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Brief recap



Formulæ for limits

If an and bn are two convergent sequences then

1. limn→∞(an ± bn) = limn→∞ an ± limn→∞ bn

2. limn→∞(anbn) = limn→∞ an · limn→∞ bn.

3. limn→∞(an/bn) = limn→∞ an/ limn→∞ bn, provided
limn→∞ bn 6= 0

Implicit in the formulæ is the fact that the limits on left hand side
exist.

Note that the constant sequence an = c has limit c , so as a special
case of (2) above we have

lim
n→∞

(c · bn) = c · lim
n→∞

bn.

Using the formulæ above we can break down the limits of more
complicated sequences into simpler ones and evaluate them.



The Sandwich Theorem(s)

Theorem 1: If an, bn and cn are convergent sequences such that
an ≤ bn ≤ cn for all n, then

lim
n→∞

an ≤ lim
n→∞

bn ≤ lim
n→∞

cn.

A second version of the theorem is especially useful:
Theorem 2: Suppose limn→∞ an = limn→∞ cn. If bn is a sequence
satisfying an ≤ bn ≤ cn for all n, then bn converges and

lim
n→∞

an = lim
n→∞

bn = lim
n→∞

cn.

Note that we do not assume that bn converges in this version of the
theorem - we get the convergence of bn for free. Together with the
rules for sums, differences, products and quotients, this theorem
allows us to handle a large number of more complicated limits.



Bounded Sequences

The formulæ and theorems stated above can be easily proved
starting from the definitions. We will prove the second formula and
leave the other proofs as exercises.
Definition: A sequence an is said to be bounded if there is a real
number M > 0 such that |an| ≤ M for every n ∈ N. A sequence
that is not bounded is called unbounded.

In our list of examples, Example 1 (an = n) is an example of an
unbounded sequence, while Examples 2 - 5
(an = 1/n, sin(1/n), n!/nn, n1/n) are examples of bounded
sequences.

Bounded sequences don’t necessarily converge - for instance
an = (−1)n. However,



Convergent sequences are bounded

Lemma: Every convergent sequence is bounded.

Proof: Suppose an converges to l . Choose ε = 1. There exists
N ∈ N such that |an − l | < 1 for all n > N. In other words,
l − 1 < an < l + 1, for all n > N, which gives |an| < |l |+ 1 for all
n > N. Let

M1 = max{|a1|, |a2|, . . . , |aN |}

and let M = max{M1, |l |+ 1}. Then |an| ≤ M for all n ∈ N.



A guarantee for convergence

As we mentioned earlier, proving that a limit exists is hard because
we have to guess what its value might be and then prove that it
satisfies the definition. The following theorem guarantees the
convergence of a sequence without knowing the limit beforehand.
Definition: A sequence an is said to be bounded above (resp.
bounded below) if an < M (resp. an > M) for some M ∈ R.
A sequence that is bounded both above and below is obviously
bounded.

Theorem 3: A montonically increasing (resp. decreasing) sequence
which is bounded above (resp. below) converges.



Remarks on Theorem 3
Theorem 3 clearly makes things very simple in many cases. For
instance, if we have a monotonically decreasing sequence of
positive numbers, it must have a limit, since 0 is always a lower
bound!

Can we guess what the limit of a monotonically increasing
sequence an bounded above might be?
It will be the supremum or least upper bound (lub) of the sequence.
This is the number, say M which has the following properties:

1. an ≤ M for all n and

2. If M1 is such that an ≤ M1 for all n, then M ≤ M1.

(Note: in the lecture I had written |an| < M1 above. I have
replaced < with ≤ now. It doesn’t really make a difference.)
The point is that a sequence bounded above may not have a
maximum but will always have a supremum. As an example, take
the sequence 1− 1/n. Clearly there is no maximal element in the
sequence, but 1 is its supremum.



Another monotonic sequence
Let us look at Exercise 1.5.(i) which considers the sequence

a1 = 3/2 and an+1 =
1

2

(
an +

2

an

)
.

an+1 < an ⇐⇒ 1
2

(
an + 2

an

)
< an

⇐⇒
√

2 < an.

(In the discussion in D2, I may not have understood a couple of
questions correctly. From the above statements it is enough to
show that

√
2 < an for all n. And this is done in the step below.)

On the other hand,

1

2

(
an +

2

an

)
≥
√

2, (Why is this true?-AM-GM inequality.)

so an+1 ≥
√

2 for all n ≥ 1 and a1 >
√

2 is given.
Hence, {an}∞n=1 is a monotonically decreasing sequence, bounded
below by

√
2. By Theorem 3, it converges.



Exercise 1. What do you think is the limit of the above sequence
(Refer to the supplement to Tutorial 1)?



More remarks on limits
Exercise 2. More generally, what is the limit of a monotonically
decreasing sequence bounded below? How can you describe it?
This number is called the infimum or greatest lower bound (glb) of
the sequence.

The proof of Theorem 3 is not so easy and more or less involves
understanding what a real number is. It is related to the notion of
Cauchy sequences about which I will try to say something a little
later (again, refer to the supplement to Tutorial 1).

An important remark: If we change finitely many terms of a
sequence it does not affect the convergence and boundedness
properties of a sequence.
If it is convergent, the limit will not change. If it is bounded, it will
remain bounded though the supremum may change. Thus, an
eventually monotonically increasing sequence bounded above will
converge (formulate the analogue for decreasing sequences).
Bottomline: From the point of view of the limit, only what
happens for large N matters.
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