Assignment 5 MA 401 Autumn 2018, IIT Bombay

- (1) Let V be a vector space over a field F. State true or false with explanation.
 - (a) If $\{v_1, v_2, v_3, v_4\}$ is a basis of V then $\{v_1, v_2, v_3\}$ spans V.
 - (b) If $\{v_1, v_2, v_3, v_4\}$ is a basis of V then $\{v_1, v_2, v_5\}$ is linearly independent for any $v_5 \in V$ which is not equal to v_1 and v_2 .
 - (c) If T is a linearly independent subset of V then every subset $S \subseteq T$ is linearly independent in V.
 - (d) If T spans V then every set S containing T, that is, $T \subseteq S$ spans V.
- (2) Let V and W be a vector spaces over a field F with a linear transformation $T: V \to W$.
 - (a) Let T be injective. If $S \subseteq ofV$ is a linearly independent set then T(S) is a linearly independent set in W.
 - (b) Show that for the previous statement to be true it is essential that T be injective.
 - (c) Let T be surjective. Then if $S \subseteq V$ is a spanning set of V Then T(S) is a spanning set of W.
 - (d) Show that for the previous statement to be true it is essential that T is surjective.
 - (e) Show that T is an isomorphism if and only if for any basis \mathcal{B} of V, $T(\mathcal{B})$ is a basis of W.
- (3) Let V and W be a vector spaces over a field F with a linear transformation $T: V \to W$.
 - (a) Prove that if $\dim(V) < \dim(W)$, then T cannot be onto.
 - (b) Prove that if $\dim(V) > \dim(W)$ then T cannot be one-one.
- (4) Give an example of a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that $\operatorname{Ker}(T) = \operatorname{Im}(T)$.
- (5) Define $T, U : \mathcal{F}(\mathbb{N}, \mathbb{R})] \to \mathcal{F}(\mathbb{N}, \mathbb{R})$ as $T(a_1, a_2, a_3, \ldots) = (a_2, a_3, a_4, \ldots)$ and $U((a_1, a_2, a_3, \ldots) = (0, a_1, a_2, a_3, a_4, \ldots).$
 - (a) Show that T and U are linear transformations.
 - (b) Show that T is onto but not one-one.
 - (c) Show that U is one-one but not onto.
- (6) Let V be a finite dimensional vector space and $T: V \to V$ be linear.
 - (a) If V = Ker(T) + Im(T), show that $V = \text{Ker}(T) \oplus \text{Im}(T)$.
 - (b) If $\operatorname{Ker}(T) \cap \operatorname{Im}(T) = \{0\}$ show that $V = \operatorname{Ker}(T) \oplus \operatorname{Im}(T)$.
 - (c) Show that for both the above parts its essential that V be finite dimensional.
 - (d) Show that $\dim V = \dim \operatorname{Ker} T + \dim \operatorname{Im} T$.
- (7) Let E_n denote the standard ordered basis for \mathbb{R}^n . Verify that $\mathcal{B} = \{(1,1,0), (0,1,1), (2,2,3)\}$ is a basis for \mathbb{R}^3 . Let $T(a_1, a_2) = (a_1 a_2, a_1, 2a_1 + a_2)$. Find $[T]_{E_2}^{\mathcal{B}}$.

(8) Let $E_{m \times n}$ define the standard basis for $\mathcal{M}_{m \times n}(\mathbb{R})$. Verify $\mathcal{B} = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \right\}$ is a basis of $\mathcal{M}_2(\mathbb{R})$. Let $T : \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(R)$ be given by $T(A) = A^t$. Find $[T]_{\mathcal{B}}^{E_{2 \times 2}}$.