(1) Show that the characteristic polynomial of the $k \times k$ matrix

$$
\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -a_{0} \\
1 & 0 & \ldots & 0 & -a_{1} \\
\vdots & \vdots & \ldots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & -a_{k-1}
\end{array}\right)
$$

is $(-1)^{k}\left(a_{0}+a_{1} t+\ldots+a_{k-1} t^{k-1}+t^{k}\right)$.
(2) Is $T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathcal{P}_{2}(\mathbb{R})$ defined as $T\left(f(x)=f(0)+f(1)\left(x+x^{2}\right)\right.$ diagonalizable? If yes, find the basis which diagonalizes the representing matrix.
(3) Suppose that $A \in M_{n \times n}(F)$ has two distinct eigenvalues λ_{1} and λ_{2} with $\operatorname{dim} W_{\lambda_{1}}=n-1$. Show that A is diagonalizable.
(4) Let $T: V \rightarrow V$ be an isomorphism. Show that T is diagonalizable if and only if T^{-1} is diagonalizable.
(5) Let $T: V \rightarrow V$ be a linear transformation on a n-dimensional vector space V. Show that if $T^{k}=0$ for some k then $T^{n}=0$.
(6) Find a 3×3 matrix whose minimal polynomial is t^{3}.
(7) Determine whether for $T: V \rightarrow V$ the given subspace W is T invariant.
(a) Let $V=\mathcal{C}[0,1]$ and $T(f(t))=\left(\int_{0}^{1} f(x) d x\right) t$ and

$$
W=\{f \in V \mid f(t)=a t+b \text { for some } a \text { and } b\}
$$

(b) $V=\mathcal{M}_{2 \times 2}(\mathbb{R}), T(A)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) A$ and $W=\left\{A \in V \mid A^{t}=A\right\}$.
(8) Find the T cyclic subspace generated by $z=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ where T : $\mathcal{M}_{2 \times 2}(\mathbb{R}) \rightarrow \mathcal{M}_{2 \times 2}(\mathbb{R})$ is defined as $T(A)=\left(\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right) A$.
(9) Show that if $T: V \rightarrow V$ is a linear transformation and W is a T invariant subspace then $\bar{T}: V / W \rightarrow V / W$ defined as $\bar{T}(\bar{v})=\overline{T(v)}$ is a linear transformation.
(10) If f, g and h are characteristic polynomials of $T,\left.T\right|_{W}$, and \bar{T} respectively. Prove that $f(t)=g(t) h(t)$.
(11) Show that if T is diagonalizable then \bar{T} is diagonalizable.
(12) Show that if $\left.T\right|_{W}$, and \bar{T} are diagonalizable and they have no common eigenvalues then so is T.
(13) Let $A=\left(\begin{array}{ccc}1 & 1 & -3 \\ 2 & 3 & 4 \\ 1 & 2 & 1\end{array}\right)$. Let W be the T_{A} cyclic subspace of \mathbb{R}^{3} generated by e_{1}.
(a) Compute the characteristic polynomial of $\left(T_{A}\right)_{\left.\right|_{W}}$.
(b) Show that $e_{2}+W$ is a basis for \mathbb{R}^{3} / W and use this to compute the characteristic polynomial of T.

