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Local maxima and minima

As in the one variable case we can define local maxima and minima
for a function of two or more variables. These definitions can be
made for any function. They do not require us to assume any
differentiability properties for the functions. Let f : U(⊂ R2)→ R
be a function of two variables.

Definition: We will say that the function f (x , y) attains a local
minimum at the point (x0, y0) (or that (x0, y0) is a local minimum
point of f ) if there is a disc

Dr (x0, y0) = {(x , y) | ‖(x , y)− (x0, y0)‖ < r}

of radius r > 0 around (x0, y0) such that f (x , y) ≥ f (x0, y0) for
every point (x , y) in Dr (x0, y0).

Similarly, we can define a local maximum point (Do this).



Critical Points

When the function is differentiable we can use the properties of the
partial derivatives to find local maxima and minima. As in the one
variable situation, we have the first derivative test. This is the
analogue of Fermat’s theorem. Before formulating the test we need
make the following definition.

Defintion: A point (x0, y0) is called a critical point of f (x , y) if

fx(x0, y0) = fy (x0, y0) = 0.

What does this say in geometric terms? Recall that the tangent
plane to z = f (x , y) at (x0, y0) is given by

z = z0 + fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0).

Hence, at a critical point, the tangent plane is horizontal, that is,
it is parallel to the xy -plane.



The first derivative test

Theorem 29: If (x0, y0) is a local extremum point (that is, a
minimum or a maximum point) and if fx(x0, y0) and fy (x0, y0)
exist, then (x0, y0) is a critical point.

The proof is similar in the one variable case. If (x0, y0) is not a
critical point, then at least one of the two partial derivatives must
be non-zero. Without loss of generality we can assume that
fx(x0, y0) 6= 0.

Suppose fx(x0, y0) > 0. This means that

lim
h→0

f (x0 + h, y0)− f (x0, y0)

h
> 0.

This means that for |h| small enough,

f (x0 + h, y0)− f (x0, y0)

h
> 0.



If h > 0, this shows that the numerator is positive. On the other
hand, if h < 0, the numerator must be negative.

Thus, in any disc Dr (x0, y0) there are points (x , y) for which
f (x0, y0) < f (x , y) and f (x0, y0) > f (x , y). The same argument
can be repeated if fx(x0, y0) < 0, giving a contradiction to the fact
that (x0, y0) is an extreme point .



Towards a second derivative test

As in the one variable case, we would like to decide whether a local
extremum is a local maximum or a local minimum. In order to this
we will need to look a the partial derivatives of order 2. Let us
assume that these exist.

We start by defining the Hessian of f . This is the matrix(
fxx(x0, y0) fxy (x0, y0)
fyx(x0, y0) fyy (x0, y0)

)
.

From now on we will assume that f is a C2 function. Recall that
this means that fxy = fyx .

The determinant of the Hessian is sometimes called the
discriminant and is sometimes denoted D. Explicitly,

D = fxx(x0, y0)fyy (x0, y0)− [fxy (x0, y0)]2.



The second derivative test

We give a test for finding local maxima and minima below. In the
two variable situation, we will also need to understand what a
saddle point is. We will explain this after stating the theorem.
Theorem 30: With notation as above:

1. If D > 0 and fxx(x0, y0) > 0, then (x0, y0) is a local minimum
for f .

2. If D > 0 and fxx(x0, y0) < 0, then (x0, y0) is a local maximum
for f .

3. If D < 0, then (x0, y0) is a saddle point for f .

4. If D = 0, further examination of the function is necessary.



Saddle points

Since a picture is worth a thousand words, let us start with one.
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The point (0, 0) is called a saddle point. This is a picture of the
graph of z = x2 − y2.



An example (from Marsden and Tromba)

Example 1: Find the maxima, minima and saddle points of

z = (x2 − y2)e
(−x2−y2)

2 .

Solution: Let us first find the critical points:

∂z

∂x
= [2x − x(x2 − y2)]e

(−x2−y2)
2 and

∂z

∂y
= [−2y − y(x2 − y2)]e

(−x2−y2)
2 .

Hence the critical points are the simultaneous solutions of

x [2− (x2 − y2)] = 0 and y [−2− (x2 − y2)] = 0

The critical points thus lie at

(0, 0), (±
√

2, 0), and (0,±
√

2)



Next we have to find the partial derivatives of order 2. We have

∂2z

∂x2
= [2− 5x2 + x2(x2 − y2) + y2]e

(−x2−y2)
2 ,

∂2z

∂x∂y
= xy(x2 − y2)e

(−x2−y2)
2 and

∂2z

∂y2
= [5y2 − 2 + y2(x2 − y2)− x2]e

(−x2−y2)
2 .

Using the second derivative test we obtain the following table:

Point fxx fxy fyy D Type
(0, 0) 2 0 −2 −4 Saddle

(
√

2, 0) −4/e 0 −4/e 16/e2 Maximum

(−
√

2, 0) −4/e 0 −4/e 16/e2 Maximum

(0,
√

2) 4/e 0 4/e 16/e2 Minimum

(0,−
√

2) 4/e 0 4/e 16/e2 Minimum



The previous example in a picture
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This is the graph of z = (x2 − y2)e
−x2−y2

2 .



Quadratic functions in two variables

Consider functions of the form

z = g(x , y) = Ax2 + 2Bxy + Cy2.

Notice that (0, 0) is obviously a critical point for the function
g(x , y). With a little bit of work we can show that if
AC − B2 6= 0, then (0, 0) is the only critical point of g .

From now on we assume that AC − B2 6= 0. A little more analysis
will show the following:

1. If AC − B2 > 0, the function g has a local minimum if A > 0
and a local maximum if A < 0.

2. If AC − B2 < 0, the function g has a saddle point, that is, in
a small disc around the point, the function does not lie on any
one side of its tangent plane.



A local minimum
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The graph of x2 + y2 has a local minimum at (0, 0). Clearly
AC − B2 = 1 > 0 and A > 0.



A local maximum
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The graph of −x2 − y2 has a local maximum at (0, 0). Clearly
AC − B2 = 1 > 0 and A < 0.



Where the test is inconclusive
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The graph of x3 + y3. The test is inconclusive at (0, 0).



The volcano
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This is the graph of z = 2(x2 + y2)e−x
2−y2

. Here the maxima lie
on a circle (the rim of the volcano). This sort of behavior cannot
arise in a quadratic surface.



Taylor’s theorem in two variables

If we look at the quadratic surface z = Ax2 + 2Bxy + Cy2, we see
that 2A = fxx , 2B = fxy and 2C = fyy . The second derivative test
tells us that whatever is true for quadratic surfaces is true in
general. Why is this true?
The answer lies in a two variable form of Taylor’s Theorem:

Theorem 32: If f is a C2 function in a disc around (x0, y0), then

f (x0 + h, y0 + k) = f (x0, y0) + fxh + fyk

+
1

2!
[fxxh

2 + 2fxyhk + fyyk
2] + R̃2(h, k),

where R̃2(h, k)/‖(h, k)‖2 → 0 as ‖(h, k)‖ → 0.



From quadratics surfaces to general surfaces

If (x0, y0) is a critical point, Taylor’s theorem in a disc around the
critical point becomes

f (x0 +h, y0 +k) = f (x0, y0) +
1

2!
[fxxh

2 + 2fxyhk + fyyk
2] + R̃2(h, k),

where R̃2(h, k)/‖(h, k)‖2 → 0 as ‖(h, k)‖ → 0.

Thus, in a small disc around (x0, y0) the function f (x , y) looks
very much like a quadratic surface, and from the point of view of
the critical points there is, in fact, no difference, because the error
term can be made as small as we please even after dividing by
‖(h, k)‖2. This is why the second derivative test works.



Back to Taylor’s Theorem
Suppose g : [u, v ]→ R is a function of one variable. Let us
assume that g is twice continuously differentiable on [u, v ]. For
points a, b ∈ (u, v) we can rewrite Taylor’s Theorem as

g(b) = g(a) + g ′(a)h +
g ′′(a)

2!
h2 +

g ′′(c)− g ′′(a)

2!
h2,

for some c between a and b. Since we have assumed that g ′′ is
continuous we see that (g ′′(c)− g ′′(a))→ 0 as h→ 0. Thus we
can write

g(b) = g(a) + g ′(a)h +
g ′′(a)

2!
h2 + R̃2(h),

where R̃2(h)/h2 → 0.

Exercise 1: Let f (x , y) be a C2 function of two variables. Apply
the preceding version of Taylor’s Theorem to the function

g(t) = f (tx + (1− t)x0, ty + (1− t)y0),

for 0 ≤ t ≤ 1. This will give the two variable version of Taylor’s
Theorem stated above. You can easily generalize this to degree n.



Boundedness of continuous functions of two variables
In one variable we saw that continuous functions are bounded in
closed bounded intervals. More generally, we can take a finite
union of such intervals and the function will remain bounded. Such
sets are called compact sets. What is the analogue for R2?

It is a little harder to define compact sets in R2, but we can give
examples. The closed disc

D̄r = {(x , y) | ‖(x , y)− (x0, y0)‖ ≤ r}

of radius r around a point (x0, y0) ∈ R2 is an example. Another
example is the closed rectangle:

S̄ = {(x , y) | |x − x0| ≤ a, |y − y0| ≤ b}

Finite unions of such sets will also be compact sets. As before, we
have

Theorem 32: A continuous function on a compact set in R2 will
attain its extreme values.



Global extrema as local extrema

Definition: A point (x0, y0) such that f (x , y) ≤ f (x0, y0) or
f (x , y) ≥ f (x0, y0) for all (x , y) in the domain being considered is
called a global maximum or minimum point respectively.

In light of Theorem 32, these always exist for continuous functions
on closed rectangles or discs.

Assume now that f is a C2 function on a closed rectangle S̄ as
above. We can find the global maximum or minimum as follows.
We first study all the local extrema which by definition lie in the
open rectangle

S = {(x , y) | |x − x0| < a, |y − y0| < b}

(This is because, in order to have a local extremum we need to
have a whole disc around the point. A point on the boundary of
the closed rectangle does not have such a disc around it where the
function is defined.)



After determining all the local maxima we take the points where
the function takes the largest value - say M1. We compare this
with the maximum value of the function on the boundary of the
closed rectangle, say M2. Let M be the maximum of these two
values. The points where M is attained are the global maxima.
We can treat a function defined on the closed disc in the same
way. Once again, the local extrema will have to lie in the open disc
and we will have to consider these values as well as the values of
the function on the boundary circle.



Finding global extrema in R2

Sometimes, global extrema may exist even when the domain in R2

(which is not compact, in fact, not even bounded).

For instance, in the example z = 2(x2 − y2)e−
(x2+y2)

2 , we can check
that when x2 + y2 > 16, z < 1/2, that is, outside the disc D̄4(0, 0)
(try proving this - I have not chosen this disc optimally).

In the closed disc D̄4(0, 0) we have already found the critical points
and the local maxima and minima. We see that
f (
√

2, 0) = f (−
√

2, 0) = 2/e > 1/2. There cannot be other local
maxima since we have checked all the other critical points, and
local maxima can occur only at the critical points. Hence, these
points are global maxima in D̄4(0, 0).

Now, outside the disc D̄4(0, 0), we know that z = f (x , y) < 1/2.
Hence, we see that the value 2/e > 1/2 is the maximum value
taken on all of R2. Thus, this particular function actually has a
global maximum (in fact, two global maxima) on R2.
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