Assignment 7 MA 401 Autumn 2018, IIT Bombay

(1) Show that the characteristic polynomial of the $k \times k$ matrix

$$\begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -a_{k-1} \end{pmatrix}$$

is $(-1)^k (a_0 + a_1 t + \dots + a_{k-1} t^{k-1} + t^k).$

- (2) Is $T : \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ defined as $T(f(x) = f(0) + f(1)(x + x^2)$ diagonalizable? If yes, find the basis which diagonalizes the representing matrix.
- (3) Suppose that $A \in M_{n \times n}(F)$ has two distinct eigenvalues λ_1 and λ_2 with $\dim W_{\lambda_1} = n 1$. Show that A is diagonalizable.
- (4) Let $T: V \to V$ be an isomorphism. Show that T is diagonalizable if and only if T^{-1} is diagonalizable.
- (5) Let $T: V \to V$ be a linear transformation on a *n*-dimensional vector space V. Show that if $T^k = 0$ for some k then $T^n = 0$.
- (6) Find a 3×3 matrix whose minimal polynomial is t^3 .
- (7) Determine whether for $T: V \to V$ the given subspace W is T invariant. (a) Let $V = \mathcal{C}[0, 1]$ and $T(f(t)) = (\int_0^1 f(x) \, dx) t$ and

 $W = \{ f \in V \mid f(t) = at + b \text{ for some } a \text{ and } b \}.$

(b)
$$V = \mathcal{M}_{2 \times 2}(\mathbb{R}), T(A) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} A \text{ and } W = \{A \in V \mid A^t = A\}.$$

(8) Find the *T* cyclic subspace generated by $z = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ where *T* : $\mathcal{M}_{2\times 2}(\mathbb{R}) \to \mathcal{M}_{2\times 2}(\mathbb{R})$ is defined as $T(A) = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} A$.

- (9) Show that if $T: V \to V$ is a linear transformation and W is a T-invariant subspace then $\overline{T}: V/W \to V/W$ defined as $\overline{T}(\overline{v}) = \overline{T(v)}$ is a linear transformation.
- (10) If f, g and h are characteristic polynomials of $T, T|_W$, and \overline{T} respectively. Prove that f(t) = g(t)h(t).
- (11) Show that if T is diagonalizable then \overline{T} is diagonalizable.

(12) Show that if $T|_W$, and \overline{T} are diagonalizable and they have no common eigenvalues then so is T.

(13) Let $A = \begin{pmatrix} 1 & 1 & -3 \\ 2 & 3 & 4 \\ 1 & 2 & 1 \end{pmatrix}$. Let W be the T_A cyclic subspace of \mathbb{R}^3 gener-

ated by e_1 .

- (a) Compute the characteristic polynomial of $(T_A)_{|_W}$.
- (b) Show that $e_2 + W$ is a basis for \mathbb{R}^3/W and use this to compute the characteristic polynomial of T.