.
In what follows, we will assume that all the curves we have are actually differentiable, not just continuous. We will say what this means below.

An application to tangents of curves

Let us consider a curve $c(t)$ in \mathbb{R}^{3}. Each point on the curve will be given by a triple of coordinates which will depend on t. That is, the curve can be described by a triple of functions $(g(t), h(t), k(t))$. Saying that $c(t)$ is a differentiable function of t, means that each of $g(t), h(t), k(t)$ are differentiable functions from $\mathbb{R} \rightarrow \mathbb{R}$. If we write
$c(t)=g(t) \mathbf{i}+h(t) \mathbf{j}+k(t) \mathbf{k}, \quad$ then $\quad c^{\prime}\left(t_{0}\right)=g^{\prime}\left(t_{0}\right) \mathbf{i}+h^{\prime}\left(t_{0}\right) \mathbf{j}+k^{\prime}\left(t_{0}\right) \mathbf{k}$,
represents its tangent or velocity vector at the point $c\left(t_{0}\right)$.

Tangents to curves on surfaces

So far our example has nothing to do with the chain rule. Suppose $z=f(x, y)$ is a surface, and $c(t)=(g(t), h(t), f(g(t), h(t))$ lies on the $z=f(x, y)$. (Here we are assuming that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a differentiable function!) Let us compute the tangent vector to the curve at $c\left(t_{0}\right)$. It is given by

Tangents to curves on surfaces

So far our example has nothing to do with the chain rule. Suppose $z=f(x, y)$ is a surface, and $c(t)=(g(t), h(t), f(g(t), h(t))$ lies on the $z=f(x, y)$. (Here we are assuming that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a differentiable function!) Let us compute the tangent vector to the curve at $c\left(t_{0}\right)$. It is given by

$$
c^{\prime}\left(t_{0}\right)=g^{\prime}\left(t_{0}\right) \mathbf{i}+h^{\prime}\left(t_{0}\right) \mathbf{j}+k^{\prime}\left(t_{0}\right) \mathbf{k}
$$

where $k(t)=(f(g(t), h(t))$.

Tangents to curves on surfaces

So far our example has nothing to do with the chain rule. Suppose $z=f(x, y)$ is a surface, and $c(t)=(g(t), h(t), f(g(t), h(t))$ lies on the $z=f(x, y)$. (Here we are assuming that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a differentiable function!) Let us compute the tangent vector to the curve at $c\left(t_{0}\right)$. It is given by

$$
c^{\prime}\left(t_{0}\right)=g^{\prime}\left(t_{0}\right) \mathbf{i}+h^{\prime}\left(t_{0}\right) \mathbf{j}+k^{\prime}\left(t_{0}\right) \mathbf{k}
$$

where $k(t)=(f(g(t), h(t))$. Using the chain rule we see that

$$
k^{\prime}\left(t_{0}\right)=\frac{\partial f}{\partial x} g^{\prime}\left(t_{0}\right)+\frac{\partial f}{\partial y} h^{\prime}\left(t_{0}\right)
$$

We can further show that this tangent vector lies on the tangent plane to the surface $z=f(x, y)$. Indeed we have already seen that the tangent plane has the equation

$$
z=f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

We can further show that this tangent vector lies on the tangent plane to the surface $z=f(x, y)$. Indeed we have already seen that the tangent plane has the equation

$$
z=f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

A normal vector to this plane is given by

$$
\left(-\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right),-\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right), 1\right) .
$$

Thus, to verify that the tangent vector lies on the plane, we need only check that its dot product with normal vector is 0 . But this is now clear.

We can further show that this tangent vector lies on the tangent plane to the surface $z=f(x, y)$. Indeed we have already seen that the tangent plane has the equation

$$
z=f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

A normal vector to this plane is given by

$$
\left(-\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right),-\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right), 1\right) .
$$

Thus, to verify that the tangent vector lies on the plane, we need only check that its dot product with normal vector is 0 . But this is now clear.

Just to give a concrete example of what we are talking about, take a curve $(g(t), h(t))$ in the unit disc $x^{2}+y^{2} \leq 1$ in the $x y$ plane.

We can further show that this tangent vector lies on the tangent plane to the surface $z=f(x, y)$. Indeed we have already seen that the tangent plane has the equation

$$
z=f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) .
$$

A normal vector to this plane is given by

$$
\left(-\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right),-\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right), 1\right) .
$$

Thus, to verify that the tangent vector lies on the plane, we need only check that its dot product with normal vector is 0 . But this is now clear.

Just to give a concrete example of what we are talking about, take a curve $(g(t), h(t))$ in the unit disc $x^{2}+y^{2} \leq 1$ in the $x y$ plane. Then $\left(g(t), h(t), \sqrt{1-g(t)^{2}-h(t)^{2}}\right)$ lies on the upper hemisphere $z=\sqrt{1-x^{2}-y^{2}}$.

We can further show that this tangent vector lies on the tangent plane to the surface $z=f(x, y)$. Indeed we have already seen that the tangent plane has the equation

$$
z=f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

A normal vector to this plane is given by

$$
\left(-\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right),-\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right), 1\right) .
$$

Thus, to verify that the tangent vector lies on the plane, we need only check that its dot product with normal vector is 0 . But this is now clear.

Just to give a concrete example of what we are talking about, take a curve $(g(t), h(t))$ in the unit disc $x^{2}+y^{2} \leq 1$ in the $x y$ plane. Then $\left(g(t), h(t), \sqrt{1-g(t)^{2}-h(t)^{2}}\right)$ lies on the upper hemisphere $z=\sqrt{1-x^{2}-y^{2}}$. For concreteness, we can take $I=\left[0, \frac{1}{\sqrt{2}}\right], g(t)=t$ and $h(t)=t^{2}$.

Another application: Directional derivatives

Let $U \subset \mathbb{R}^{3}$ and let $f: U \rightarrow \mathbb{R}$ be differentiable. We want to relate the directional derivative to the gradient,

Another application: Directional derivatives

Let $U \subset \mathbb{R}^{3}$ and let $f: U \rightarrow \mathbb{R}$ be differentiable. We want to relate the directional derivative to the gradient,
We consider the (differentiable) curve $c(t)=\left(x_{0}, y_{0}, z_{0}\right)+t v$, where $v=\left(v_{1}, v_{2}, v_{3}\right)$ is a unit vector. We can rewrite $c(t)$ as $c(t)=\left(x_{0}+t v_{1}, y_{0}+t v_{2}, z_{0}+t v_{3}\right)$. We apply the chain rule to compute the derivative of the function $f(c(t))$:

Another application: Directional derivatives

Let $U \subset \mathbb{R}^{3}$ and let $f: U \rightarrow \mathbb{R}$ be differentiable. We want to relate the directional derivative to the gradient,
We consider the (differentiable) curve $c(t)=\left(x_{0}, y_{0}, z_{0}\right)+t v$, where $v=\left(v_{1}, v_{2}, v_{3}\right)$ is a unit vector. We can rewrite $c(t)$ as $c(t)=\left(x_{0}+t v_{1}, y_{0}+t v_{2}, z_{0}+t v_{3}\right)$. We apply the chain rule to compute the derivative of the function $f(c(t))$:

$$
\frac{d f}{d t}=\frac{\partial f}{\partial x} v_{1}+\frac{\partial f}{\partial y} v_{2}+\frac{\partial f}{\partial z} v_{3} .
$$

Another application: Directional derivatives

Let $U \subset \mathbb{R}^{3}$ and let $f: U \rightarrow \mathbb{R}$ be differentiable. We want to relate the directional derivative to the gradient,
We consider the (differentiable) curve $c(t)=\left(x_{0}, y_{0}, z_{0}\right)+t v$, where $v=\left(v_{1}, v_{2}, v_{3}\right)$ is a unit vector. We can rewrite $c(t)$ as $c(t)=\left(x_{0}+t v_{1}, y_{0}+t v_{2}, z_{0}+t v_{3}\right)$. We apply the chain rule to compute the derivative of the function $f(c(t))$:

$$
\frac{d f}{d t}=\frac{\partial f}{\partial x} v_{1}+\frac{\partial f}{\partial y} v_{2}+\frac{\partial f}{\partial z} v_{3}
$$

But the left hand side is nothing but the directional derivative in the direction v. Hence,

$$
\nabla_{v} f=\frac{d f}{d t}=\nabla f \cdot v
$$

Of course, the same argument works when $U \subset \mathbb{R}^{2}$ and f is a function of two variables. (Again, we have abused notation here. We should really write $\frac{d(f \circ c)}{d t}$ on the left hand side of the first equation instead of $\frac{d f}{d t}$.)

The Chain Rule and Gradients

The preceding argument is a special case of a more general fact. Let $c(t)$ be any curve in \mathbb{R}^{3}. Then, clearly by the chain rule we have

$$
\frac{d f}{d t}=\nabla f(c(t)) \cdot c^{\prime}(t)
$$

I leave this to you as a simple exercise.

The Chain Rule and Gradients

The preceding argument is a special case of a more general fact. Let $c(t)$ be any curve in \mathbb{R}^{3}. Then, clearly by the chain rule we have

$$
\frac{d f}{d t}=\nabla f(c(t)) \cdot c^{\prime}(t)
$$

I leave this to you as a simple exercise.
Going back to the directional derivative, we can ask ourselves the following question. In what direction is f changing fastest at a given point $\left(x_{0}, y_{0}, z_{0}\right)$? In other words, in which direction does the directional derivative attain its largest value?

The Chain Rule and Gradients

The preceding argument is a special case of a more general fact. Let $c(t)$ be any curve in \mathbb{R}^{3}. Then, clearly by the chain rule we have

$$
\frac{d f}{d t}=\nabla f(c(t)) \cdot c^{\prime}(t)
$$

I leave this to you as a simple exercise.
Going back to the directional derivative, we can ask ourselves the following question. In what direction is f changing fastest at a given point $\left(x_{0}, y_{0}, z_{0}\right)$? In other words, in which direction does the directional derivative attain its largest value?

Using what we have just learnt, we are looking for a unit vector $v=\left(v_{1}, v_{2}, v_{3}\right)$ such that

$$
\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot v
$$

is as large as possible

We rewrite the preceding dot product as

$$
\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot v=\left\|\nabla f\left(x_{0}, y_{0}, z_{0}\right)\right\|\|v\| \cos \theta
$$

where θ is the angle between v and $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$.

We rewrite the preceding dot product as

$$
\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot v=\left\|\nabla f\left(x_{0}, y_{0}, z_{0}\right)\right\|\|v\| \cos \theta
$$

where θ is the angle between v and $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$. Since v is a unit vector this gives

$$
\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot v=\left\|\nabla f\left(x_{0}, y_{0}, z_{0}\right)\right\| \cos \theta
$$

We rewrite the preceding dot product as

$$
\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot v=\left\|\nabla f\left(x_{0}, y_{0}, z_{0}\right)\right\|\|v\| \cos \theta
$$

where θ is the angle between v and $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$.
Since v is a unit vector this gives

$$
\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot v=\left\|\nabla f\left(x_{0}, y_{0}, z_{0}\right)\right\| \cos \theta
$$

The maximum value on the right hand side is obviously attained when $\theta=0$, that is, when v points in the direction of ∇f. In other words the function is increasing fastest in the direction v given by ∇f. Thus the unit vector that we seek is

We rewrite the preceding dot product as

$$
\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot v=\left\|\nabla f\left(x_{0}, y_{0}, z_{0}\right)\right\|\|v\| \cos \theta
$$

where θ is the angle between v and $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$.
Since v is a unit vector this gives

$$
\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot v=\left\|\nabla f\left(x_{0}, y_{0}, z_{0}\right)\right\| \cos \theta
$$

The maximum value on the right hand side is obviously attained when $\theta=0$, that is, when v points in the direction of ∇f. In other words the function is increasing fastest in the direction v given by ∇f. Thus the unit vector that we seek is

$$
v=\frac{\nabla f\left(x_{0}, y_{0}, z_{0}\right)}{\left\|\nabla f\left(x_{0}, y_{0}, z_{0}\right)\right\|}
$$

Surfaces defined implicitly

So far we have only been considering surfaces of the form $z=f(x, y)$, where f was a function on a subset of \mathbb{R}^{2}. We now consider a more general type of surface S defined implicitly:

$$
S=\{(x, y, z) \mid f(x, y, z)=b\}
$$

where b is a constant.

Surfaces defined implicitly

So far we have only been considering surfaces of the form $z=f(x, y)$, where f was a function on a subset of \mathbb{R}^{2}. We now consider a more general type of surface S defined implicitly:

$$
S=\{(x, y, z) \mid f(x, y, z)=b\}
$$

where b is a constant. Most surfaces we have come across are usually described in this form, for instance, the sphere which is given by $x^{2}+y^{2}+z^{2}=r^{2}$ or the right circular cone $x^{2}+y^{2}-z^{2}=0$. Let us try to understand what a tangent plane is more precisely.

Surfaces defined implicitly

So far we have only been considering surfaces of the form $z=f(x, y)$, where f was a function on a subset of \mathbb{R}^{2}. We now consider a more general type of surface S defined implicitly:

$$
S=\{(x, y, z) \mid f(x, y, z)=b\}
$$

where b is a constant. Most surfaces we have come across are usually described in this form, for instance, the sphere which is given by $x^{2}+y^{2}+z^{2}=r^{2}$ or the right circular cone $x^{2}+y^{2}-z^{2}=0$. Let us try to understand what a tangent plane is more precisely.

If S is a surface, a tangent plane to S at a point $s \in S$ (if it exists) is a plane that contains the tangent lines at s to all curves passing through s and lying on S.

For instance, with the definition above, it is clear that a tangent plane to the right circular cone does not exist at the origin, since such a plane would have to contain the lines $x=0, y=z$, $x=0, y=-z$ and $y=0, x=z$. Clearly no such plane exists.

For instance, with the definition above, it is clear that a tangent plane to the right circular cone does not exist at the origin, since such a plane would have to contain the lines $x=0, y=z$, $x=0, y=-z$ and $y=0, x=z$. Clearly no such plane exists.

If $c(t)$ is an curve on the surface S given by $f(x, y, z)=b$, we see that

$$
\frac{d}{d t} f(c(t))=0
$$

For instance, with the definition above, it is clear that a tangent plane to the right circular cone does not exist at the origin, since such a plane would have to contain the lines $x=0, y=z$, $x=0, y=-z$ and $y=0, x=z$. Clearly no such plane exists.

If $c(t)$ is an curve on the surface S given by $f(x, y, z)=b$, we see that

$$
\frac{d}{d t} f(c(t))=0
$$

On the other hand, by the chain rule,

$$
0=\frac{d}{d t} f(c(t))=\nabla f(c(t)) \cdot c^{\prime}(t)
$$

For instance, with the definition above, it is clear that a tangent plane to the right circular cone does not exist at the origin, since such a plane would have to contain the lines $x=0, y=z$, $x=0, y=-z$ and $y=0, x=z$. Clearly no such plane exists.

If $c(t)$ is an curve on the surface S given by $f(x, y, z)=b$, we see that

$$
\frac{d}{d t} f(c(t))=0
$$

On the other hand, by the chain rule,

$$
0=\frac{d}{d t} f(c(t))=\nabla f(c(t)) \cdot c^{\prime}(t)
$$

Thus, if $s=c\left(t_{0}\right)$ is a point on the surface, we see that

$$
\nabla f\left(c\left(t_{0}\right)\right) \cdot c^{\prime}\left(t_{0}\right)=0
$$

for every curve $c(t)$ on the surface S passing through t_{0}. Hence, if $\nabla f\left(c\left(t_{0}\right)\right) \neq 0$, then $\nabla f\left(c\left(t_{0}\right)\right)$ is perpendicular to the tangent plane of S at s_{0}.

Let \mathbf{r} denote the position vector

$$
x \mathbf{i}+y \mathbf{j}+z \mathbf{k},
$$

of a point $P=(x, y, z)$ in \mathbb{R}^{3}. Instead of writing $\|\mathbf{r}\|$, it is customary to write r. This notation is very useful. For instance, Newton's Law of Gravitation can be expressed as

$$
\mathbf{F}=-\frac{G M m}{r^{3}} \cdot \mathbf{r}
$$

where the mass M is assumed to be at the origin, \mathbf{r} denotes the position vector of the mass m, G is a constant and \mathbf{F} denotes the gravitational force between the two (point) masses.

Let \mathbf{r} denote the position vector

$$
x \mathbf{i}+y \mathbf{j}+z \mathbf{k},
$$

of a point $P=(x, y, z)$ in \mathbb{R}^{3}. Instead of writing $\|\mathbf{r}\|$, it is customary to write r. This notation is very useful. For instance, Newton's Law of Gravitation can be expressed as

$$
\mathbf{F}=-\frac{G M m}{r^{3}} \cdot \mathbf{r}
$$

where the mass M is assumed to be at the origin, \mathbf{r} denotes the position vector of the mass m, G is a constant and \mathbf{F} denotes the gravitational force between the two (point) masses.
A simple computation shows that

$$
\nabla\left(\frac{1}{r}\right)=-\frac{\mathbf{r}}{r^{3}} .
$$

Thus the gravitational force at any point can be expressed as the gradient of a function. Moreover, it is clear that

$$
\left\|\nabla\left(\frac{1}{r}\right)\right\|=\left\|-\frac{r}{r^{3}}\right\|=\frac{1}{r^{2}} .
$$

Keeping our previous discussion in mind, we know that if $V=G M m / r, \mathbf{F}=\nabla V$.

Keeping our previous discussion in mind, we know that if $V=G M m / r, \mathbf{F}=\nabla V$.
What are the level surfaces of V ? Clearly, r must be a constant on these level sets, so the level surfaces are spheres. Since \mathbf{F} is a multiple of $-\mathbf{r}$, we see that F points towards the origin and is thus orthogonal to the sphere.

Keeping our previous discussion in mind, we know that if $V=G M m / r, \mathbf{F}=\nabla V$.
What are the level surfaces of V ? Clearly, r must be a constant on these level sets, so the level surfaces are spheres. Since \mathbf{F} is a multiple of $-\mathbf{r}$, we see that F points towards the origin and is thus orthogonal to the sphere.

In order to make our notation less cumbersome, we introduce the notation f_{x} for the partial derivative $\frac{\partial f}{\partial x}$. The notations f_{y} and f_{z} will have the obvious meanings.

Since we know that the gradient of f is normal to the level surface S given by $f(x, y, z)=c$ (provided the gradient is non zero), it allows us to write down the equation of the tangent plane of S at the point $s=\left(x_{0}, y_{0}, z_{0}\right)$. The equation of this plane is
$f_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+f_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0$.

Since we know that the gradient of f is normal to the level surface S given by $f(x, y, z)=c$ (provided the gradient is non zero), it allows us to write down the equation of the tangent plane of S at the point $s=\left(x_{0}, y_{0}, z_{0}\right)$. The equation of this plane is
$f_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+f_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0$.

For the curve $f(x, y)=c$ we can similarly write down the equation of the tangent passing through $\left(x_{0}, y_{0}\right)$:

$$
f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)=0
$$

Note that the fact that the gradient of f is normal to the level surface $f(x, y, z)=c$ is true only for implicitly defined surfaces. If the surface is given as $z=f(x, y)$, then we cannot simply take the gradient of f and make the same statement. We must first convert our explicit surface to the implicit surface S given by $g(x, y, z)=z-f(x, y)=0$. Then ∇g will be normal to S.

The proof of the chain rule

How does one actually prove the chain rule for a function $f(x, y)$ of two variables? We can write

The proof of the chain rule

How does one actually prove the chain rule for a function $f(x, y)$ of two variables? We can write

$$
f(x(t+h), y(t+h))=f\left(x(t)+h\left[x^{\prime}(t)+p_{1}(h)\right], y(t)+h\left[y^{\prime}(t)+p_{2}(h)\right]\right)
$$

for functions p_{1} and p_{2} that go to zero as h goes to zero. Here we are simply using the differentiability of x and y as functions of t. Now we can write the right hand side as

The proof of the chain rule

How does one actually prove the chain rule for a function $f(x, y)$ of two variables? We can write

$$
f(x(t+h), y(t+h))=f\left(x(t)+h\left[x^{\prime}(t)+p_{1}(h)\right], y(t)+h\left[y^{\prime}(t)+p_{2}(h)\right]\right)
$$

for functions p_{1} and p_{2} that go to zero as h goes to zero. Here we are simply using the differentiability of x and y as functions of t. Now we can write the right hand side as

$$
f(x(t), y(t))+D f\left(h\left[x^{\prime}(t)+p_{1}(h)\right], h\left[y^{\prime}(t)+p_{2}(h)\right]\right)+p_{3}(h) h
$$

by using the differentiability of f, for some other function $p_{3}(h)$ which goes to zero as h goes to zero (you may need to think about this step a little). This gives

The proof of the chain rule

How does one actually prove the chain rule for a function $f(x, y)$ of two variables? We can write

$$
f(x(t+h), y(t+h))=f\left(x(t)+h\left[x^{\prime}(t)+p_{1}(h)\right], y(t)+h\left[y^{\prime}(t)+p_{2}(h)\right]\right)
$$

for functions p_{1} and p_{2} that go to zero as h goes to zero. Here we are simply using the differentiability of x and y as functions of t. Now we can write the right hand side as

$$
f(x(t), y(t))+D f\left(h\left[x^{\prime}(t)+p_{1}(h)\right], h\left[y^{\prime}(t)+p_{2}(h)\right]\right)+p_{3}(h) h
$$

by using the differentiability of f, for some other function $p_{3}(h)$ which goes to zero as h goes to zero (you may need to think about this step a little). This gives

$$
f(x(t+h), y(t+h))-f(x(t), y(t))-f_{x} x^{\prime}(t) h-f_{y} y^{\prime}(t) h=p(h) h
$$

Functions from $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$

So far we have only studied functions whose range was a subset of \mathbb{R}. Let us now allow the range to be $\mathbb{R}^{n}, n=1,2,3, \ldots$. Can we understand what continuity, differentiability etc. mean?

Functions from $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$

So far we have only studied functions whose range was a subset of \mathbb{R}. Let us now allow the range to be $\mathbb{R}^{n}, n=1,2,3, \ldots$. Can we understand what continuity, differentiability etc. mean?

Let U be a subset of $\mathbb{R}^{m}(m=1,2,3, \ldots)$ and let $f: U \rightarrow \mathbb{R}^{n}$ be a function. If $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in U, f(x)$ will be an n-tuple where each coordinate is a function of x. Thus, we can write $f(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)$, where each $f_{i}(x)$ is a function from U to \mathbb{R}.

Functions from $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$

So far we have only studied functions whose range was a subset of \mathbb{R}. Let us now allow the range to be $\mathbb{R}^{n}, n=1,2,3, \ldots$. Can we understand what continuity, differentiability etc. mean?

Let U be a subset of $\mathbb{R}^{m}(m=1,2,3, \ldots)$ and let $f: U \rightarrow \mathbb{R}^{n}$ be a function. If $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in U, f(x)$ will be an n-tuple where each coordinate is a function of x. Thus, we can write $f(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)$, where each $f_{i}(x)$ is a function from U to \mathbb{R}.

Functions which take values in \mathbb{R} are called scalar valued functions, which functions which take values in $\mathbb{R}^{n}, n>1$ are usually called vector valued functions.

Continuity of vector valued functions

The definition of continuity is exactly the same as before.

Continuity of vector valued functions

The definition of continuity is exactly the same as before. Definition: The function f is said to be continuous at a point $c \in U$ if

$$
\lim _{x \rightarrow c} f(x)=f(c) .
$$

Continuity of vector valued functions

The definition of continuity is exactly the same as before. Definition: The function f is said to be continuous at a point $c \in U$ if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

How does one define the limit on the left hand side?

Continuity of vector valued functions

The definition of continuity is exactly the same as before. Definition: The function f is said to be continuous at a point $c \in U$ if

$$
\lim _{x \rightarrow c} f(x)=f(c) .
$$

How does one define the limit on the left hand side? The function f takes values in \mathbb{R}^{n}, so its limit must be a point in \mathbb{R}^{n}, say $I=\left(l_{1}, l_{2}, \ldots, I_{n}\right)$.

Continuity of vector valued functions

The definition of continuity is exactly the same as before. Definition: The function f is said to be continuous at a point $c \in U$ if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

How does one define the limit on the left hand side? The function
f takes values in \mathbb{R}^{n}, so its limit must be a point in \mathbb{R}^{n}, say $I=\left(l_{1}, l_{2}, \ldots, I_{n}\right)$.

Definition: We say that $f(x)$ tends to the limit / if given any $\epsilon>0$, there exists $\delta>0$ such that if $0<\|x-c\|_{m}<\delta$, then

$$
\|f(x)-l\|_{n}<\epsilon
$$

Continuity of vector valued functions

The definition of continuity is exactly the same as before. Definition: The function f is said to be continuous at a point $c \in U$ if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

How does one define the limit on the left hand side? The function
f takes values in \mathbb{R}^{n}, so its limit must be a point in \mathbb{R}^{n}, say $I=\left(l_{1}, l_{2}, \ldots, I_{n}\right)$.

Definition: We say that $f(x)$ tends to the limit / if given any $\epsilon>0$, there exists $\delta>0$ such that if $0<\|x-c\|_{m}<\delta$, then

$$
\|f(x)-l\|_{n}<\epsilon
$$

You can easily prove the following theorem yourself:

Continuity of vector valued functions

The definition of continuity is exactly the same as before. Definition: The function f is said to be continuous at a point $c \in U$ if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

How does one define the limit on the left hand side? The function
f takes values in \mathbb{R}^{n}, so its limit must be a point in \mathbb{R}^{n}, say $I=\left(I_{1}, I_{2}, \ldots, I_{n}\right)$.

Definition: We say that $f(x)$ tends to the limit / if given any $\epsilon>0$, there exists $\delta>0$ such that if $0<\|x-c\|_{m}<\delta$, then

$$
\|f(x)-I\|_{n}<\epsilon
$$

You can easily prove the following theorem yourself:
Theorem: The function $f: U \rightarrow \mathbb{R}^{n}$ is continuous if and only if each of the functions $f_{i}: U \rightarrow \mathbb{R}, 1 \leq i \leq n$, is continuous.

