Assignment 2 MA 401 AUTUMN 2018, IIT BOMBAY

(1) Define scalar multiplication by \mathbb{R} on \mathbb{R}^2 as follows.

c(x, y) = (cx, 0).

Is this a vector space where addition is defined coordinatewise. ?

- (2) Let $S^1 \subset \mathbb{C}$ be defined as all complex numbers of unit length. Define (S^1, \star) to be $a \star b = ab$ which is product in \mathbb{C} . Define scalar multiplication with respect to \mathbb{Q} as $\frac{m}{n} \circ x = x^{m/n}$. here choose the root with the smallest argument. Is (S^1, \star, \circ) a vector space over \mathbb{Q} ?
- (3) Show that if F is a field of characteristic 0 then there is an injective function from \mathbb{Q} to F.
- (4) Is $(\mathbb{Z}, +)$ a \mathbb{Q} -vector space?
- (5) Is $(\mathbb{Q}, +)$ a \mathbb{R} vector space ?
- (6) Let $(V, +, \circ)$ be a vector space over a field F and X be a set. Let $\mathcal{F}(X, V)$ denote the set of functions from X to V. Define the following operations for all $\alpha, \beta \in \mathcal{F}(X, V)$ and $k \in F$;

 $(\alpha + \beta)(a) = \alpha(a) + \alpha(b)$ $(k \circ \alpha)(a) = k \circ \alpha(a)$

Show that $(\mathcal{F}(X, V), +, \underline{\circ})$ is a vector space.

- (7) Let F be a field. Let $P_n(F) = \{a_0 + a_1x + \ldots + a_nx^n \mid a_i \in F\}$ denote the set of all polynomials in F of degree less than or equal to n. Show that this is a vector space over F. Is it possible to think of it as a subspace of the space $\mathcal{F}(X, F)$?
- (8) Show that the set of solutions to a n^{th} order real homogeneous linear differential equation is a subspace of $\mathcal{F}((0,1),\mathbb{R})$).
- (9) Let V_1 and V_2 be vector spaces over a field F then show that $(V_1 \times V_2)$ with coordinate wise addition and scalar multiplication is a vector space over F.
- (10) Which of the following are subspaces of the given vector spaces?
 - (a) $\{(0,0,0)\} \subseteq \mathbb{R}^3$.
 - (b) $\{(x_1, x_2, x_3, x_4) \mid x_1 + x_2 = 4, x_3 + x_4 = 2\} \subseteq \mathbb{R}^4\}.$
 - (c) $\{a_0 + a_1x + \ldots + a_nx^n \mid a_n \neq 0, a_i \in \mathbf{F}\} \subseteq P_n(\mathbf{F}).$ (d) $\{A \in M_n(\mathbf{F}) \mid \sum_{i=1}^n a_{ii} = 0\} \subseteq M_n(\mathbf{F}).$

 - (e) $\{A \in M_n(\mathbf{F}) \mid a_{ij} = a_{ji}\} \subseteq M_n(\mathbf{F}).$
 - (f) Set of all continuous functions from $[0,1] \to \mathbb{R} \subseteq \mathcal{F}([0,1],\mathbb{R}]$.
 - (g) Set of differentiable functions from $(0,1) \to \mathbb{R} \subseteq \mathcal{F}((0,1),\mathbb{R}]$.
 - (h) Set of all real valued functions integrable over $[0,1] \subseteq \mathcal{F}((0,1),\mathbb{R}]$.