Assignment 2 MA 401

Autumn 2018, IIT Bombay
(1) Define scalar multiplication by \mathbb{R} on \mathbb{R}^{2} as follows.

$$
c(x, y)=(c x, 0) .
$$

Is this a vector space where addition is defined coordinatewise. ?
(2) Let $S^{1} \subset \mathbb{C}$ be defined as all complex numbers of unit length. Define $\left(S^{1}, \star\right)$ to be $a \star b=a b$ which is product in \mathbb{C}. Define scalar multiplication with respect to \mathbb{Q} as $\frac{m}{n} \circ x=x^{m / n}$. here choose the root with the smallest argument.

Is $\left(\mathrm{S}^{1}, \star, \circ\right)$ a vector space over \mathbb{Q} ?
(3) Show that if F is a field of characteristic 0 then there is an injective function from \mathbb{Q} to F.
(4) Is $(\mathbb{Z},+)$ a \mathbb{Q}-vector space?
(5) Is $(\mathbb{Q},+)$ a \mathbb{R} vector space ?
(6) Let $(V,+, \circ)$ be a vector space over a field F and X be a set. Let $\mathcal{F}(X, V)$ denote the set of functions from X to V. Define the following operations for all $\alpha, \beta \in \mathcal{F}(X, V)$ and $k \in \mathrm{~F} ;$

$$
\begin{gathered}
(\alpha \pm \beta)(a)=\alpha(a)+\alpha(b) \\
(k \circ \alpha)(a)=k \circ \alpha(a)
\end{gathered}
$$

Show that $(\mathcal{F}(X, V), \pm, \underline{\circ})$ is a vector space.
(7) Let F be a field. Let $P_{n}(F)=\left\{a_{0}+a_{1} x+\ldots+a_{n} x^{n} \mid a_{i} \in F\right\}$ denote the set of all polynomials in F of degree less than or equal to n. Show that this is a vector space over F . Is it possible to think of it as a subspace of the space $\mathcal{F}(X, \mathrm{~F})$?
(8) Show that the set of solutions to a $n^{\text {th }}$ order real homogeneous linear differential equation is a subspace of $\mathcal{F}((0,1), \mathbb{R}))$.
(9) Let V_{1} and V_{2} be vector spaces over a field F then show that $\left(V_{1} \times V_{2}\right)$ with coordinate wise addition and scalar multiplication is a vector space over F .
(10) Which of the following are subspaces of the given vector spaces?
(a) $\{(0,0,0)\} \subseteq \mathbb{R}^{3}$.
(b) $\left.\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{1}+x_{2}=4, x_{3}+x_{4}=2\right\} \subseteq \mathbb{R}^{4}\right\}$.
(c) $\left\{a_{0}+a_{1} x+\ldots+a_{n} x^{n} \mid a_{n} \neq 0, a_{i} \in \mathrm{~F}\right\} \subseteq P_{n}(\mathrm{~F})$.
(d) $\left\{A \in M_{n}(\mathrm{~F}) \mid \sum_{i=1}^{n} a_{i i}=0\right\} \subseteq M_{n}(\mathrm{~F})$.
(e) $\left\{A \in M_{n}(\mathrm{~F}) \mid a_{i j}=a_{j i}\right\} \subseteq M_{n}(\mathrm{~F})$.
(f) Set of all continuous functions from $[0,1] \rightarrow \mathbb{R} \subseteq \mathcal{F}([0,1], \mathbb{R}]$.
(g) Set of differentiable functions from $(0,1) \rightarrow \mathbb{R} \subseteq \mathcal{F}((0,1), \mathbb{R}]$.
(h) Set of all real valued functions integrable over $[0,1] \subseteq \mathcal{F}((0,1), \mathbb{R}]$.

