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Vector valued functions

Vector fields

Back to the derivative



Functions from Rm → Rn

So far we have only studied functions whose range was a subset of
R. Let us now allow the range to be Rn, n = 1, 2, 3, . . . . Can we
understand what continuity, differentiability etc. mean?

Let U be a subset of Rm (m = 1, 2, 3, . . . ) and let f : U → Rn be
a function. If x = (x1, x2, . . . , xm) ∈ U, f (x) will be an n-tuple
where each coordinate is a function of x . Thus, we can write
f (x) = (f1(x), f2(x), . . . , fn(x)), where each fi (x) is a function from
U to R.

Functions which take values in R are called scalar valued functions.
Functions which take values in Rn, n > 1 are usually called vector
valued functions.



Continuity of vector valued functions

The definition of continuity is exactly the same as before.
Definition: The function f is said to be continuous at a point
c ∈ U if

lim
x→c

f (x) = f (c).

How does one define the limit on the left hand side? The function

f takes values in Rn, so its limit must be a point in Rn, say
l = (l1, l2, . . . , ln).

Definition: We say that f (x) tends to the limit l if given any
ε > 0, there exists δ > 0 such that if 0 < ‖x − c‖m < δ, then

‖f (x)− l‖n < ε.

You can easily prove the following theorem yourself:

Theorem: The function f : U → Rn is continuous if and only if
each of the functions fi : U → R, 1 ≤ i ≤ n, is continuous.



Vector fields

When m = n, vector valued functions are often called vector fields.
We will study vector fields in slightly greater detail when
m = n = 2 and m = n = 3.

We have already seen one example of a vector field - the
gravitational force field −GMm

r3
· r felt by a mass m whose position

vector with respect to a mass M at the origin is r. In this
particular case we showed the the force field arose as the gradient
of a scalar valued function (the potential V = GMm/r).

One of the most important questions in calculus is the following:
Given a vector field, when does it arise as the gradient of a scalar
function? In physics, vector force fields that arise from scalar
potential functions are called conservative.



Some pictures of vector fields
We can actually visualize two dimensional vector fields as follows.
At each point in R2 we can draw an arrow starting at that point
pointing in the direction of the image vector and with size
proportional to the magnitude of the image vector.

What function from R2 to R2

does this picture represent?

f (x , y) = (−x ,−y)

the the radial vector field.

http://en.wikipedia.org/wiki/File:Radial vector field dense.svg



How about this one?

f (x , y) = (− y

x2 + y2
,

x

x2 + y2
)

This is an example of an
irrotational vector field.
It cannot be written as the
gradient of a potential function.



Here is another (more complicated one)

f (x , y) = (sin y , sin x)

http://en.wikipedia.org/wiki/File:VectorField.svg



One can also talk about two dimensional (struck out because it
caused confusion in class) vector fields on any two dimensional
surface. Here is a picture of a vector field on a sphere.

http://en.wikipedia.org/wiki/File:Vector sphere.svg



Vector fields in the “real world”

Many real world phenomena can be understood using the language
of vector fields. In physics, apart from gravitation, electromagnetic
forces can also be represented by vector fields. That is, to each
point in space we attach the vector representing the force at that
point. Such fields are called force fields.

Fluids flowing are also often modeled using vector fields, with each
point being mapped to the vector representing the velocity of the
fluid flow. For instance, the velocity of winds in the atmosphere
can be represented as a vector field. Such fields are called velocity
fields.



A diversion: How to calculate powers of e in your head?
From Richard Feynman’s “Surely you’re joking Mr. Feynman!”
(pages 173-174):

One day at Princeton I was sitting in the lounge and overheard
some mathematicians talking about the series for e to the x power
which is 1 + x + x2

2! + x3

3! + . . . . Each term you get by multiplying
the preceding term by x and dividing by the next number. For
example, to get the next term after x3/3! you multiply that term
by x and divide by 4. It’s very simple.

When I was a kid I was excited by series, and had played with this
thing. I had computed e using that series, and had seen how
quickly the new terms became very small.

I mumbled something about how it was easy to calculate e to any
power using that series (you just substitute the power for x).
“Oh yeah?” they said. “Well, the what’s e to the 3.3?” said some
joker - I think it was Tukey.
I say, “That’s easy. It’s 27.11.”



Feynman’s anecdote continued

Tukey knows it isn’t so easy to compute all that in your head.
“Hey! How’d you do that?”
Another guy says, “You know Feynman, he’s just faking it. It’s not
really right.”
They go to get a table, and while they’re doing that, I put on a
few more figures: “27.1126,” I say.
They find it in the table. “It’s right! But how’d you do it!”
“I just summed the series.”
“Nobody can sum the series that fast. You must just happen to
know that one. How about e3?”
“Look,” I say. “It’s hard work! Only one a day!”
“Hah! It’s a fake!” they say, happily.
“All right,” I say, “It’s 20.085.”
They look in the book as I put a few more figures on. They’re all
excited now, because I got another one right.



Here are these great mathematicians of the day, puzzled at how I
can compute e to any power! One of them says, “He just can’t be
substituting and summing - it’s too hard. There’s some trick. You
couldn’t do just any old number like e to the 1.4.”
I say, “It’s hard work, but for you, OK. It’s 4.05.”
As they’re looking it up, I put on a few more digits and say, “And
that’s the last one for the day!” and walk out.



What happened was this: I happened to know three numbers - the
logarithm of 10 to the base e (needed to convert numbers from
base 10 to base e), which is 2.3026 (so I knew that e to the 2.3 is
very close to 10), and because of radioactivity (mean-life and
half-life), I knew the log of 2 to the base e, which is .69315 (so I
also knew that e to the .7 is nearly equal to 2). I also knew e (to
the 1), which is 2.71828.
The first number they gave me was e to the 3.3, which is e to the
2.3 (10) times e, or 27.18. While they were sweating about how I
was doing it, I was correcting for the extra .0026 - 2.3026 is a little
high.
I knew I couldn’t do another one; that was sheer luck. But then
the guy said e to the 3: that’s e to the 2.3 times e to the .7, or
ten times two. So I knew it was 20.something, and while they were
worrying how I did it, I adjusted for the .693.
Now I was sure I couldn’t do another one, because the last one was
again by sheer luck. But the guy said e to the 1.4 which is e to
the .7 times itself. So all I had to do is fix up 4 a little bit!
They never did figure out how I did it.



https://en.wikipedia.org/wiki/Richard_Feynman Richard
Feynman (1918-1988)

https://en.wikipedia.org/wiki/Richard_Feynman


The derivative for f : U → Rn

We now define the derivative for a function f : U → Rn, where U
is a subset of Rm.

The function f is said to be differentiable at a point x if there
exists an n ×m matrix Df (x) such that

lim
‖h‖→0

‖f (x + h)− f (x)− Df (x) · h‖
‖h‖

= 0.

Here x = (x1, x2, . . . , xm) and h = (h1, h2, . . . hm) are vectors in
Rm.

The matrix Df (x) is usually called the total derivative of f . It is
also referred to as the Jacobian matrix. What are its entries?

From our experience in the 2× 1 case we might guess (correctly!)
that the entries will be the partial derivatives.



Here is the total derivative or the derivative matrix written out
fully.

Df (x) =



∂f1
∂x1

(x) ∂f1
∂x2

(x) · · · ∂f1
∂xm

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x) · · · ∂f2
∂xm

(x)

. . · · · .

. . · · · .

. . · · · .
∂fn
∂x1

(x) ∂fn
∂x2

(x) · · · ∂fn
∂xm

(x)


In the 2× 2 case we get(

∂f1
∂x1

(x) ∂f1
∂x2

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x)

)
.

As before, the derivative may be viewed as a linear map, this time
from Rm to Rn (or, in the case just above, from R2 to R2).



Rules for the total derivative

Just like in the one variable case, it is easy to prove that

D(f + g)(x) = Df (x) + Dg(x).

Somewhat harder, but only because the notation gets more
cumbersome, is the Chain rule:

D(f ◦ g)(x) = Df (g(x)) ◦ Dg(x),

where ◦ on the right hand side denotes matrix multiplication.
Theorem 26 holds in this greater generality - a function from Rm

to Rn is differentiable at a point x0 if all the partial derivatives ∂fi
∂xj

1 ≤ i ≤ n, 1 ≤ j ≤ m, are continuous in a neighborhood of x0
(define a neighborhood of x0 in Rm!).



Higher derivatives

Just as we repeatedly differentiated a function of one variable to
get higher derivatives, we can also look at higher partial derivatives.

However, we now have more freedom. If we have a function
f (x1, x2) of two variables, we could first take the partial derivative
with respect to x1, then with respect to x2, then again with respect
to x2, and so on. Does the order in which we differentiate matter?

Theorem 28: Let f : U → R be a function such that the partial

derivatives ∂
∂xi

(
∂
∂xj

(f )
)

exist and are continuous for every

1 ≤ i , j ≤ m. Then,

∂

∂xi

(
∂

∂xj
(f )

)
=

∂

∂xj

(
∂

∂xi
(f )

)
.



Functions f : U → R for which the mixed partial derivatives of

order 2 (that is, the ∂
∂xi

(
∂
∂xj

(f )
)

) are all continuous are called C2

functions. Theorem 28 says that for C2 functions, the order in
which one takes partial derivatives does not matter.

From now on we will use use the following notation. By

∂nf

∂xn11 ∂x
n2
2 . . . ∂xnkk

,

we mean: first take the partial derivative of f n1 times with
respect to x1, then n2 times with respect to x2, and so on. The
number n is nothing but n1 + n2 + . . .+ nk . It is called the order
of the mixed partial derivative.

Finally, we say that a function is Ck if all mixed partial derivatives
of order k exist and are continuous. A function f : U → Rn will be
said to be Ck if each of the functions f1, f2, . . . , fn are Ck functions.



From the preceding slide we see the we can talk about Ck
functions for any function from (a subset of) Rm to Rn. As in the
one variable case we can also talk of smooth functions - these are
functions for which all partial derivatives of all orders exist. In
particular, the notion of a smooth vector field makes perfect sense.
There are many interesting facts about smooth vector fields. I will
mention just one:
You cannot comb a porcupine.

Or, in more mathematical terms, every smooth tangential vector
field on the sphere will vanish at at least one point.

Note that we require that at each point on the sphere the vector
we assign must lie in the plane tangent to the sphere at that point.
https://en.wikipedia.org/wiki/Hairy_ball_theorem

https://en.wikipedia.org/wiki/Hairy_ball_theorem
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