## Assignment 5 MA 401

## Autumn 2018, IIT Bombay

(1) Let $V$ be a vector space over a field $F$. State true or false with explanation.
(a) If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis of $V$ then $\left\{v_{1}, v_{2}, v_{3}\right\}$ spans $V$.
(b) If $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis of $V$ then $\left\{v_{1}, v_{2}, v_{5}\right\}$ is linearly independent for any $v_{5} \in V$ which is not equal to $v_{1}$ and $v_{2}$.
(c) If $T$ is a linearly independent subset of $V$ then every subset $S \subseteq T$ is linearly independent in $V$.
(d) If $T$ spans $V$ then every set $S$ containing $T$, that is, $T \subseteq S$ spans $V$.
(2) Let $V$ and $W$ be a vector spaces over a field $F$ with a linear transformation $T: V \rightarrow W$.
(a) Let $T$ be injective. If $S \subseteq$ of $V$ is a linearly independent set then $T(S)$ is a linearly independent set in $W$.
(b) Show that for the previous statement to be true it is essential that $T$ be injective.
(c) Let $T$ be surjective. Then if $S \subseteq V$ is a spanning set of $V$ Then $T(S)$ is a spanning set of $W$.
(d) Show that for the previous statement to be true it is essential that $T$ is surjective.
(e) Show that $T$ is an isomorphism if and only if for any basis $\mathcal{B}$ of $V, T(\mathcal{B})$ is a basis of $W$.
(3) Let $V$ and $W$ be a vector spaces over a field $F$ with a linear transformation $T: V \rightarrow W$.
(a) Prove that if $\operatorname{dim}(V)<\operatorname{dim}(W)$, then $T$ cannot be onto.
(b) Prove that if $\operatorname{dim}(V)>\operatorname{dim}(W)$ then $T$ cannot be one-one.
(4) Give an example of a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $\operatorname{Ker}(T)=$ $\operatorname{Im}(T)$.
(5) Define $T, U: \mathcal{F}(\mathbb{N}, \mathbb{R})] \rightarrow \mathcal{F}(\mathbb{N}, \mathbb{R})$ as $T\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(a_{2}, a_{3}, a_{4}, \ldots\right)$ and $U\left(\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(0, a_{1}, a_{2}, a_{3}, a_{4}, \ldots\right)\right.$.
(a) Show that $T$ and $U$ are linear transformations.
(b) Show that $T$ is onto but not one-one.
(c) Show that $U$ is one-one but not onto.
(6) Let $V$ be a finite dimensional vector space and $T: V \rightarrow V$ be linear.
(a) If $V=\operatorname{Ker}(T)+\operatorname{Im}(T)$, show that $V=\operatorname{Ker}(T) \oplus \operatorname{Im}(T)$.
(b) If $\operatorname{Ker}(T) \cap \operatorname{Im}(T)=\{0\}$ show that $V=\operatorname{Ker}(T) \oplus \operatorname{Im}(T)$.
(c) Show that for both the above parts its essential that $V$ be finite dimensional.
(d) Show that $\operatorname{dim} V=\operatorname{dim} \operatorname{Ker} T+\operatorname{dimIm} T$.
(7) Let $E_{n}$ denote the standard ordered basis for $\mathbb{R}^{n}$. Verify that $\mathcal{B}=\{(1,1,0),(0,1,1),(2,2,3)\}$ is a basis for $\mathbb{R}^{3}$. Let $T\left(a_{1}, a_{2}\right)=\left(a_{1}-a_{2}, a_{1}, 2 a_{1}+a_{2}\right)$. Find $[T]_{E_{2}}^{\mathcal{B}}$.
(8) Let $E_{m \times n}$ define the standard basis for $\mathcal{M}_{m \times n}(\mathbb{R})$. Verify $\mathcal{B}=\left\{\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)\right\}$ is a basis of $\mathcal{M}_{2}(\mathbb{R})$.

Let $T: \mathcal{M}_{2}(\mathbb{R}) \rightarrow \mathcal{M}_{2}(R)$ be given by $T(A)=A^{t}$. Find $[T]_{\mathcal{B}}^{E_{2 \times 2}}$.

