Assignment 3 MA 401 Autumn 2018, IIT Bombay

- (1) For any subspaces W_1 and W_2 denote $W_1 + W_2 = \{w + w' \mid w \in W_1, w' \in W_2\}$.
 - (a) Show that this is a subspace of V containing both W_1 and W_2 .
 - (b) Show that any other subspace of V containing both W_1 and W_2 must contain $W_1 + W_2$. What do you conclude?
 - (c) If further $W_1 \cap W_2 = \{0\}$, then every element of $W_1 + W_2$ can written uniquely as a sum of elements in W_1 and W_2 . (Note then $W_1 + W_2 := W_1 \oplus W_2$ and is called the direct sum of W_1 and W_2 .)
- (2) Show that the space $\mathcal{M}_n(F) = W_1 \oplus W_2$ where W_1 is subspace of all upper triangular matrices.
- (3) Show that any linear transformation $T : F^n \to F^m$ can be represented by a $m \times n$ matrix A over F, that is, T(x) = Ax where $x \in F^n$ is now considered as a $n \times 1$ matrix in F.
- (4) Prove properties of $\mathcal{M}_{m \times n}(\mathbf{F})$.
 - (a) A(BC) = (AB)C for all $A \in \mathcal{M}_{m \times n}(F)$, $B \in \mathcal{M}_{n \times r}(F)$ and $C \in \mathcal{M}_{r \times k}(F)$.
 - (b) (A+B)C = AC + BC for all $A, B \in \mathcal{M}_{m \times n}(F)$, and $C \in \mathcal{M}_{n \times r}(F)$.
 - (c) C(D+E) = CD + CE for all $C \in \mathcal{M}_{m \times n}(F)$, and $D, E \in \mathcal{M}_{n \times r}(F)$.
 - (d) $I_m A = A = A I_n$ where, $I_k \in \mathcal{M}_{k \times k}(\mathbf{F})$ is the identity matrix, that is, $(I_k)_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$.
- (5) State true or false with explanation.
 - (a) The multiplication operation on $M_2(\mathbf{F}_2)$ is commutative.
 - (b) If $A, B \in M_n(F)$ and AB is invertible then A and B are invertible.
 - (c) If $T: U \to V$ and $S: V \to W$ are linear transformations of vector space over a field F, then $S \circ T$ is an isomorphism implies that T and S are isomorphisms.
- (6) For all $A \in M_2(\mathbf{F}_2)$ give a criteria when A is invertible and write down its inverse.
- (7) Show that $A \in \mathcal{M}_{n \times n}(F)$ is invertible if and only if the linear transformation $F^n \to F^n$ it represents is an isomorphism.
- (8) Verify if the following are linear transformations. Check which of these are injective and/or surjective.

(a) Define $T: \mathcal{M}_{2\times 3}(F) \to \mathcal{M}_{2\times 2}(F)$ for any field F as

$$T(\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}) = \begin{pmatrix} a_{11} + a_{12} & a_{13} \\ a_{21}a_{22} & 0 \end{pmatrix}.$$

(b) Define $T: \mathcal{M}_{2\times 3}(F) \to \mathcal{M}_{2\times 2}(F)$ for any field F as

$$T\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} = \begin{pmatrix} a_{11} + a_{12} & a_{13} \\ a_{21} - a_{22} & a_{23} \end{pmatrix}.$$

- (c) Define T to take a vector in \mathbb{R}^2 and map it to the vector in \mathbb{R}^2 obtained on rotating it by an angle θ .
- (d) Define T from \mathbb{R}^m to \mathbb{R}^m to be the map which linearly translates a vector $v \in \mathbb{R}^m$ to $v + a \in \mathbb{R}^m$ for a fixed $a \in \mathbb{R}^m$.
- (e) Define $T: \mathcal{P}_2(\mathbf{F}) \to \mathcal{P}_1(\mathbf{F})$ to be $T(a_0 + a_1x + a_2x^2) = a_0x + a_2$.
- (9) Are \mathbb{R}^m and \mathbb{R}^n isomorphic as vector spaces over \mathbb{R} ? Why or why not? Answer the question only using what we have discussed in class.
- (10) Let $\mathcal{P}(\mathbb{R})$ denote the space of all polynomials with real coefficients. Show that $T: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ defined as $T(f)(x) = \int_0^x f(t) dt$ is a linear transformation. Is it one-one? Is it onto? Explain your answer.