(1) Find a system of real linear equations whose solution set is the following if it exists.
(a) $\{(1,1,1)\}$
(b) $\{(s,-s)\}$
(c) $\{(1,0,0),(0,1,0),(0,0,1)\}$.
(2) Let F be a field. Show that the following properties are true.
(a) The additive identity is unique.
(b) The multiplicative identity is unique.
(c) Cancellation law holds, that is, $a+b=a+c \Longrightarrow b=c$ for all $a, b, c \in F$ and $a . b=a . c \Longrightarrow b=c$ for all $b, c \in F$ and $a \in F-\{0\}$.
(d) $0 . x=0$ for all $x \in F$.
(3) Show that there exists a unique field of two elements.
(4) Show that \mathbb{Z}_{p} which is the set of integers modulo p is a field when p is prime.
(5) Show that a homogeneous system of m real linear equations in n-real variables has infinitely many solutions if $n>m$.
(6) Find the set of all solutions to system of equations

$$
y-x^{2}=0 ; y^{2}-x^{2}=0
$$

(7) Show that a consistent system of linear equations always has a either a unique solution or infinitely many solutions. What happens if the set of equations were not linear?
(8) Show that \mathbb{R}^{2} is a vector space over the field \mathbb{Q}.
(9) Show that every field F is a vector space over itself.
(10) State true or false with explanation. A homogeneous system of m linear equations over a field F in n variables taking values in F has infinitely many solutions if $n>m$.

