Assignment 3 MA 401

Autumn 2018, IIT Bombay
(1) For any subspaces W_{1} and W_{2} denote $W_{1}+W_{2}=\left\{w+w^{\prime} \mid w \in W_{1}, w^{\prime} \in W_{2}\right\}$.
(a) Show that this is a subspace of V containing both W_{1} and W_{2}.
(b) Show that any other subspace of V containing both W_{1} and W_{2} must contain $W_{1}+W_{2}$. What do you conclude?
(c) If further $W_{1} \cap W_{2}=\{0\}$, then every element of $W_{1}+W_{2}$ can written uniquely as a sum of elements in W_{1} and W_{2}. (Note then $W_{1}+W_{2}$:= $W_{1} \oplus W_{2}$ and is called the direct sum of W_{1} and W_{2}.)
(2) Show that the space $\mathcal{M}_{n}(F)=W_{1} \oplus W_{2}$ where W_{1} is subspace of all upper triangular matrices.
(3) Show that any linear transformation $T: \mathrm{F}^{n} \rightarrow \mathrm{~F}^{m}$ can be represented by a $m \times n$ matrix A over F , that is, $T(x)=A x$ where $x \in F^{n}$ is now considered as a $n \times 1$ matrix in F.
(4) Prove properties of $\mathcal{M}_{m \times n}(\mathrm{~F})$.
(a) $A(B C)=(A B) C$ for all $A \in \mathcal{M}_{m \times n}(\mathrm{~F}), B \in \mathcal{M}_{n \times r}(\mathrm{~F})$ and $C \in \mathcal{M}_{r \times k}(\mathrm{~F})$.
(b) $(A+B) C=A C+B C$ for all $A, B \in \mathcal{M}_{m \times n}(\mathrm{~F})$, and $C \in \mathcal{M}_{n \times r}(\mathrm{~F})$.
(c) $C(D+E)=C D+C E$ for all $C \in \mathcal{M}_{m \times n}(\mathrm{~F})$, and $D, E \in \mathcal{M}_{n \times r}(\mathrm{~F})$.
(d) $I_{m} A=A=A I_{n}$ where, $I_{k} \in \mathcal{M}_{k \times k}(\mathrm{~F})$ is the identity matrix, that is,

$$
\left(I_{k}\right)_{i j}=\left\{\begin{array}{ll}
0 & i \neq j \\
1 & i=j
\end{array} .\right.
$$

(5) State true or false with explanation.
(a) The multiplication operation on $M_{2}\left(\mathrm{~F}_{2}\right)$ is commutative.
(b) If $A, B \in M_{n}(F)$ and $A B$ is invertible then A and B are invertible.
(c) If $T: U \rightarrow V$ and $S: V \rightarrow W$ are linear transformations of vector space over a field F, then $S \circ T$ is an isomorphism implies that T and S are isomorphisms.
(6) For all $A \in M_{2}\left(\mathrm{~F}_{2}\right)$ give a criteria when A is invertible and write down its inverse.
(7) Show that $A \in \mathcal{M}_{n \times n}(F)$ is invertible if and only if the linear transformation $\mathrm{F}^{n} \rightarrow \mathrm{~F}^{n}$ it represents is an isomorphism.
(8) Verify if the following are linear transformations. Check which of these are injective and/or surjective .
(a) Define $T: \mathcal{M}_{2 \times 3}(F) \rightarrow \mathcal{M}_{2 \times 2}(F)$ for any field F as

$$
T\left(\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)\right)=\left(\begin{array}{cc}
a_{11}+a_{12} & a_{13} \\
a_{21} a_{22} & 0
\end{array}\right) .
$$

(b) Define $T: \mathcal{M}_{2 \times 3}(F) \rightarrow \mathcal{M}_{2 \times 2}(F)$ for any field F as

$$
T\left(\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)\right)=\left(\begin{array}{ll}
a_{11}+a_{12} & a_{13} \\
a_{21}-a_{22} & a_{23}
\end{array}\right) .
$$

(c) Define T to take a vector in \mathbb{R}^{2} and map it to the vector in \mathbb{R}^{2} obtained on rotating it by an angle θ.
(d) Define T from \mathbb{R}^{m} to \mathbb{R}^{m} to be the map which linearly translates a vector $v \in \mathbb{R}^{m}$ to $v+a \in \mathbb{R}^{m}$ for a fixed $a \in \mathbb{R}^{m}$.
(e) Define $T: \mathcal{P}_{2}(\mathrm{~F}) \rightarrow \mathcal{P}_{1}(\mathrm{~F})$ to be $T\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=a_{0} x+a_{2}$.
(9) Are \mathbb{R}^{m} and \mathbb{R}^{n} isomorphic as vector spaces over \mathbb{R} ? Why or why not? Answer the question only using what we have discussed in class.
(10) Let $\mathcal{P}(\mathbb{R})$ denote the space of all polynomials with real coefficients. Show that $T: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R})$ defined as $T(f)(x)=\int_{0}^{x} f(t) d t$ is a linear transformation. Is it one-one? Is it onto? Explain your answer.

