Assignment 8 MA 401 Autumn 2018, IIT Bombay

- (1) The following sequence of exercise shows that if $T: V \to V$ is a linear transformation on a finite dimensional vector space whose characteristic polynomials splits then $K_{\lambda} = \{v \in V \mid (T \lambda I)^r v = 0 \text{ for some } r\}$ has a basis consisting of $(T \lambda I)$ cycles.
 - (a) Show that if $\dim K_{\lambda} = 1$ then statement is true.
 - (b) Show that K_{λ} is $(T \lambda I)$ invariant and note the Ker $(T \lambda I)$ is exactly the eigenspace of λW_{λ} in V.
 - (c) Assume statement is true when $\dim K_{\lambda} < n$. Let $\dim K_{\lambda} = n$. Show that $K_{\lambda} \cap \operatorname{Im}(T - \lambda I)$ has dimension < n and satisfies the hypothesis of the theorem. Therefore, a union of $(T - \lambda I)$ cycles form a basis \mathcal{B}' for $K_{\lambda} \cap \operatorname{Im}(T - \lambda I)$.
 - (d) Find a basis of W_{λ} which is an extension of the set of linearly independent vectors which are initial vectors of cycles in \mathcal{B}' .
 - (e) Now construct an appropriate basis of cycles for K_{λ} to prove the theorem.
- (2) Find the Jordan canonical basis for the following linear transformations.
 - (a) Let T be a linear transformation on $\mathcal{P}_2(\mathbb{R})$ defined by T(f(x)) = 2f(x) f'(x).
 - (b) Let $V = \text{Span}\{1, t, t^2, e^t, te^t\} \subseteq \mathcal{C}([0, 1])$ and T is a linear operator on V defined by T(f) = f'.
 - (c) Let T be a linear operator on $\mathcal{M}_{2\times 2}(\mathbb{R})$ such that $T(A) = 2A + A^t$ for all $A \in \mathcal{M}_{2\times 2}(\mathbb{R})$.
- (3) Let p be the minimal polynomial and f the characteristic polynomial of a linear transformation $T: V \to V$ where V is a finite dimensional vector space over a field F. Show that if p splits then so does f. (Hint: You can use that every field is contained in an algebraically closed field)
- (4) Let $T_A : \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation defined by $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. Find a T_A cyclic subspace of \mathbb{R}^2 which is all of \mathbb{R}^2 . Write the transformation in terms of a basis of this T_A -cyclic subspace. Try to generalize this idea to explain how to get a nice form when the characteristic polynomial does not split but consists of irreducible factors. More precisely, try to show that if $\phi(t)$ is a irreducible factor of the characteristic polynomial then $K_{\phi} = \{v \in V \mid \phi(T)^k(v) = 0\}$ is a non-zero subspace of V and that $V = \bigoplus_i K_{\phi_i}$ where ϕ_i are the irreducible factors in the characteristic polynomial.
- (5) Let $T: V \to V$ be a linear transformation where V is finite dimensional.

- (a) Let the characteristic polynomial of T split. Then T is nilpotent if and only if its characteristic polynomial is of the form t^n .
- (b) If T is nilpotent show that its characteristic polynomial is of the form t^n . Prove this statement without using the idea of minimal polynomials. (Hint: Use induction. and consider the T-invariant subspace Im(T).)
- (6) Prove that any upper triangular square matrix with all diagonal entries 0 is nilpotent.
- (7) Let $T: V \to V$ be a linear transformation where V is finite dimensional such that its characteristic polynomial splits with $\lambda_1, \ldots, \lambda_k$ the distinct eigenvalues.
 - (a) Show that every vector in $v \in V$ can be written uniquely as a sum of vectors in $v_i \in K_{\lambda_i}$, $i = 1, 2 \dots k$.
 - (b) Let $S: V \to V$ be defined as $S(v) = \sum_{i=1}^{k} \lambda_i v_i$. Show that S is diagonalizable linear transformation.
 - (c) Define $U: V \to V$ as U = T S. Show that U is nilpotent and SU = US.
 - (d) Prove the converse that is, if T can be written as S + U where S is diagonalizable and U is nilpotent and SU = US, then T and S have the same characteristic polynomial and $S(x) = \lambda_1 x_1 + \ldots +$ $\lambda_k x_k$ where λ_i 's are eigenvalues and x_i 's are as defined earlier. (Hint: First show that T and S have the same eigenvalues and eigenvectors of S are generalized eigenvectors of T. Then use that S is diagonalizable to show that V can be written as a direct sum of generalized eigenspaces.)
- (8) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by a matrix $\begin{pmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{pmatrix}$. Show that there exists diagonalizable and nilpotent

lienar transformations such that T = D + N and DN = ND.