Assignment 9 MA 401 Autumn 2018, IIT Bombay

- (1) Let $V = \mathbb{C}^3$ with standard inner product space. Let x = 2, 1 + i, i, y = (2 i, 2, 1 + 2i). Compute $\langle x, y \rangle$, ||x||, ||y|| and $||x + y||^2$.
- (2) Show the following identities. If V is a real inner product space then

$$\langle v, w \rangle = \frac{1}{4} \|v + w\|^2 - \frac{1}{4} \|v - w\|^2$$

and if V is a complex inner product space then

$$\langle v, w \rangle = \frac{1}{4} \|v + w\|^2 - \frac{1}{4} \|v - w\|^2 + \frac{i}{4} \|v + iw\|^2 - \frac{i}{4} \|v - iw\|^2.$$

- (3) Let $A = \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix}$. Show that $\langle x, y \rangle = \operatorname{tr}(xAy^*)$ is a inner product on \mathbb{C}^2 .
- (4) Show that if V is an inner product space then d(x, y) = ||x y|| for all $x, y \in V$ defines a metric on V.
- (5) Consider the standard inner product on $\mathcal{P}_2(\mathbb{R}) \subset \mathcal{C}(0,1)$. Find a orthonormal basis for it.
- (6) Find the orthogonal complement of span of $S = \{(1, i, 0), (1 i, 2, 4i)\}.$
- (7) Show that if $T: V \to V$ is a linear transformation then $\operatorname{Im}(T)^{\perp} = \operatorname{Ker}(T^*)$.
- (8) Give an example to show that
 - (a) not every normal linear transformation on a finite dimensional real inner product space is diagonalizable.
 - (b) not every a normal operator on a infinite dimensional complex inner product space is diagonalizable.
- (9) Let T be a finite dimensional inner product space V. If $\langle T(x), y \rangle = 0$ for all $x, y \in V$ then show that T = 0.
- (10) Find the adjoint of $T : \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ defined as Tf = f' + 3f.
- (11) Find the value of T * (3 i, 1 + 2i) where $T : \mathbb{C}^2 \to \mathbb{C}^2$ is given by

$$T(w, z) = (2w + iz, (1 - i)w).$$

- (12) State true or false with explanation.
 - (a) Every diagonalizable operator is self adjoint.
 - (b) Every self adjoint operator is normal.
 - (c) Every normal operator on a complex inner product space is self adjoint.
 - (d) Orthogonal complement of any set of vectors is a subspace.
 - (e) Let $T: V \to V$ be a linear transformation of finite dimensional inner product spaces. Then given any basis \mathcal{B} of V, $[T^*]_{\mathcal{B}} = ([T]_{\mathcal{B}})^*$.
- (13) If T is a self adjoint linear transformation from $V \to V$ where V is a finite dimensional inner product space and $\langle x, Tx \rangle = 0$ for all $x \in V$. Then T = 0.
- (14) Let T be a linear transformation on a complex inner product space.
 - (a) If T is self adjoint then $\langle T(x), x \rangle$ is real for all $x \in V$.
 - (b) If T satisfies $\langle T(x), x \rangle \ge 0$ for all $x \in v$ then T = 0. (Hint: Expand by replacing x by x + y and x + iy.)
 - (c) If $\langle T(x), x \rangle = 0$ is real for all $x \in V$ then $T = T^*$.
- (15) If T is a self adjoint linear transformation from $V \to V$ where V is a finite dimensional inner product space and $\langle Tx, x \rangle = 0$ for all $x \in V$. Then T