(1) Let $V=\mathbb{C}^{3}$ with standard inner product space. Let $x=2,1+i, i$, $y=(2-i, 2,1+2 i)$. Compute $\left\langle x, y>,\|x\|,\|y\|\right.$ and $\|x+y\|^{2}$.
(2) Show the following identities. If $V$ is a real inner product space then

$$
<v, w>=\frac{1}{4}\|v+w\|^{2}-\frac{1}{4}\|v-w\|^{2}
$$

and if $V$ is a complex inner product space then
$<v, w>=\frac{1}{4}\|v+w\|^{2}-\frac{1}{4}\|v-w\|^{2}+\frac{i}{4}\|v+i w\|^{2}-\frac{i}{4}\|v-i w\|^{2}$.
(3) Let $A=\left(\begin{array}{cc}1 & i \\ -i & 2\end{array}\right)$. Show that $\langle x, y\rangle=\operatorname{tr}\left(x A y^{*}\right)$ is a inner product on $\mathbb{C}^{2}$.
(4) Show that if $V$ is an inner product space then $d(x, y)=\|x-y\|$ for all $x, y \in V$ defines a metric on $V$.
(5) Consider the standard inner product on $\mathcal{P}_{2}(\mathbb{R}) \subset \mathcal{C}(0,1)$. Find a orthonormal basis for it.
(6) Find the orthogonal complement of span of $S=\{(1, i, 0),(1-i, 2,4 i)\}$.
(7) Show that if $T: V \rightarrow V$ is a linear transformation then $\operatorname{Im}(T)^{\perp}=$ $\operatorname{Ker}\left(T^{*}\right)$.
(8) Give an example to show that
(a) not every normal linear transformation on a finite dimensional real inner product space is diagonalizable.
(b) not every a normal operator on a infinite dimensional complex inner product space is diagonalizable.
(9) Let $T$ be a finite dimensional inner product space $V$. If $\langle T(x), y\rangle=0$ for all $x, y \in V$ then show that $T=0$.
(10) Find the adjoint of $T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathcal{P}_{2}(\mathbb{R})$ defined as $T f=f^{\prime}+3 f$.
(11) Find the value of $T *(3-i, 1+2 i)$ where $T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ is given by

$$
T(w, z)=(2 w+i z,(1-i) w)
$$

(12) State true or false with explanation.
(a) Every diagonalizable operator is self adjoint.
(b) Every self adjoint operator is normal.
(c) Every normal operator on a complex inner product space is self adjoint.
(d) Orthogonal complement of any set of vectors is a subspace.
(e) Let $T: V \rightarrow V$ be a linear transformation of finite dimensional inner product spaces. Then given any basis $\mathcal{B}$ of $V,\left[T^{*}\right]_{\mathcal{B}}=\left([T]_{\mathcal{B}}\right)^{*}$.
(13) If $T$ is a self adjoint linear transformation from $V \rightarrow V$ where $V$ is a finite dimensional inner product space and $\langle x, T x\rangle=0$ for all $x \in V$. Then $T=0$.
(14) Let $T$ be a linear transformation on a complex inner product space.
(a) If $T$ is self adjoint then $<T(x), x>$ is real for all $x \in V$.
(b) If $T$ satisfies $<T(x), x)>=0$ for all $x \in v$ then $T=0$. (Hint: Expand by replacing $x$ by $x+y$ and $x+i y$.)
(c) If $<T(x), x>=0$ is real for all $x \in V$ then $T=T^{*}$.
(15) If $T$ is a self adjoint linear transformation from $V \rightarrow V$ where $V$ is a finite dimensional inner product space and $<T x, x>=0$ for all $x \in V$. Then $T$

