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Recap

The Chain Rule

The Chain Rule and gradients



Differentiability for functions of two variables
We let (x , y) = (x0, y0) + (h, k) = (x0 + h, y0 + k). The function
f (x , y) is said to be differentiable at (x0, y0) if both partial
derivatives exist at that point and if∣∣∣∣f ((x0, y0) + (h, k))− f (x0, y0)− ∂f

∂x
(x0, y0)h − ∂f

∂y
(x0, y0)k

∣∣∣∣
= p(h, k)‖(h, k)‖

where p(h, k) is a function that goes to 0 as ‖(h, k)‖ → 0.This
form of differentiability now looks exactly like the one variable
version case. In matrix notation we have:

Definition: The function f (x , y) is said be differentiable at a point
(x0, y0) if there exists a matrix denoted Df ((x0, y0)) with the
property that

f ((x0, y0) + (h, k))− f (x0, y0)−Df (x0, y0)

(
h
k

)
= p(h, k)‖(h, k)‖,

for some function p(h, k) which goes to zero as (h, k) goes to zero.
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A criterion for differentiability

Before we state the criterion, we note that with our definition of
differentiability, every differentiable function is continuous.

Theorem 26: Let f : U → R. If the partial derivatives ∂f
∂x (x , y) and

∂f
∂y (x , y) exist and are continuous in a neighbourhood of a point
(x0, y0) (that is in a region of the plane of the form
{(x , y) | ‖(x , y)− (x0, y0)‖ < r} for some r > 0). Then f is
differentiable at (x0, y0).

We omit the proof of this theorem. However, we note that a
function whose partial derivatives exist and are continuous is said
to be continuously differentiable or of class C1. The theorem says
that every C1 function is differentiable.
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The Chain Rule

We now study the situation where we have composition of
functions. We assume that x , y : I → R are differentiable functions
from some interval (open or closed) to R. Thus the pair
(x(t), y(t)) defines a function from I to R2. Suppose we have a
function f : R2 → R which is differentiable. We would like to
study the derivative of the composite function z(t) = f (x(t), y(t))
from I to R.

Theorem 27: With notation as above

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
.

For a function w = f (x , y , z) in three variables the chain rule takes
the form

dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt
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Clarifications on the notation

The form in which I have written the chain rule is the standard one
used in many books (both in engineering and mathematics).
However, it is not very good notation. For instance, in the formula

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

the letter z is being used for two different functions: both as a
function z(t) from R to R on the left hand side, and as a function
z(x , y) from R2 to R. If one wants to be precise one should write
the chain rule as

dz

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.

Similarly, for the function w we should write

dw

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt



Verifying the chain rule in a simple case

Example: Let us verify this rule in a simple case. Let z = xy ,
x = t3 and y = t2.

Then z = t5 so z ′(t) = 5t4. On the other hand, using the chain
rule we get

z ′(t) = y · 3t2 + x · 2t = 3t4 + 2t4 = 5t4.

Example: A continuous mapping c : I → Rn of an interval I to R
is called a curve in Rn, (n = 2, 3).
In what follows, we will assume that all the curves we have are
actually differentiable, not just continuous. We will say what this
means below.
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An application to tangents of curves

Let us consider a curve c(t) in R3. Each point on the curve will be
given by a triple of coordinates which will depend on t. That is, the
curve can be described by a triple of functions (g(t), h(t), k(t)).
Saying that c(t) is a differentiable function of t, means that each
of g(t), h(t), k(t) are differentiable functions from R→ R. If we
write

c(t) = g(t)i+h(t)j+k(t)k, then c ′(t0) = g ′(t0)i+h′(t0)j+k ′(t0)k,

represents its tangent or velocity vector at the point c(t0).



Tangents to curves on surfaces

So far our example has nothing to do with the chain rule. Suppose
z = f (x , y) is a surface, and c(t) = (g(t), h(t), f (g(t), h(t)) lies
on the z = f (x , y). (Here we are assuming that f : R2 → R is a
differentiable function!) Let us compute the tangent vector to the
curve at c(t0). It is given by

c ′(t0) = g ′(t0)i + h′(t0)j + k ′(t0)k,

where k(t) = (f (g(t), h(t)). Using the chain rule we see that

k ′(t0) =
∂f

∂x
g ′(t0) +

∂f

∂y
h′(t0).
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We can further show that this tangent vector lies on the tangent
plane to the surface z = f (x , y). Indeed we have already seen that
the tangent plane has the equation

z = f (x0, y0) +
∂f

∂x
(x0, y0)(x − x0) +

∂f

∂y
(x0, y0)(y − y0).

A normal vector to this plane is given by(
−∂f
∂x

(x0, y0),−∂f
∂y

(x0, y0), 1

)
.

Thus, to verify that the tangent vector lies on the plane, we need
only check that its dot product with normal vector is 0. But this is
now clear.

Just to give a concrete example of what we are talking about, take
a curve (g(t), h(t)) in the unit disc x2 + y2 ≤ 1 in the xy plane.

Then
(
g(t), h(t),

√
1− g(t)2 − h(t)2

)
lies on the upper

hemisphere z =
√

1− x2 − y2. For concreteness, we can take

I =
[
0, 1√

2

]
, g(t) = t and h(t) = t2.
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Another application: Directional derivatives
Let U ⊂ R3 and let f : U → R be differentiable. We want to relate
the directional derivative to the gradient,

We consider the (differentiable) curve c(t) = (x0, y0, z0) + tv ,
where v = (v1, v2, v3) is a unit vector. We can rewrite c(t) as
c(t) = (x0 + tv1, y0 + tv2, z0 + tv3). We apply the chain rule to
compute the derivative of the function f (c(t)):

df

dt
=
∂f

∂x
v1 +

∂f

∂y
v2 +

∂f

∂z
v3.

But the left hand side is nothing but the directional derivative in
the direction v . Hence,

∇v f =
df

dt
= ∇f · v .

Of course, the same argument works when U ⊂ R2 and f is a
function of two variables. (Again, we have abused notation here.

We should really write d(f ◦c)
dt on the left hand side of the first

equation instead of df
dt .)
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The Chain Rule and Gradients

The preceding argument is a special case of a more general fact.
Let c(t) be any curve in R3. Then, clearly by the chain rule we
have

df

dt
= ∇f (c(t)) · c ′(t).

I leave this to you as a simple exercise.

Going back to the directional derivative, we can ask ourselves the
following question. In what direction is f changing fastest at a
given point (x0, y0, z0)? In other words, in which direction does the
directional derivative attain its largest value?

Using what we have just learnt, we are looking for a unit vector
v = (v1, v2, v3) such that

∇f (x0, y0, z0) · v

is as large as possible
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We rewrite the preceding dot product as

∇f (x0, y0, z0) · v = ‖∇f (x0, y0, z0)‖‖v‖ cos θ.

where θ is the angle between v and ∇f (x0, y0, z0).

Since v is a unit vector this gives

∇f (x0, y0, z0) · v = ‖∇f (x0, y0, z0)‖ cos θ.

The maximum value on the right hand side is obviously attained
when θ = 0, that is, when v points in the direction of ∇f . In other
words the function is increasing fastest in the direction v given by
∇f . Thus the unit vector that we seek is

v =
∇f (x0, y0, z0)

‖∇f (x0, y0, z0)‖
.
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∇f . Thus the unit vector that we seek is

v =
∇f (x0, y0, z0)

‖∇f (x0, y0, z0)‖
.



Surfaces defined implicitly

So far we have only been considering surfaces of the form
z = f (x , y), where f was a function on a subset of R2. We now
consider a more general type of surface S defined implicitly:

S = {(x , y , z) | f (x , y , z) = b},

where b is a constant.

Most surfaces we have come across are
usually described in this form, for instance, the sphere which is
given by x2 + y2 + z2 = r2 or the right circular cone
x2 + y2 − z2 = 0. Let us try to understand what a tangent plane is
more precisely.

If S is a surface, a tangent plane to S at a point s ∈ S (if it exists)
is a plane that contains the tangent lines at s to all curves passing
through s and lying on S .
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For instance, with the definition above, it is clear that a tangent
plane to the right circular cone does not exist at the origin, since
such a plane would have to contain the lines x = 0, y = z ,
x = 0, y = −z and y = 0, x = z . Clearly no such plane exists.

If c(t) is an curve on the surface S given by f (x , y , z) = b, we see
that

d

dt
f (c(t)) = 0.

On the other hand, by the chain rule,

0 =
d

dt
f (c(t)) = ∇f (c(t)) · c ′(t).

Thus, if s = c(t0) is a point on the surface, we see that

∇f (c(t0)) · c ′(t0) = 0,

for every curve c(t) on the surface S passing through t0. Hence, if
∇f (c(t0)) 6= 0, then ∇f (c(t0)) is perpendicular to the tangent
plane of S at s0.
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Let r denote the position vector

x i + y j + zk,

of a point P = (x , y , z) in R3. Instead of writing ‖r‖, it is
customary to write r . This notation is very useful. For instance,
Newton’s Law of Gravitation can be expressed as

F = −GMm

r3
· r,

where the mass M is assumed to be at the origin, r denotes the
position vector of the mass m, G is a constant and F denotes the
gravitational force between the two (point) masses.

A simple computation shows that

∇
(

1

r

)
= − r

r3
.

Thus the gravitational force at any point can be expressed as the
gradient of a function. Moreover, it is clear that∥∥∥∥∇(1

r

)∥∥∥∥ =
∥∥∥− r

r3

∥∥∥ =
1

r2
.
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Keeping our previous discussion in mind, we know that if
V = GMm/r , F = ∇V .

What are the level surfaces of V ? Clearly, r must be a constant on
these level sets, so the level surfaces are spheres. Since F is a
multiple of −r, we see that F points towards the origin and is thus
orthogonal to the sphere.

In order to make our notation less cumbersome, we introduce the
notation fx for the partial derivative ∂f

∂x . The notations fy and fz
will have the obvious meanings.
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Since we know that the gradient of f is normal to the level surface
S given by f (x , y , z) = c (provided the gradient is non zero), it
allows us to write down the equation of the tangent plane of S at
the point s = (x0, y0, z0). The equation of this plane is

fx(x0, y0, z0)(x−x0)+fy (x0, y0, z0)(y−y0)+fz(x0, y0, z0)(z−z0) = 0.

For the curve f (x , y) = c we can similarly write down the equation
of the tangent passing through (x0, y0):

fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0) = 0.

Note that the fact that the gradient of f is normal to the level
surface f (x , y , z) = c is true only for implicitly defined surfaces. If
the surface is given as z = f (x , y), then we cannot simply take the
gradient of f and make the same statement. We must first convert
our explicit surface to the implicit surface S given by
g(x , y , z) = z − f (x , y) = 0. Then ∇g will be normal to S .
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The proof of the chain rule
How does one actually prove the chain rule for a function f (x , y)
of two variables? We can write

f (x(t+h), y(t+h)) = f (x(t)+h[x ′(t)+p1(h)], y(t)+h[y ′(t)+p2(h)])

for functions p1 and p2 that go to zero as h goes to zero. Here we
are simply using the differentiability of x and y as functions of t.
Now we can write the right hand side as

f (x(t), y(t)) + Df (h[x ′(t) + p1(h)], h[y ′(t) + p2(h)]) + p3(h)h

by using the differentiability of f , for some other function p3(h)
which goes to zero as h goes to zero (you may need to think about
this step a little). This gives

f (x(t + h), y(t + h))− f (x(t), y(t))− fxx
′(t)h− fyy

′(t)h = p(h)h.
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Functions from Rm → Rn

So far we have only studied functions whose range was a subset of
R. Let us now allow the range to be Rn, n = 1, 2, 3, . . . . Can we
understand what continuity, differentiability etc. mean?

Let U be a subset of Rm (m = 1, 2, 3, . . . ) and let f : U → Rn be
a function. If x = (x1, x2, . . . , xm) ∈ U, f (x) will be an n-tuple
where each coordinate is a function of x . Thus, we can write
f (x) = (f1(x), f2(x), . . . , fn(x)), where each fi (x) is a function from
U to R.

Functions which take values in R are called scalar valued functions,
which functions which take values in Rn, n > 1 are usually called
vector valued functions.



Functions from Rm → Rn

So far we have only studied functions whose range was a subset of
R. Let us now allow the range to be Rn, n = 1, 2, 3, . . . . Can we
understand what continuity, differentiability etc. mean?

Let U be a subset of Rm (m = 1, 2, 3, . . . ) and let f : U → Rn be
a function. If x = (x1, x2, . . . , xm) ∈ U, f (x) will be an n-tuple
where each coordinate is a function of x . Thus, we can write
f (x) = (f1(x), f2(x), . . . , fn(x)), where each fi (x) is a function from
U to R.

Functions which take values in R are called scalar valued functions,
which functions which take values in Rn, n > 1 are usually called
vector valued functions.



Functions from Rm → Rn

So far we have only studied functions whose range was a subset of
R. Let us now allow the range to be Rn, n = 1, 2, 3, . . . . Can we
understand what continuity, differentiability etc. mean?

Let U be a subset of Rm (m = 1, 2, 3, . . . ) and let f : U → Rn be
a function. If x = (x1, x2, . . . , xm) ∈ U, f (x) will be an n-tuple
where each coordinate is a function of x . Thus, we can write
f (x) = (f1(x), f2(x), . . . , fn(x)), where each fi (x) is a function from
U to R.

Functions which take values in R are called scalar valued functions,
which functions which take values in Rn, n > 1 are usually called
vector valued functions.



Continuity of vector valued functions

The definition of continuity is exactly the same as before.

Definition: The function f is said to be continuous at a point
c ∈ U if

lim
x→c

f (x) = f (c).

How does one define the limit on the left hand side? The function

f takes values in Rn, so its limit must be a point in Rn, say
l = (l1, l2, . . . , ln).

Definition: We say that f (x) tends to the limit l if given any
ε > 0, there exists δ > 0 such that if 0 < ‖x − c‖m < δ, then

‖f (x)− l‖n < ε.

You can easily prove the following theorem yourself:

Theorem: The function f : U → Rn is continuous if and only if
each of the functions fi : U → R, 1 ≤ i ≤ n, is continuous.
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