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Sequences: recap

Limits of sequences



Sequences

Definition: A sequence in a set X is a function a : N→ X , that is,
a function from the natural numbers to X .

Sometimes we will also call a function a : W→ X , a sequence in
X . This just means that we start counting from 0 rather than 1.

Given a sequence an of real numbers, we can manufacture a new
sequence, namely its sequence of partial sums:

s1 = a1, s2 = a1 + a2, s3 = a1 + a2 + a3, . . .

More precisely, we have the sequence

sn =
n∑

k=1

ak .



Monotonic sequences
For the moment we will concentrate on sequences in R.

Definition: A sequence is said to be a monotonically increasing
sequence if an ≤ an+1 for all n ∈ N (Examples: an = n or
an = 1− 1/n).

Definition: A sequence is said to be a monotonically decreasing
sequence if an ≥ an+1 for all n ∈ N (Examples: an = −n or
an = 1/n).

A monotonic sequence is one that is either monotonically
increasing or monotonically decreasing.

A sequence is called eventually monotonically increasing if there
exists N ∈ N such that an+1 ≥ an for all n > N. (Example: a
sequence an defined as a1 = 10, a2 = 1, an = n if n ≥ 3).

A sequence is called eventually monotonically decreasing if there
exists N ∈ N such that an+1 ≤ an for all n > N. (Example:
an = n1/n).



Limits: Preliminaries

While all of you are familiar with limits, most of you have probably
not worked with a rigourous definition.

So what does it mean for a sequence to tend to a limit? Let us
look at the sequence an = 1/n2. We wish to study the behaviour
of this sequence as n gets large. Clearly as n gets larger and larger,
1/n2 gets smaller and smaller and seems to approach the value 0,
or more precisely

the distance between 1/n2 and 0 becomes smaller and smaller.

In fact (and this is the key point), by choosing n large enough, we
can make the distance between 1/n2 and 0 smaller than any
prescribed quantity.

Let us examine the above statement, and then try and quantify it.



More precisely:

The distance between 1/n2 and 0 is given by |1/n2 − 0| = 1/n2.

Suppose I require that 1/n2 be less that 0.1 (that is 0.1 is my
prescribed quantity). Clearly, 1/n2 < 1/10 for all n > 3.

Similarly, if I require that 1/n2 be less than 0.0001(= 10−4), this
will be true for all n > 100.

We can do this for any number, no matter how small. If ε > 0 is
any number,

1/n2 < ε ⇐⇒ 1/ε < n2 ⇐⇒ n > 1/
√
ε.

In other words, given any ε > 0, we can always find a natural
number N (in this case any N > 1/

√
ε) such that for all n > N,

|1/n2 − 0| < ε.



The rigourous definition of a limit

Motivated by the previous example, we define the limit as follows.

Definition: A sequence an tends to a limit l/converges to a limit l ,
if for any ε > 0, there exists N ∈ N such that

|an − l | < ε

whenever n > N.

This is what we mean when we write

lim
n→∞

an = l .

If we just want to say that the sequence has a limit without
specifying what that limit is, we simply say that the sequence
{an}∞n=1 converges, or that it is convergent.
A sequence that does not converge is said to diverge, or to be
divergent.



Remarks on the definition
Remarks

1. Note that the N will (of course) depend on ε, as it did in our
example, so it would have been more correct to write N(ε) in
the definition of the limit. However, we usually omit this extra
bit of notation.

2. We have already shown that limn→∞ 1/n2 = 0. The same
argument works for limn→∞ 1/nα, for any real α > 0. We just
take N to be any integer bigger than 1/ε1/α for a given ε.

3. For a given ε, once one N works, any larger N will also work.
In order to show that a sequence tends to a limit l we are not
obliged to find the best possible N for a given ε, just some N
that works. Thus, for the sequence 1/n2 and ε = 0.1, we took
N = 3, but we can also take N = 10, 100, 1729, or any other
number bigger than 3.

4. Showing that a sequence converges to a limit l is not easy.
One first has to guess the value l and then prove that l
satisfies the definition. We will see how to get around this in
various ways.



More examples of limits

Let us show that limn→∞ sin
(
1
n

)
= 0.

For this we note that for x ∈ [0, π/2], 0 ≤ sin x ≤ x (try to
remember why this is true).
Hence,

| sin 1/n − 0| = | sin 1/n| < 1/n.

Thus, given any ε > 0, if we choose some N > 1/ε, n > N implies
1/n < 1/N < ε. It follows that | sin 1/n − 0| < ε.

Let us consider Exercise 1.1.(ii) of the tutorial sheet. Here we have
to show that limn→∞∞ 5/(3n + 1) = 0. Once again, we have only
to note that

5

3n + 1
<

5

3n
,

and if this is to be smaller than ε, we must have n > N > 5/3ε.



Formulæ for limits

If an and bn are two convergent sequences then

1. limn→∞(an ± bn) = limn→∞ an ± limn→∞ bn

2. limn→∞(anbn) = limn→∞ an · limn→∞ bn.

3. limn→∞(an/bn) = limn→∞ an/ limn→∞ bn, provided
limn→∞ bn 6= 0

Implicit in the formulæ is the fact that the limits on left hand side
exist.

Note that the constant sequence an = c has limit c , so as a special
case of (2) above we have

lim
n→∞

(c · bn) = c · lim
n→∞

bn.

Using the formulæ above we can break down the limits of more
complicated sequences into simpler ones and evaluate them.



The Sandwich Theorem(s)

Theorem 1: If an, bn and cn are convergent sequences such that
an ≤ bn ≤ cn for all n, then

lim
n→∞

an ≤ lim
n→∞

bn ≤ lim
n→∞

cn.

A second version of the theorem is especially useful:
Theorem 2: Suppose limn→∞ an = limn→∞ cn. If bn is a sequence
satisfying an ≤ bn ≤ cn for all n, then bn converges and

lim
n→∞

an = lim
n→∞

bn = lim
n→∞

cn.

Note that we do not assume that bn converges in this version of
the theorem - we get the convergence of bn for free . Together
with the rules for sums, differences, products and quotients, this
theorem allows us to handle a large number of more complicated
limits.



An example using the theorems above
Consider Exercise 1.2.(iii) on the tutorial sheet. We have to show
that

lim
n→∞

n3 + 3n2 + 1

n4 + 8n2 + 2
exists and to evaluate it.

It is clear that

0 <
n3 + 3n2 + 1

n4 + 8n2 + 2
≤ 1

n
+

3

n2
+

1

n4
.

(How do we get this?)
Note that n3/(n4 + 8n2 + 2) < n3/n4 = 1/n, and the other two
terms can be handled similarly.)

Hence, applying the Sandwich Theorem (Theorem 2) to the
sequences

an = 0, bn =
n3 + 3n2 + 1

n4 + 8n2 + 2
and cn =

1

n
+

3

n2
+

1

n4

we see that the limit we want exists provided limn→∞ cn exists, so
this is what we must concentrate on proving.



The limit limn→∞ cn exists provided each of the terms appearing in
the sum has a limit and in that case it is equal to the sum of the
limits (by the first formula). But each of these limits is quite easy
to evaluate.

We already know that

lim
n→∞

1/n = 0 = lim
n→∞

1/n4,

while

lim
n→∞

3/n2 = 3 · lim
n→∞

1/n2 = 0

where we have used the special case of the second formula (limit
of the product is the product of the limits) for the first equality in
the equation above. Since all three limits converge to 0, it follows
the given limit is 0 + 0 + 0 = 0.



Bounded Sequences

The formulæ and theorems stated above can be easily proved
starting from the definitions. We will prove the second formula and
leave the other proofs as exercises.
Definition: A sequence an is said to be bounded if there is a real
number M > 0 such that |an| ≤ M for every n ∈ N. A sequence
that is not bounded is called unbounded.

In our list of examples, Example 1 (an = n) is an example of an
unbounded sequence, while Examples 2 - 5
(an = 1/n, sin(1/n), n!/nn, n1/n) are examples of bounded
sequences.

Bounded sequence don’t necessarily converge - for instance
an = (−1)n. However,



Convergent sequences are bounded

Lemma: Every convergent sequence is bounded.

Proof: Suppose an converges to l . Choose ε = 1. There exists
N ∈ N such that |an − l | < 1 for all n > N. In other words,
l − 1 < an < l + 1, for all n > N, which gives |an| < |l |+ 1 for all
n > N. Let

M1 = max{|a1|, |a2|, . . . , |aN |}

and let M = max{M1, |l |+ 1}. Then |an| ≤ M for all n ∈ N.
In the slides presented in class, I had forgotten to put absolute
value signs in many places in the proof above and in the next slide.
This has now been corrected.

We will use this Lemma to prove the product rule for limits.



The proof of the product rule

We wish to prove that limn→∞ anbn = limn→∞ an · limn→∞ bn.

(This proof works for l2 6= 0. What happens for l2 = 0?)
Suppose limn→∞ an = l1 and limn→∞ bn = l2. We need to show
that limn→∞ anbn = l1l2.

Fix ε > 0. We need to show that we can find N ∈ N such that
|anbn − l1l2| < ε, whenever n > N. Notice that

|anbn − l1l2| = |anbn − anl2 + anl2 − l1l2|
= |an(bn − l2) + (an − l1)l2|
≤ |an||bn − l2|+ |an − l1||l2|,

where the last inequality follows from the triangle inequality. So in
order to guarantee that the left hand side is small, we must ensure
that the two terms on the right hand side together add up to less
than ε. In fact, we make sure that each term is less than ε/2.



The proof of the product rule, continued
Since an is convergent, it is bounded by the lemma we have just
proved. Hence, there is an M such that |an| < M for all n ∈ N.

Given the quantities ε/2|l2| and ε/2M, there exist N1 and N2 such
that

|an − l1| < ε/2|l2| and |bn − l2| < ε/2M.

Let N = max{N1,N2}. If n > N, then both the inequalities above
hold. Hence, we have

|an||bn − l2| < M · ε

2M
=
ε

2
and |an − l1||l2| < |l2| ·

ε

2|l2|
=
ε

2
.

Now it follows that

|anbn − l1l2| ≤ |an||bn − l2|+ |an − l1||l2| < ε,

for all n > N, which is what we needed to prove.

The proofs of the other rules for limits are similar to the one we
proved above. Try them as exercises.



A guarantee for convergence

As we mentioned earlier, proving that a limit exists is hard because
we have to guess what its value might be and then prove that it
satisfies the definition. The following theorem guarantees the
convergence of a sequence without knowing the limit beforehand.
Definition: A sequence an is said to be bounded above (resp.
bounded below) if an < M (resp. an > M) for some M ∈ R.
A sequence that is bounded both above and below is obviously
bounded.

Theorem 3: A montonically increasing (resp. decreasing) sequence
which is bounded above (resp. below) converges.



Remarks on Theorem 3

Theorem 3 clearly makes things very simple in many cases. For
instance, if we have a monotonically decreasing sequence of
positive numbers, it must have a limit, since 0 is always a lower
bound!

Can we guess what the limit of a monotonically increasing
sequence an bounded above might be?
It will be the supremum or least upper bound (lub) of the sequence.
This is the number, say M which has the following properties:

1. an ≤ M for all n and

2. If M1 is such that an < M1 for all n, then M ≤ M1.

The point is that a sequence bounded above may not have a
maximum but will always have a supremum. As an example, take
the sequence 1− 1/n. Clearly there is no maximal element in the
sequence, but 1 is its supremum.
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