Assignment 8 MA 401

Autumn 2018, IIT Bombay

(1) The following sequence of exercise shows that if $T: V \rightarrow V$ is a linear transformation on a finite dimensional vector space whose characteristic polynomials splits then $K_{\lambda}=\left\{v \in V \mid(T-\lambda I)^{r} v=0\right.$ for some $\left.r\right\}$ has a basis consisting of $(T-\lambda I)$ cycles.
(a) Show that if $\operatorname{dim} K_{\lambda}=1$ then statement is true.
(b) Show that K_{λ} is $(T-\lambda I)$ invariant and note the $\operatorname{Ker}(T-\lambda I)$ is exactly the eigenspace of λW_{λ} in V.
(c) Assume statement is true when $\operatorname{dim} K_{\lambda}<n$. Let $\operatorname{dim} K_{\lambda}=n$. Show that $K_{\lambda} \cap \operatorname{Im}(T-\lambda I)$ has dimension $<n$ and satisfies the hypothesis of the theorem. Therefore, a union of $(T-\lambda I)$ cycles form a basis \mathcal{B}^{\prime} for $K_{\lambda} \cap \operatorname{Im}(T-\lambda I)$.
(d) Find a basis of W_{λ} which is an extension of the set of linearly independent vectors which are initial vectors of cycles in \mathcal{B}^{\prime}.
(e) Now construct an appropriate basis of cycles for K_{λ} to prove the theorem.
(2) Find the Jordan canonical basis for the following linear transformations.
(a) Let T be a linear transformation on $\mathcal{P}_{2}(\mathbb{R})$ defined by $T(f(x))=$ $2 f(x)-f^{\prime}(x)$.
(b) Let $V=\operatorname{Span}\left\{1, t, t^{2}, e^{t}, t e^{t}\right\} \subseteq \mathcal{C}([0,1])$ and T is a linear operator on V defined by $T(f)=f^{\prime}$.
(c) Let T be a linear operator on $\mathcal{M}_{2 \times 2}(\mathbb{R})$ such that $T(A)=2 A+A^{t}$ for all $A \in \mathcal{M}_{2 \times 2}(\mathbb{R})$.
(3) Let p be the minimal polynomial and f the characteristic polynomial of a linear transformation $T: V \rightarrow V$ where V is a finite dimensional vector space over a field F. Show that if p splits then so does f. (Hint: You can use that every field is contained in an algebraically closed field)
(4) Let $T_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation defined by $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$. Find a T_{A} cyclic subspace of \mathbb{R}^{2} which is all of \mathbb{R}^{2}. Write the transformation in terms of a basis of this T_{A}-cyclic subspace. Try to generalize this idea to explain how to get a nice form when the characteristic polynomial does not split but consists of irreducible factors. More precisely, try to show that if $\phi(t)$ is a irreducible factor of the characteristic polynomial then $K_{\phi}=\left\{v \in V \mid \phi(T)^{k}(v)=0\right\}$ is a non-zero subspace of V and that $V=\oplus_{i} K_{\phi_{i}}$ where ϕ_{i} are the irreducible factors in the characteristic polynomial.
(5) Let $T: V \rightarrow V$ be a linear transformation where V is finite dimensional.
(a) Let the characteristic polynomial of T split. Then T is nilpotent if and only if its characteristic polynomial is of the form t^{n}.
(b) If T is nilpotent show that its characteristic polynomial is of the form t^{n}. Prove this statement without using the idea of minimal polynomials. (Hint: Use induction. and consider the T-invariant subspace $\operatorname{Im}(T)$.)
(6) Prove that any upper triangular square matrix with all diagonal entries 0 is nilpotent.
(7) Let $T: V \rightarrow V$ be a linear transformation where V is finite dimensional such that its characteristic polynomial splits with $\lambda_{1}, \ldots, \lambda_{k}$ the distinct eigenvalues.
(a) Show that every vector in $v \in V$ can be written uniquely as a sum of vectors in $v_{i} \in K_{\lambda_{i}}, i=1,2 \ldots k$.
(b) Let $S: V \rightarrow V$ be defined as $S(v)=\sum_{i=1}^{k} \lambda_{i} v_{i}$. Show that S is diagonalizable linear transformation.
(c) Define $U: V \rightarrow V$ as $U=T-S$. Show that U is nilpotent and $S U=U S$.
(d) Prove the converse that is, if T can be written as $S+U$ where S is diagonalizable and U is nilpotent and $S U=U S$, then T and S have the same characteristic polynomial and $S(x)=\lambda_{1} x_{1}+\ldots+$ $\lambda_{k} x_{k}$ where λ_{i} 's are eigenvalues and x_{i} 's are as defined earlier. (Hint: First show that T and S have the same eigenvalues and eigenvectors of S are generalized eigenvectors of T. Then use that S is diagonalizable to show that V can be written as a direct sum of generalized eigenspaces.)
(8) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by a matrix $\left(\begin{array}{ccc}3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0\end{array}\right)$. Show that there exists diagonalizable and nilpotent lienar transformations such that $T=D+N$ and $D N=N D$.

