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Cauchy sequences: the definition

The Prehistory of Limits



Cauchy sequences

As we have seen, it is not easy to tell whether a sequence
converges or not because we have to first guess what the limit
might be, and then try and prove that the sequence actually
converges to this limit. For a monotonic sequence, we have a
criterion, but what about more general sequences?

There is another very useful notion which allows us to decide
whether the sequence converges by looking only at the elements of
the sequence itself. We describe this below.
Definition: A sequence an in R is said to be a Cauchy sequence if
for every ε > 0, there exists N ∈ N such that

|an − am| < ε,

for all m, n > N.



Cauchy sequences: the theorem

Theorem 4: Every Cauchy sequence in R converges (to a real
number, obvously).

Remark 1: One can now check the convergence of a sequence just
by looking at the sequence itself!

Remark 2: One can easily check the converse:

Theorem 5: Every convergent sequence (in any set X ) is Cauchy.

Remark 3: Remember that when we defined sequences we defined
them to be functions from N to X , for any set X . So far we have
only considered X = R, but as we said earlier we can take other
sets, for instance, susbets of R. For instance, if we take X = R \ 0,
Theorem 4 is not valid. The sequence 1/n is a Cauchy sequence in
this X but obviously does not converge in X . If we take X = Q,
the example given in 1.5.(i) (an+1 = (an + 2/an)/2) is a Cauchy
sequence in Q which does not converge in Q. Thus Theorem 4 is
really a theorem about real numbers.



The completeness of R

A set X in which every Cauchy sequence converges (to a limit in
X ) is called a a complete set. Thus Theorem 4 is sometimes
rewritten as

Theorem 4’: The real numbers are complete.

We will see other examples of complete sets, but we can now
address (very briefly) the question of what a real number is. More
precisely, we can construct the set of real numbers starting with
the rational numbers.

We let S be the set of all sequences with values in Q. We will put
a relation on this set.



The definition of a real number

Two sequence {an} and {bn} will be related to each other (and we
write an ∼ bn) if

lim
n→∞

|an − bn| = 0

You can check that this is an equivalence relation and it is a fact
that it partitions the set S into disjoint classes. The set of disjoint
classes is denote S/ ∼.

You can easily see that if two sequences converge to the same
limit, they are necessarily in the same class.

Definition: A real number is an equivalence class in S/ ∼.

So a real number should be thought of as the collection of all
rational sequences which converge to it.



Sequences in R2 and R3

Most of our definitions for sequences in R are actually valid for
sequences in R2 and R3. Indeed, the only thing we really need to
define the limit is the notion of distance. Thus if we replace the
modulus function | | on R by the distance functions in R2 and R3

all the definitions of convergent sequences and Cauchy sequences
remain the same.

For instance, a sequence a(n) = (a(n)1, a(n)2) in R2 is said to
converge to a point l = (l1, l2) (in R2) if for all ε > 0, there exists
N ∈ N such that√

(a(n)1 − l1)2 + a(n)2 − l2)2 < ε

whenver n > N. A similar defintion can be made in R3 using the
distance function on R3.

Theorems 2 (the Sandwich Theorem) and 3 (about monotonic
sequences) don’t really make sense for R2 or R3 because there is
no ordering on these sets, that is, it doesn’t really make sense to
ask if one point on the plane or in space is less than the other.



The first man to think about limits?

Zeno of Elea (490 - 460 BCE)
was a famous Greek philosopher
(source: Wikipedia)



Zeno of Elea

First let us record that we have no idea what Zeno looked like.
The picture above was painted in the period 1588 - 1594 CE in
Spain, about two thousand years after Zeno’s time. Here are two
more images of Zeno (also from Wikipedia)



Zeno’s Paradoxes
I couldn’t find out where the first statue came from and when it
was made. The second seems to have come from Herculaneum in
Italy (incidentally, Elea (modern Vilia) is a town in Italy). Now
Herculaneum was destroyed by a volcanic erruption from the
nearby volcano Vesuvius in 79 CE, so it looks like the bust was
created within 500 years of Zeno’s death. Maybe it was even made
during his lifetime and was lying around in some wealthy Roman’s
house for the next few centuries. Unfortunately, it is not clear
whether this statue is one of Zeno of Elea or of another Zeno (of
Citium) who lived about 150 years later. So we still really have no
clue how he looked.

The important about Zeno is that it would appear that he was the
first human to think about limits and limiting processes, at least in
recorded history. Most of what we know about him is through his
paradoxes, nine of which survive in the works of another famous
Greek philosopher Aristotle (384 - 322 CE) , the official guru/tutor
of Alexander the Great (aka Sikander in India).



Achilles and the tortoise

One of Zeno’s motivations for stating his paradoxes seems to have
been to defend his own guru Parmenides’ philosophy (whatever
that was). Anyway here is his most famous paradox as recorded by
Aristotle.

Achilles and the tortoise:
In a race, the quickest runner can never overtake the slowest, since
the pursuer must first reach the point whence the pursued started,
so that the slower must always hold a lead.

Aristotle, Physics VI:9, 239b15

General knowledge question: Who was Achilles?



Zeno’s paradox animated

Achilles and the Tortoise



A gateway to infinite series

Nowadays, this line of argument does not really bother us, since we
understand that an infinite number of terms (in this case
consisting of the time travelled in each segment or the distance
travelled in each segment) can add up to something finite.
Nevertheless there are other philosophical issues that continued to
bother mathematicians and physicists for a long time. After all,
this kind of discussion does lead us to question whether intervals of
time and space can be infinitely subdivided, or if “instantaneous
motion” makes sense.

Since we are learning mathematics, we won’t speculate on physics
or philosophy, but we note that Zeno’s argument gives a good way
to derive the sum of an infinite geometric series. The geometric
series is one of the simplest examples of infinite series, so let us see
how this is done.



Geometric series - the formula
Let us suppose that the speed of achilles is v and that the speed of
the tortoise is rv for some 0 < r < 1. We will assume that the
tortoise was given a headstart of distance “a”.

I The distance covered by Achilles in time t is vt.

I The distance covered by the tortoise in time t is rvt.

I Achilles catches up with the tortoise when vt = a + rvt, that
is, at time t = a/(v − rv) and when the total distance covered
by Achilles is vt = a/(1− r).

On the other hand,

I Distance covered by the tortoise by the time Achilles has
covered distance a is ar .

I Distance covered by the tortoise by the time Achilles has
covered distance ar is ar2 ....

I Total distance covered by Achilles when he has caught up
with the tortoise is a + ar + ar2 + . . . .

I Thus we get a + ar + ar2 + · · · = a/(1− r).



Infinite series - a more rigourous treatment
Let us recall what we mean when we write

a + ar + ar2 + . . . =
a

1− r
.

Another way of writing the same expression is

∞∑
k=0

ark =
a

1− r
.

The precise meaning is the following. Form the partial sums

sn =
n∑

k=0

ark .

These partial sums s1, s2, . . . sn, . . . form a sequence and by∑∞
k=0 ar

k = a/(1− r), we mean limn→∞ sn = a/1− r .
So when we speak of the sum of an infinite series, what we really
mean is the limit of its partial sums.



Convergence of the geometric series
So to justify our formula we should show that limn→∞ sn = a/1− r ,
that is, given ε > 0, there exists N ∈ N such that∣∣∣∣sn − a

1− r

∣∣∣∣ < ε,

for all n > N.
In other words we need to show that∣∣∣∣a(1− rn+1)

1− r
− a

1− r

∣∣∣∣ =

∣∣∣∣arn+1

1− r

∣∣∣∣ < ε

if n is chosen large enough.
But limn→∞ rn = 0, so there exists N such that rn+1 < (1− r)ε/a
for all n > N, so for this N, if n > N,∣∣∣∣sn − a

1− r

∣∣∣∣ < ε.

This shows that the geometric series converges to the given
expression.
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