Assignment 6 MA 401

Autumn 2018, IIT Bombay

(1) Let A be a $m \times n$ matrix. Let T_{A} denote the linear transformation represented by A. Let A^{\prime} be the matrix obtained by on applying an elementary row operation to A.

Show that $T_{A^{\prime}}: F^{n} \rightarrow F^{m}$ is represented by $E A$ where E is the $m \times m$ matrix obtained by applying the same elementary transformation to the identity matrix.
(2) Show that if an $m-1 \times n-1$ matrix B^{\prime} can be transformed by elementary operations (row and column) to an $m-1 \times n-1 D^{\prime}$ then the $m \times n$ matrix $B=\left(\begin{array}{cc}1 & 0 \\ 0 & B^{\prime}\end{array}\right)$ can be transformed to the $m \times n$ matrix $D=\left(\begin{array}{cc}1 & 0 \\ 0 & D^{\prime}\end{array}\right)$
(3) Let A be a $m \times n$ matrix.
(a) Show that if A^{\prime} is obtained from A be a elementary row or column operation then the rank does not change.
(b) Let A have rank r. Induct on the number of rows to show that A can transformed by elementary row operations to $\left[e_{1} \ldots e_{r} 0 \ldots 0\right]$.
(c) Show that if A is a $n \times n$ matrix with rank n then it can be written as a product of elementary matrices.
(d) Let A be an $m \times n$ matrix. Show that there exist invertible $m \times m$ matrix X and invertible $n \times n$ matrix Y such that

$$
A=X\left[e_{1} \ldots e_{r} 0 \ldots 0\right] Y
$$

(4) Show that $\operatorname{det} A=\operatorname{det} A^{t}$.
(5) Let V be a vector space be a vector space over F. Let $V^{*}=\mathcal{L}(V, F)$ denote the dual vector space over F. Let V and W be finite dimensional vector spaces over F with bases \mathcal{B} and \mathcal{B}^{\prime} respectively. Let $T: V \rightarrow W$ be a linear transformation.
(a) Show that a basis \mathcal{B} of V gives a basis \mathcal{B}^{*} of V^{*} and $\operatorname{dim} V=\operatorname{dim} V^{*}$
(b) Show that T induces a linear transformation $T^{*}: W^{*} \rightarrow V^{*}$.
(c) Show that $\left[T^{*}\right]_{\mathcal{B}^{* *}}^{\mathcal{\mathcal { K } ^ { * }}}=\left([T]_{\mathcal{B}}^{\mathcal{K}^{\prime}}\right)^{t}$.
(6) State true or false with explanation.
(a) The rank of a matrix is equal to the number of linearly independent rows of a matrix.
(b) The function $\delta: M_{n}(F) \rightarrow F$ defined as $\delta(A)=0$ for all $A \in M_{n}(F)$ is a determinant function.
(c) A determinant function is a linear transformation.
(7) Which of the following functions $\delta: M_{3}(F) \rightarrow F$ are multilinear?
(a) $\delta(A)=1$ for all A
(b) $\delta(A)=a_{22}$ for all A.
(c) $\delta(A)=a_{11} a_{21} a_{32}$ for all A.
(8) Show that $\operatorname{det} A=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \cdot \operatorname{det}\left(\hat{A_{i j}}\right)$ where $\hat{A}_{i j}$ is the $(n-1) \times(n-1)$ matrix obtained from A by deleting the i th row and j th column.
(9) Show that $\operatorname{det} A=\sum_{j=1}^{n}(-1)^{j+1} a_{i j} \cdot \operatorname{det}\left(\hat{A_{i j}}\right)$ is multilinear and alternating function on the rows of A.
(10) Prove the adjoint formula for inverse of a matrix and compute the inverse of the matrix.

$$
\left(\begin{array}{ccc}
-2 & 3 & 2 \\
6 & 0 & 3 \\
4 & 1 & -1
\end{array}\right)
$$

