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Chapter 1

Groups

In this chapter we see some basic definitions.

1.1 Bijective maps

1.1.1. Injective maps. Let X and Y be two sets. A map f : X → Y is
called injective if it takes distinct elements of X to distinct elements of Y .
That is, if a, b ∈ X and a 6= b then f(a) 6= f(b). Here are some examples
which illustrate the point.

1. Let X = {0, 1} and let Y = {4, 6, 9}. Let f : X → Y be defined by
f(0) = 4 and f(1) = 6. Then clearly f is injective.

2. Let X = {0, 1} and let Y = {4, 6, 9}. Clearly there are no injective
maps from Y → X since the size of Y is 3 and the size of X is 2. Thus,
for any map f : Y → X there will be two elements of Y which map to
the same element of X.

3. Let X be a set of size n and let Y be a set of size m. The total number
of maps from X to Y is mn. If n > m then there are no injective maps
from X to Y . If n ≤ m then there are m!/(m−n)! injective maps from
X to Y . The proofs of these simple assertions are left to the reader.

1.1.2. Surjective maps. A map f : X → Y is called surjective if every
element of Y is contained in the image of X.

1. The map f : R→ R given by f(x) = x2 is not surjective, since negative
numbers will not be in the image of f .
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6 Chapter 1. Groups

2. The map f : R→ R given by f(x) = x3 is surjective. This map is also
injective.

3. Let Z/mZ denote the set {0, 1, . . . ,m−1}. Then there is a natural map
Z → Z/mZ given as follows. For every integer n there is an integer
k such that km ≤ n < (k + 1)m. Then the map is given by sending
n 7→ n− km, or in simple terms, it is the remainder that we get when
we divide n by m.

1.1.3. Bijective maps from X → Y . A map f : X → Y which is both
injective and surjective is called a bijective map. If f : X → Y is a bijective
map, then we can define its “inverse”. Define a map g : Y → X as follows.
Since f is a bijection, for every y ∈ Y there is a unique x ∈ X such that
f(x) = y. Define g(y) := x. From the definition of g it is clear that g ◦ f =
IdX and that f◦g = IdY . These equalities can be checked simply by applying
them on elements of X and Y . For example, if y ∈ Y , let x be the unique
element in X such that f(x) = y. Then by definition g(y) = x. So we get

(f ◦ g)(y) = f(g(y)) = f(x) = y = IdY (y) .

This proves that f ◦ g = IdY . Similarly, one may show that g ◦ f = IdX .
Using the above we may show that g is unique. That is, if h : Y → X is

any other map such that h ◦ f = IdX then h = g. To see this we apply g on
the right on both sides. Then we get

h ◦ f ◦ g = IdX ◦ g = g .

But we also have that

h ◦ f ◦ g = h ◦ IdY = h .

Combining these we get that h = g. Similarly, one may check that if h :
Y → X is such that f ◦ h = IdY then too we get h = g. This is left as an
exercise to the reader.

It is also easy to check that g is bijective. Surjectivity follows from the
identity g◦f = IdX . Applying both sides to x ∈ X we get g(f(x)) = x. This
shows that every x ∈ X is in the image of g. To show injectivity, suppose
a, b ∈ Y are such that g(a) = g(b), then applying f to both sides we get
f(g(a)) = f(g(b)). Since f ◦ g = IdY it follows that a = b.

Let us record the conclusion of the above discussion in the following
proposition.
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Proposition 1.1.4. Let f : X → Y be a bijective map. Then there is a
unique bijective map g : Y → X which satisfies g ◦ f = IdX and f ◦ g = IdY .

1.2 Automorphisms of a set

1.2.1. Bijective maps from X → X. Now we apply the preceding discus-
sion to the case when Y = X. From the preceding subsection we conclude
that given a bijective map f : X → X, there is a unique bijective map
g : X → X such that f ◦ g = IdX and g ◦ f = IdX . Moreover, one easily
checks that if f and g are bijective maps from X → X then the composition
f ◦ g is also bijective.

Definition 1.2.2. Let X be a set. Denote the set of bijective maps from
X → X by Aut(X). Bijective maps are also referred to as automorphisms.

Then from Proposition 1.1.4 we conclude the following.

Proposition 1.2.3. The set Aut(X) and the operation

◦ : Aut(X)× Aut(X)→ Aut(X) (f, g) 7→ f ◦ g

satisfies the following properties.

(1) If f, g, h ∈ Aut(X) then (f ◦ g) ◦ h = f ◦ (g ◦ h)

(2) There is an element IdX ∈ Aut(X) such that f ◦ IdX = f = IdX ◦ f for
all f ∈ Aut(X)

(3) For every f ∈ Aut(X) there is a unique g ∈ Aut(X) such that f ◦ g =
g ◦ f = IdX .

Proof. The assertion (1) is a basic property of maps between sets, often
referred to associativity. The remaining assertions are clear from Proposition
1.1.4.

A group, which we now define, is an abstraction of the above properties.
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1.3 Groups

Definition 1.3.1. A group is a triple (G,m, e) consisting of the following.

(1) G is a set and e ∈ G is an element.

(2) m : G×G→ G is a map such that m(a,m(b, c)) = m(m(a, b), c).

(3) For all g ∈ G we have m(g, e) = m(e, g) = g.

(4) For all g ∈ G there is an h such that m(g, h) = e.

The element e ∈ G is referred to as the identity of the group. The map
m is referred to as the multiplication law, or the group law. Let us now see
some examples of groups.

Example 1.3.2. We have already seen this example of a group. Let X be
a set. Define

m : Aut(X)× Aut(X)→ Aut(X)

by m(f, g) := f ◦ g. Then the triple (Aut(X),m, IdX) is a group. This is the
content of Proposition 1.2.3. If we take X to be the set {1, 2, . . . , n}, then
the group Aut(X) is often written as Sn and is called the symmetric group
on n letters.

Example 1.3.3. Let Z denote the set of integers. For two integers m,n
define a(m,n) := m+ n. Then the triple (Z, a, 0) is a group.

Example 1.3.4. Let Q denote the set of rational numbers. For two rational
numbers α, β define a(α, β) := α + β. Then the triple (Q, a, 0) is a group.

Example 1.3.5. Let R denote the set of real numbers. For two real numbers
α, β define a(α, β) := α + β. Then the triple (R, a, 0) is a group.

Example 1.3.6. The above can be generalized to Rn. For any two vectors
α, β we have the addition map a(α, β) = α + β. The triple (Rn, a, 0) is a
group.

Example 1.3.7. Consider the set Q× := Q \ {0}. For two elements in this
set define m(a, b) = ab. Clearly, m is a map from Q××Q× → Q×. The triple
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(Q×,m, 1) is a group.

Example 1.3.8. Consider the set R× := R \ {0}. For two elements in this
set define m(a, b) = ab. Clearly, m is a map from R××R× → R×. The triple
(R×,m, 1) is a group.

Example 1.3.9. Consider the set S := {±1}. For two elements in this set
define m(a, b) = ab. Clearly, m is a map from S×S → S. The triple (S,m, 1)
is a group.

Example 1.3.10. Define C× := C \ {0}. Then the triple (C×,m, 1) forms a
group, where m as above, is the usual multiplication of complex numbers.

Example 1.3.11. Let S1 ⊂ C× be the set of complex numbers with absolute
value 1.

S1 := {z ∈ C | |z| = 1}
Then the triple (S1,m, 1) is a group.

Example 1.3.12. Let us denote by V a vector space over R. Recall that a
map f : V → V is called linear if for every λ ∈ R and v, w ∈ V we have
f(λv + w) = λf(v) + f(w). We claim that the set of bijective linear maps
from V → V forms a group under composition of maps. Let Autlin(V ) denote
the space of these maps.

It is clear that IdV ∈ Autlin(V ) and that for every f ∈ Autlin(V ) we have
f ◦ IdV = IdV ◦ f .

Let f ∈ Autlin(V ) be a bijective linear map. Since f : V → V is bijective,
let g denote its inverse. We claim that g is a linear map. To check this we
need to show for λ ∈ R and v, w ∈ V we have g(λv + w) = λg(v) + g(w).
Since f is a bijection, this equality holds iff if it holds after applying f . That
is,

g(λv + w) = λg(v) + g(w) ⇐⇒ f(g(λv + w)) = f(λg(v) + g(w))

⇐⇒ λv + w = λf(g(v)) + f(g(w))

⇐⇒ λv + w = λv + w

In the above we have used that f ◦ g = IdV and that f is linear. The above
computation shows that g is linear. Since g is a bijection and it is linear, it
follows that g ∈ Autlin(V ). We know that f ◦ g = IdV = g ◦ f .
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Thus, the triple (Autlin(V ),m, IdV ), where m(f, g) = f ◦ g, is a group.

Example 1.3.13. We can construct examples of groups by considering more
complicated examples of automorphisms. Let f : X → Y be a map of sets.
Let g : X → X be a map such that f ◦ g = f . This is equivalent to saying
that the following diagram commutes

X
g //

f   A
AA

AA
AA

A X

f~~~~
~~
~~
~~

Y

Let

AutY (X) := {g | f ◦ g = f, g is a bijection} .

It is an easy exercise to check that AutY (X) is a group under composition
of maps. We leave this check to the reader.

Suppose (G,m, e) is a group, then there is only one element e ∈ G which
satisfies the property that m(g, e) = m(e, g) = g for all g ∈ G. Let us prove
this. However, before that, we simplify our notation as follows. From now
on we will suppress the m. If a, b are elements of G, then we will simply
write a · b to mean the element m(a, b). In this notation, the associativity
condition will be written as (a · b) · c = a · (b · c).

Proposition 1.3.14. There is only one element a ∈ G which satisfies the
property of the identity, that is, g · a = a · g = g for all g ∈ G implies a = e.

Proof. Suppose there is a g ∈ G such that g ·a = g. Let h denote an element
such that h · g = e. Applying h to both sides of the equation g · a = g we get

h · (g · a) = h · g = e .

By associativity one get

(h · g) · a = (e · a) = a .

This proves that a = e.

Proposition 1.3.15. Given g ∈ G, there is exactly one element h ∈ G such
that g · h = e.
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Proof. That there is an h such that g · h = e is axiom (4) in the definition
of a group. Suppose there is an x such that g · x = e. We need to show that
x = h. Let x′ ∈ G be such that x · x′ = e. By axiom (4) in the definition of
a group, there is such an x′. Then we get

(g · x) · x′ = (e · x′) = x′ = g · (x · x′) = g · e = g .

This shows that x′ = g and so we get x · g = e. From this we get

x · (g · h) = x · e = x = (x · g) · h = e · h = h .

This proves that x = h.

Proposition 1.3.16. Given g ∈ G, there is exactly one element h ∈ G such
that h · g = e.

Proof. First we need to show that there is such an h. There is an h ∈ G such
that g · h = e, by axiom (4) in the definition of a group. There is an h′ ∈ G
such that h · h′ = e. Then

(g · h) · h′ = e · h′ = h′ = g · (h · h′) = g · e = g .

This shows that h′ = g and so we get h · g = e. This proves the existence of
an h such that h · g = e. Suppose x ∈ G is such that x · g = e. Then we get

(x · g) · h = e · h = h = x · (g · h) = x · e = x .

This shows that x = h, which proves the uniqueness.

Corollary 1.3.17. Let g ∈ G. Then there is a unique h ∈ G such that
h · g = g · h = e.

Proof. By axiom (4) in the definition of a group there is an h ∈ G such that
g · h = e. By Proposition 1.3.15 it follows that such an h is unique. By
Proposition 1.3.16 there is an h′ ∈ G such that h′ · g = e. We need to show
that h′ = h. We have already done this twice, but let us do it once again.
We have

h′ · (g · h) = h′ · e = h′ = (h′ · g) · h = e · h = h .

This completes the proof of the Corollary.

Definition 1.3.18. Let g ∈ G be an element. If there is no positive integer
i such that gi = e then we say that g has infinite order. If there is a positive
integer i such that

gi = g · g · . . . · g︸ ︷︷ ︸
i

= e,

then the smallest such i is called the order of g and denote OG(g).
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1.4 Symmetric groups

Let X denote the set {1, 2, . . . , n}. Recall that in Example 1.3.2 we denoted
by Sn the group Aut(X). We will be referring to this group on numerous
occasions, and so it will be useful to look at it now in detail and fix some
notation. The easiest way to explain this is by means of some examples.

1.4.1. n = 1. In this case S1 = {e}.

1.4.2. n = 2. In this case X = {1, 2}. There are two bijective maps from
X to itself. Such a map is either the identity or it is given by f(1) = 2
and f(2) = 1. Thus, S2 is a group of size two. If f ∈ S2 is the non-trivial
element, then we write f as f(12). This means that f takes 1 to 2 and it takes
2 to 1. Note that we could have written f as f(21) also. It is clear, simply by
checking on elements of X, that f(12) ◦ f(12) = Id. The only element which
has order 1 is the identity element. Since f(12) 6= Id its order is not 1. This
shows that the order of the element f(12) ∈ S2 is 2.

1.4.3. n = 3. In this case X = {1, 2, 3}. There are 6 bijective maps from X
to itself. We list these using the above method.

• Id = f(1)(2)(3) - The identity map.

• f(12)(3) - This map takes 1 7→ 2, 2 7→ 1, 3 7→ 3. Check it has order 2.

• f(13)(2) - This map takes 1 7→ 3, 3 7→ 1, 2 7→ 2. Check it has order 2.

• f(23)(1) - This map takes 2 7→ 3, 3 7→ 2, 1 7→ 1. Check it has order 2.

• f(123) - This map takes 1 7→ 2, 2 7→ 3, 3 7→ 1. Check it has order 3.

• f(132) - This map takes 1 7→ 3, 3 7→ 2, 2 7→ 1. Check it has order 3.

We leave it to the reader to check that f(12) ◦ f(13) = f(132).

1.4.4. n = 4. For n = 4 there are 24 elements in the group S4. The interested
reader may attempt to list all the elements. However, we list a few.

• Id = f(1)(2)(3)(4) - The identity map.

• f(12)(43) - This map takes 1 7→ 2, 2 7→ 1, 3 7→ 4, 4 7→ 3. Check it has
order 2.
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• f(14)(32) - This map takes 1 7→ 4, 4 7→ 1, 3 7→ 2, 2 7→ 3. Check it has
order 2.

• f(23)(1)(4) - This map takes 2 7→ 3, 3 7→ 2, 1 7→ 1, 4 7→ 4. Check it has
order 2.

• f(312)(4) - This map takes 1 7→ 2, 2 7→ 3, 3 7→ 1, 4 7→ 4. Check it has
order 3.

• f(1432) - This map takes 1 7→ 4, 4 7→ 3, 3 7→ 2, 2 7→ 1. Check it has
order 4.

It is an easy exercise to see that the size of Sn is n!.

1.4.5. Simplifying the notation. Now we make some simplifications in
the above notations.

(1) We will drop the f from now on. So, for example, when we write
(12)(3) ∈ S3, we mean the map f(12)(3) ∈ S3.

(2) We will drop those elements in the notation on which the map acts by
identity. So, for example, the element (12) ∈ S3 will mean the element
(12)(3) ∈ S3. In other words, if an element of X does not occur in
the representation of the map, then the map is supposed to fix this
element. For example, when we write (12)(34) ∈ S6, we mean the map
f(12)(34)(5)(6) ∈ S6.

We may rephrase some of the earlier observations using the above notation.
Earlier we saw that f(12) ◦ f(12) = Id, for f(12) ∈ S2. This will be written as
(12)(12) = e. Similarly, one of the checks that was left to the reader was
that for f(12), f(13) ∈ S3 satisfy f(12) ◦ f(13) = f(132). This will be written as
(12)(13) = (132). To make sure that the reader has understood the above
notations, we give a list of exercises along with their solutions. If the reader
can solve these problems correctly, then he/she has probably understood
correctly what is going on.

(1) Let (123), (132) ∈ S3. Show that (123)(132) = e. (e denotes the identity
element)

(2) Let (123), (134) ∈ S4. Show that (123)(134) = (1)(234) = (234) .
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(3) Let (12), (13) ∈ S4. Show that (12)(13) = (132).

(4) Let (12), (13) ∈ S17. Show that (12)(13) = (132).

(5) Let (1234) ∈ S4. Show that (1234)(1234)(1234)(1234) = e .

(6) Let (12), (3, 10) ∈ S107. Show that (1, 2)(3, 10) = (3, 10)(1, 2) .

(7) Let (12), (23), (14) ∈ S6. Show that (12)(23)(14) = (1423) .

(8) Let (12), (23), (14256) ∈ S6. Show that (12)(23)(14256) = (143)(256) .

(9) Let (12), (23), (14256) ∈ S6. Show that (12)(14256)(23) = (14)(2356) .

We hope that the above exercises familiarize the reader with the notation
described above.

Definition 1.4.6. (1) Let a1, a2, . . . , ar be distinct elements of {1, 2, . . . , n}.
Then the element (a1, a2, . . . , ar) ∈ Sn is called a cycle.

(2) Two cycles (a1, a2, . . . , ar) and (b1, b2, . . . , bs) in Sn are said to be disjoint
if the sets {a1, a2, . . . , ar} and {b1, b2, . . . , bs} are disjoint.

For example, in S17 the two cycles (2, 13, 16, 9) and (4, 1, 15, 3, 7, 16) are
disjoint. But neither of these cycles is disjoint with the cycle (42). We have
the following theorem.

Theorem 1.4.7. We have in the group Sn

(1) If α = (a1, a2, . . . , ar) and β = (b1, b2, . . . , bs) are two disjoint cycles then
αβ = βα.

(2) If α = (a1, a2, . . . , ar) is a cycle then

(a1, a2, . . . , ar) = (a1, a2)(a2, a3)(a3, a4) . . . (ar−1, ar) .

(3) If α = (a1, a2, . . . , ar) is a cycle then its inverse is (ar, ar−1, . . . , a3, a2, a1).

(4) If α = (a1, a2, . . . , ar) is a cycle then it has order r.

(5) Every element of Sn can be written as a product of disjoint cycles.
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(6) If an element is written as a product of disjoint cycles c1c2 . . . cl and
c′1c
′
2 . . . c

′
s in two ways, then l = s and the cycles ci are equal to the

cycles c′j up to permutation. In other words, every element is written as
a product of disjoint cycles in a “unique” way.

Proof. The first four assertions are easy and are left to the reader. The last
two assertions will be proved in chapter 4, see Theorem 4.5.1.

1.5 Exercises

1.5.1. Let β ∈ Sn be a cycle and write β = (a1, a2, . . . , ar). For any γ ∈ Sn
show that γβγ−1 = (γ(a1), γ(a2), . . . , γ(ar)).

1.5.2. Let Y ⊂ G be a subset. We say that Y generates G if every element
of G can be written as a product x1x2 . . . xr where each xi ∈ Y . Note that
we do not require that the xi’s be distinct. Show that

1. The transpositions (1, 2), (1, 3), . . . , (1, n) generate Sn.

2. The transpositions (1, 2), (2, 3) . . . , (n− 1, n) generate Sn.

3. The transposition (1, 2) and the cycle (1, 2, . . . , n) generate Sn.
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Chapter 2

Subgroups

2.1 Subgroups

From now on,

• instead of writing, “Let (G,m, e) be a group”, we will simply say that
G is a group,

• the group multiplication will be obvious from the context and it will
often be suppressed. For elements a, b ∈ G we will simply write ab
instead of a · b or m(a, b),

• when we take products of 3 or more elements, associativity allows us
not to worry about the order in which the multiplication is done. Thus,
for example, we will simply write abc for (ab)c = a(bc).

Lemma 2.1.1. Let H ⊂ G be a subset which satisfies the following two
conditions:

(1) If a, b ∈ H then a · b ∈ H.

(2) If a ∈ H then a−1 ∈ H.

Then H is a group.

Proof. The first condition defines the group multiplication in H. In fact, the
multiplication is the same as that in G. The second condition shows that
every element in H has an inverse in H. This shows proves that H is a
group.

17
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Definition 2.1.2. Let H ⊂ G be a subset which satisfies the following two
conditions:

(1) If a, b ∈ H then a · b ∈ H.

(2) If a ∈ H then a−1 ∈ H.

Then H is a called a subgroup of G. The word “subgroup” is justified by the
previous lemma.

Let us see some examples of groups and their subgroups.

Example 2.1.3. Every group has two obvious subgroups. The first is the
subgroup H = {e} which contains only the identity element. The second is
the subgroup H = G, that is, the entire group.

Example 2.1.4. Let X be a set and consider the group Aut(X) of bijective
maps from X to itself. Let Y ⊂ X be any subset. Let H ⊂ Aut(X) be the
set

Aut(X, Y ) = {φ ∈ Aut(X) |φ(Y ) = Y } .
Then it is easy to check that Aut(X, Y ) is a subgroup of Aut(X). For
example, if we take X = {1, 2, 3, 4}, consider the group S4 and we take
Y = {2, 3}, then

Aut(X, Y ) = {e, (23), (14), (23)(14)} .

Example 2.1.5. Let X be a set and consider the group Aut(X) of bijective
maps from X to itself. Let Y ⊂ X be any subset. Let H ⊂ Aut(X) be the
set

{φ ∈ Aut(X) |φ(y) = y for all y ∈ Y } .
Then it is easy to check that H is a subgroup of Aut(X). It is also easy
to check that H is a subgroup of Aut(X, Y ). For example, if we take X =
{1, 2, 3, 4}, consider the group S4 and we take Y = {2, 3}, then

H = {e, (14)} .

Example 2.1.6. The above examples are of the following nature. Let P be
a property of maps such that if f, g ∈ P then f ◦ g ∈ P . Then define HP to
be the collection of those f such that f satisfies P . We can modify this idea
a little to generate several subgroups of a group G. Let G be a group and
let S ⊂ G be a subset. Define
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• NG(S) := {g ∈ G | gxg−1 ∈ S for all x ∈ S }

• CG(S) := {g ∈ G | gx = xg for all x ∈ S }

One easily checks that both NG(S) and CG(S) are subgroups of G. The first
is called the normalizer of S and the second is called the centralizer of S.

Example 2.1.7. Let Z denote the group of integers. For any integer n ∈ Z
we define Hn := nZ. It is clear that Hn is a subgroup of Z.

Example 2.1.8. Let n > 0 be an integer and consider the set

µn := {e2πik/n ∈ C | 0 ≤ k < n} .

It is clear that µn is a subgroup of S1, see Example 1.3.11.

Example 2.1.9. Let H be a subgroup of G and let K be a subgroup of H.
Then it is clear that K is a subgroup of H. For example, mnZ ⊂ nZ ⊂ Z
are subgroups.

Example 2.1.10. Given a group G and an element g ∈ G, we can form a
subgroup using this element. We simply take the subgroup “generated” by
g, that is,

H〈g〉 := {gi := g · g · . . . · g︸ ︷︷ ︸
i

| i > 0} ∪ {e} ∪ {gi := g−1 · g−1 · . . . · g−1︸ ︷︷ ︸
−i

| i < 0} .

In other words, we take all possible integral powers of the element g. We
caution the reader that it is not necessary that all these powers have to be
distinct. For example, if we take the group G = µn and let g = e2πi/n, then
gi = gi+n for all i.

Proposition 2.1.11. Let G be a group and let g ∈ G. The cardinality of the
subgroup H〈g〉 is equal to the order of g.

Proof. First consider the case when g has infinite order. We claim that H〈g〉
has infinite order. If not, there are two integers i < j such that gi = gj.
Multiplying both sides with (g−1)j we get that

gj−i = e .
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However, this contradicts the assumption that g has infinite order. Thus,
H〈g〉 has infinite order.

Now consider the case when g has finite order, say m. We claim that H〈g〉
has exactly m distinct elements, which are

H〈g〉 = {gj | 0 ≤ j < m} .

First note that every element of H〈g〉 is of the above form. This is because
given any integer n, we may divide it by m and write n = km + j where
0 ≤ j < m. Then

gn = gkm+r = (gm)kgr = (e)kgr = gr .

Next we claim that the elements gj with 0 ≤ j < m are all distinct. If not,
suppose there are integers 0 ≤ j1 < j2 < m such that gj1 = gj2 . As before
we get that gj2−j1 = e.

2.2 Cyclic and Abelian groups

In some cases it may happen that H〈g〉 = G (see Example 2.1.10). For
example, the group (Z,+, 0) is generated by 1. It is also generated by the
element −1. We note this as a definition.

Definition 2.2.1. Let G be a group. If there is an element g ∈ G such that
H〈g〉 = G then we say that G is cyclic and generated by g.

Definition 2.2.2. Let G be a group. If ab = ba for all a, b ∈ G, then we say
that G is abelian.

Lemma 2.2.3. The following assertions are obvious:

(1) A cyclic group is abelian.

(2) Let G be an abelian group. Then for every subset S we have CG(S) = G.

(3) G is abelian iff for every x ∈ G we have CG(x) = G.

(4) G is abelian iff for every x ∈ G we have NG(x) = G.

(5) For a group G and g ∈ G the subgroup H〈g〉 is cyclic.

Proof. Obvious and left as an exercise to the reader.
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2.3 Equivalence relations and Cosets

Let H ⊂ G be a subgroup. Let a, b ∈ G be two elements. We say that a ∼H b
(a is equivalent to b) if ab−1 ∈ H. Let us observe the following properties.

1. a ∼H a for all a ∈ G. This is clear since e ∈ H.

2. If a ∼H b then b ∼H a. If a ∼H b then we have ab−1 ∈ H. Since H is
a group, it follows that (ab−1)−1 ∈ H. But it is clear that (ab−1)−1 =
ba−1, this can be seen by just multiplying ab−1 with ba−1. From this it
follows that b ∼H a.

3. If a ∼H b and b ∼H c for a, b, c ∈ G then a ∼H c. To see this note that
ab−1 and bc−1 are in H. Since H is a subgroup it follows that their
product, that is, ac−1 ∈ H. By definition this implies that a ∼H c.

Using ∼H we can break the group G into a union of disjoint subsets. This is
an instance of a very general construction which we now describe.

Let X be a non-empty set and suppose we are given a subset R ⊂ X×X
such it has the following three properties.

1. (x, x) ∈ R for all x ∈ X.

2. If (x, x′) ∈ R then (x′, x) ∈ R.

3. If (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R.

The subset R is called an equivalence relation. Often it is denoted by a
symbol ∼ and instead of writing (x, y) ∈ R one writes x ∼ y. Using R we
may divide X into a disjoint union as follows. For any x ∈ X define the
equivalence class of x as follows

EC(x) := {y ∈ X | (x, y) ∈ R} .

The main observation here is the following lemma.

Lemma 2.3.1. For x, x′ ∈ X, the sets EC(x) and EC(x′) are either equal
or they are disjoint.

Proof. Suppose there is y ∈ EC(x)∩EC(x′). Then this shows that (x, y) ∈ R
and (x′, y) ∈ R. It follows that (y, x′) ∈ R. Since (x, y) ∈ R and (y, x′) ∈ R
we get (x, x′) ∈ R. If y ∈ EC(x′) then (x, x′) ∈ R and (x′, y) ∈ R implies
that (x, y) ∈ R, that is, y ∈ EC(x). Similarly we have (x′, x) ∈ R and so we
get y ∈ EC(x) implies y ∈ EC(x′). This proves that EC(x) = EC(x′).
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It is clear that every equivalence class EC(x) is non-empty since at least
x ∈ EC(x). From each set of the type EC(x) choose one member, and call
the collection of all these elements Λ ⊂ X. Then it is clear that

X =
⊔
x∈Λ

EC(x) .

Now we return to the situation of a group G and a subgroup H. Define
R ⊂ G × G to consist of elements of the type (g, hg) for all g ∈ G and
h ∈ H. Then it is obvious that (x, y) ∈ R iff xy−1 ∈ H. Thus, we recover
the equivalence relation ∼H .

Lemma 2.3.2. Let H ⊂ G be groups and let ∼H be as above. For any g ∈ G,
the equivalence class EC(g) is precisely the set Hg := {hg | h ∈ H}.

Proof. By the definition of EC(g) we have x ∈ EC(g) iff x ∼H g iff xg−1 ∈ H.
Thus, if x ∈ EC(g) then there is an h ∈ H such that xg−1 = h and so we get
x = hg. This shows that EC(g) ⊂ Hg. Conversely, it is clear that hg ∼H g
since hgg−1 = h ∈ H. This shows that Hg ⊂ EC(g). Thus, EC(g) = Hg.

The equivalence classes above, of the form Hg, are called right cosets.

Remark 2.3.3. Instead of defining the equivalence x ∼H y iff xy−1 ∈ H we
could have defined it as x ∼H y iff x−1y ∈ H. The reader may check that
this defines an equivalence relation and that the equivalence classes look like
gH. These are called left cosets.

Let us see some examples of coset decompositions. Notice that if we have
two cosets Ha and Hb then to check that they are disjoint, it is enough to
check that ab−1 /∈ H.

Example 2.3.4. Let G = S3 and let H = {e, (12)} (the subgroup generated
by (12)). Then we claim that H, H(123) and H(132) are disjoint cosets.
This is clear since (123) /∈ H and (132)(123)−1 = (123).

S3 = H tH(123) tH(132) = {e, (12)} .

Since both sides have size 6, clearly the above is an equality.

Example 2.3.5. Let G = S3 and let H = {e, (123), (132)} (the subgroup
generated by (123)). Then

S3 = H tH(12) .
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Since both sides have size 6, clearly the above is an equality.

Example 2.3.6. Let G = Z and let H = nZ. Then

Z =
n−1⊔
i=0

nZ + i .

This is the same as saying that for any integer k we can write it uniquely as
k = dn+ i where 0 ≤ i < n. Unlike the above two examples, where we used
a cardinality argument, here we have to show explicitly that every member
of the LHS is contained in the RHS.

Consider the map Rg : G → G defined as Rg(x) := xg. This is “trans-
lation” on the right by g. Notice that this is a bijective map since it has
an inverse Rg−1 . It is easily checked that Rg ◦ Rg−1 = Rg−1 ◦ Rg = Id. In
particular, for any subset S ⊂ G the image Rg(S) has the same cardinality
as S. We are now ready to prove Langrange’s Theorem.

Theorem 2.3.7 (Lagrange). Let H ⊂ G be finite groups. Then #H divides
#G. The number of cosets of H in G is precisely #G

#H
.

Proof. Using the equivalence relation ∼H we may decompose G into equiv-
alence classes. From each equivalence class choose an element and form a
subset Λ ⊂ G. Each equivalence class is of the form Hg. Thus,

G =
⊔
g∈Λ

Hg .

Since Hg = Rg(H) it follows that all the equivalence classes have the same
cardinality, which is the cardinality of H. Thus, #H divides #G. The second
assertion is clear from the disjoint union above.

Corollary 2.3.8. Let G be a finite group. Then the order of g divides #G.

Proof. Take H = H〈g〉. Now use Proposition 2.1.11 and the above Theorem.

Corollary 2.3.9. Let G be a group whose cardinality is a prime p. Then its
only subgroups are {e} and G. Thus, if g 6= e is any element then G = H〈g〉.

Proof. LetH be a subgroup ofG. Since #H divides p, it follows that #H = 1
or #H = p. It follows that H = {e} or H = G. The second assertion is now
clear.
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Example 2.3.10. As a converse to the above we may ask the following.
Suppose d divides #G then does there exist an element of order d. The
answer to this is no. For example, let G = {±1} × {±1}. Here the group
multiplication is coordinate wise, that is, (a, b) · (a′, b′) := (aa′, bb′). Then 4
divides #G, but G has no elements of order 4. If, however, d is prime, then
it is a theorem of Cauchy that there exists an element of order d. We will
see a proof of this result later. Another interesting result in this direction
which we will see later is Sylow’s Theorem. Let d be the highest power of a
prime which divides #G. Then G has a subgroup of order d. In the example
we just saw, G was a group of order 4 and it had no element of order 4.
However, it does have a subgroup of order 4, which is the whole group itself!

In fact, given any two groups G1 and G2 one easily checks that we can
make H := G1×G2 into a group in this way. Moreover, G1×{e} and {e}×G2

are subgroups of H.

Example 2.3.11. We may use Lagrange’s Theorem to easily list all subgroups
of S3. Since the size of S3 is 6, every proper subgroup has size 1,2 or 3. If
the size of the subgroup is 1, then clearly it is the trivial subgroup {e}. By
Corollary 2.3.9 it follows that every non-trivial and proper subgroup is cyclic.
Thus, every subgroup of S3 is cyclic. These are

(1) {e, (12)}

(2) {e, (13)}

(3) {e, (23)}

(4) {e, (123), (132)}

2.4 Exercises

2.4.1. Show that every subgroup of Z is cyclic, that is, there is an element
which generates it. (HINT: Choose the smallest positive element, if it exists.)
How many generators can there be?

2.4.2. Let G be a group and let a ∈ G be an element of order n. Let
n =

∏l
i=1 p

ri
i be the prime factorization of n. Show that G contains an

element of order prii .
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2.4.3. Let G be a group and let a and b be elements of order n and m. If
gcd(n,m) = 1 then show that Ha ∩ Hb = {e}, where Hx denotes the cyclic
subgroup generated by x. (HINT: Use Lagrange’s theorem)

2.4.4. Let G be an abelian group and let a and b be elements of order n and
m. If gcd(n,m) = 1 then show that order of ab is mn.

2.4.5. Let G be an abelian group and let a and b be elements of order n and
m. Combine the previous exercises to show that there is an element whose
order is lcm(n,m).

2.4.6. Let H ⊂ G be a subgroup and let h ∈ H, show that hH = H = Hh.
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Chapter 3

Homomorphisms

3.1 Homomorphisms and Kernels

Definition 3.1.1. Let G and H be groups. A homomorphism of groups f :
G→ H is a map of sets such that for all a, b ∈ G we have f(ab) = f(a)f(b).

This definition means that the map f “respects” the group operation in
the two groups. The product ab is the group multiplication in G, while the
product f(a)f(b) is the group multiplication in H.

Example 3.1.2. A simple example of a group homomorphism is the inclusion
of a subgroup into a group. If i : H ⊂ G is the inclusion of a subgroup, then
obviously i is a group homomorphism by virtue of being a subgroup.

Example 3.1.3. Consider the group homomorphism f : Z → S1 defined
as j 7→ e2πij/m. It is clear that f(a + b) = f(a)f(b) and so this is a group
homomorphism. Notice that the subgroup mZ is sent to 1, which is the
identity element of S1. The image of this group homomorphism is the group
µm, see Example 2.1.8.

Definition 3.1.4 (Kernel). Let f : G→ H be a group homomorphism. Then
the set f−1(e) := {g ∈ G | f(g) = e} is called the kernel of f .

Lemma 3.1.5. Let f : G→ H be a group homomorphism. Then

(1) f(e) = e.

(2) The kernel is a subgroup of G, let us denote it by K.

27
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(3) For each g ∈ G, there is an equality of cosets gK = Kg (see Remark
2.3.3).

Proof. To prove (1) note that f(ee) = f(e) since ee = e in G. Since f
is a group homomorphism we have f(ee) = f(e)f(e). Thus, we get that
f(e) = f(e)f(e). Multiplying with f(e)−1 on both sides we get that f(e) = e.

Let a, b ∈ K. Then f(ab) = f(a)f(b) = e · e = e. Also f(e) = f(a−1a) =
f(a−1)f(a). Since f(e) = e and f(a) = e since a ∈ K we get f(a−1) = e.
This shows that a−1 ∈ K. Thus, K is closed under multiplication and taking
inverse. This proves that K is a subgroup.

Let k ∈ K and consider the element gkg−1. We claim that this is in K.
Applying f we get

f(gkg−1) = f(g)f(k)f(g−1) = f(g)f(g−1) = f(gg−1) = e .

Thus, gkg−1 = k1 for some k1 ∈ K. This shows that gk = k1g ∈ Kg, that is,
gK ⊂ Kg. Replacing g by g−1 we see that g−1K ⊂ Kg−1. Multiplying both
sides with g on the right we see that g−1Kg ⊂ K. Now multiplying both sides
with g on the left we see that Kg ⊂ gK. This proves that Kg = gK.

The above Lemma shows that subgroups which arise as kernels of group
homomorphisms enjoy the special property that, for all g ∈ G, we have
gK = Kg. This is clearly not the case in general. For example, let us take
G = S3, let H = {e, (12)} and take g = (123). Then

gH = {(123), (13)} Hg = {(123), (23)} .

We may ask if every subgroup H which has this special property, for all
g ∈ G there is an equality of cosets gH = Hg, arises as the kernel of a group
homomorphism. We will prove this in two ways. First we give a direct proof,
only to emphasize the ideas and definitions we have seen so far.

Let X be any set. Recall that the power set of X, denoted P(X), is the
set whose elements correspond to subsets of X. Recall the map Lx : G→ G
which is left translation by x, given by Lx(g) = xg. It is bijective because it

has an inverse Lx−1 . Obviously the map Lx gives rise to a map L̃x : P(G)→
P(G) given as follows. For any subset S ⊂ G define L̃x(S) := Lx(S). For
a subgroup H let C(H) denote the subset of P(G) containing all subsets of
the type Hg.

In the group S3 and taking the subgroup H = {e, (12)} we have

(123)H(23) = {(123), (13)}(23) = {(12), (132)} .
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Now assume {(12), (132)} is a coset of H of the type Ha for some a ∈ S3. For
every element g′ ∈ Hg we have Hg′ = Hg, since the cosets are either equal
or disjoint. Thus, we get that {(12), (132)} = H(12), but this is clearly not
the case, as is easily checked by an explicit computation. This shows that
in the group S3 the map L̃(123) does not map C(H) to itself. This happens
because H does not satisfy the property that for all x ∈ S3, xH = Hx.

Proposition 3.1.6. Let H ⊂ G be a subgroup such that for all g ∈ G we
have gH = Hg. Then there is a group homomorphism f : G→ G′ such that
the kernel of f is precisely H.

Proof. Let us check that Lx(Hg) = xHg = Hxg. Start with an element
xhg ∈ xHg. since xH = Hx we get that xh = h1x for some h1 ∈ H. This
shows that xhg = h1xg ∈ Hxg. This proves that xHg ⊂ Hxg. Similarly, the
other inclusion is easily proved and so we get Lx(Hg) = Hxg. Let C ⊂ P(G)
denote the collection of cosets Hg of G. In other words this means that the
map L̃x maps C to itself, since L̃x(Hg) = Lx(Hg) = xHg = Hxg. This is
described well by saying that the following diagram commutes.

C L̃x //

��

C

��
P(G)

L̃x // P(G)

This proves that we get a map of sets

Φ : G→ Aut(C)

defined as
x 7→ L̃x

Let us check that Φ is a group homomorphism. We have Φ(xy) = L̃xy. To

show that L̃xy = L̃x ◦ L̃y it suffices to check this on elements of C.

L̃xy(Hg) = Lxy(Hg)

= xyHg

= xHyg

= L̃x(Hyg)

= L̃x(L̃y(Hg))
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This proves that L̃xy = L̃x ◦ L̃y, that is, Φ(xy) = Φ(x) ◦ Φ(y). Thus, Φ is a
group homomorphism.

Clearly, H is contained in the kernel of Φ since Φ(h) = L̃h and L̃h(Hg) =
hHg = Hg since hH = H. Conversely, suppose x is in the kernel of Φ then
we get that L̃x acts by the identity on each coset. Applying this on the coset
H we see that L̃x(H) = Hx = H, that is, x ∈ H.

3.2 Normal subgroups and Quotients

Definition 3.2.1. Let G be a group and let K be a subgroup such that gK =
Kg for all g ∈ G. Then we say that K is a normal subgroup of G.

We remark that the condition gK = Kg is equivalent to the condition
that gKg−1 = K for all g ∈ G.

For a normal subgroup K we will define a multiplication map on the set
of left cosets of K and check that this makes the set of left cosets into a
group. Recall that left cosets of K are subsets of G of the form gK, and that
G breaks up into a disjoint union of these cosets. Let C(K) denote the set of
left cosets of K. Our aim is to define

m : C(K)× C(K)→ C(K) .

Let C1 and C2 be two left cosets. Choose xi ∈ Ci and define

m(C1, C2) = x1x2K .

We claim that this definition does not depend on the choice of the xi. In
other words, suppose yi ∈ Ci, then y1y2K = x1x2K. Let us check this. Since
x1 ∈ C1 it follows that C1 = x1K. Since y1 ∈ C1 it follows that there is
k1 ∈ K such that y1 = x1k1. Similarly, there is k2 ∈ K such that y2 = x2k2.
Then

y1y2K = x1k1x2k2K

= x1k1x2K

= x1x2(x−1
2 k1x2)K

= x1x2K

In the 4th equality above we have used the fact that K being a normal
subgroup x−1

2 k1x2 ∈ K and so (x−1
2 k1x2)K = K. This proves the claim.

Let us check that this defines a group structure on C(K).
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(1) To check associativity we need to show that for three cosets C1 = g1K,
C2 = g2K, C3 = g3K we have

m(C1,m(C2, C3)) = m(m(C1, C2), C3) .

Applying the definition of m, this is clear using the associativity property
of the group.

(2) We claim that the coset K acts as the identity. We need to check that
m(gK,K) = gK. since g ∈ gK and e ∈ K, it follows that m(gK,K) =
gK. Similarly, m(K, gK) = gK. Thus, K acts like the identity.

(3) We claim that given a coset gK, the inverse is the coset g−1K. To see
this we need to check that m(gK, g−1K) = K = m(g−1K, gK). Again
this is clear from the definition.

Thus, given a normal subgroup K, the above defines a group structure
on the set C(K). This group is denoted as G/K. Similarly, we could have
defined a group structure on the set of right cosets of a normal subgroup.
For right cosets the resulting group is denoted as K\G.

Theorem 3.2.2. Let K be a normal subgroup of a group G. Then there is a
group structure on the set of left cosets of K. The resulting group is denoted
G/K. There is a natural group homomorphism G→ G/K given by g 7→ gK.
The kernel of this group homomorphism is precisely K.

Proof. It only remains to check that the map G → G/K given by g 7→ gK
is a group homomorphism. Let us denote this map by Ψ. Then we need to
check that

Ψ(gh) = Ψ(g)Ψ(h) .

The element Ψ(gh) is the coset ghK. Now let us look at the RHS. The
coset Ψ(g) is gK and the coset Ψ(h) is hK. We may choose the coset rep-
resentatives g ∈ gK and h ∈ hK and then it is clear from the definition
of multiplication in G/K that (gK)(hK) = ghK. Thus, the above equality
holds.

The kernel of Ψ is precisely those g ∈ G such that Ψ(g) is the identity
element of the group G/K. But we know that the identity element is the
coset K. Thus, Ker(Ψ) = {g ∈ G |gK = K}, that is, Ker(Ψ) = K.
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Remark 3.2.3. Before we proceed we make the following important remark.
The most important property of the above construction is that the “natural”
map G → G/K, given by g 7→ gK is a group homomorphism. If we only
wanted to make G/K into a group, then we could have done something
extremely stupid, as follows. Let S be any set and H be a group such
that #S = #H. Choose a bijective map Φ : S → H and transfer the
group structure from H to S using Φ. By this we mean define s1 · s2 :=
Φ−1(Φ(s1) · Φ(s2)). Then this makes S into a group, because H is a group.
In fact, S and H are the “same” groups. They are “isomorphic” in the
following sense.

Definition 3.2.4. Let f : G → H be a group homomorphism. We say that
f is an isomorphism if it is bijective.

We have the following obvious proposition.

Proposition 3.2.5. Let f : G→ H be a group homomorphism. Then f(G)
is a subgroup of H. If the kernel of f is {e} then f : G → f(G) is an
isomorphism. In this case, G is identified with the subgroup f(G) ⊂ H.

Proof. Obvious and left as an exercise for the reader.

3.3 Fermat’s Little Theorem

If G is an abelian group, see section 2.2, then clearly every subgroup is nor-
mal and so for every subgroup K we have the group G/K. When we take
G = Z and let K = nZ then we get the group Z/nZ. This is the group of
“remainders” modulo n. This group is clearly cyclic since it is generated by
1. In fact, it is trivial to prove that if G is a cyclic group then every quotient
of G is cyclic. We leave this as an exercise to the reader.

Using the “additive” group Z/nZ we may construct another group which
is “multiplicative”. Consider the set

(Z/nZ)× := {m̄ | gcd(m,n) = 1} .

The above notation needs some explanation. Since there is a surjection
Z→ Z/nZ by m̄ we mean the image of m. Notice that m̄1 = m̄2 iff n divides
m1−m2, that is, iff m2 = m1 + kn. Thus, gcd(m1, n) = 1 iff gcd(m2, n) = 1.



3.3. Fermat’s Little Theorem 33

Therefore, the definition of (Z/nZ)× makes sense. Given an element in Z/nZ
we may choose any lift in Z and check if the lift is coprime to n. It is clear
that if m1 and m2 are coprime to n, then m1m2 is also coprime to n. Thus,
the set (Z/nZ)× possesses a multiplication, which is simply given by

(m̄1, m̄2) 7→ m1m2 .

It is trivial to check that this is associative and that 1̄ is the identity element.
The only non-trivial thing to check is that every element has an inverse. This
is same as showing that given any m̄ there is a l̄ such that ml = 1̄. This in
turn is equivalent to saying that if m and n are coprime, then there is an
integer l such that n divides ml − 1. This follows from the following well
known proposition.

Proposition 3.3.1. Let a, b ∈ Z \ 0 and let d := gcd(a, b). Then there are
integers k, l such that ak + bl = d.

Proof. Let e be the smallest positive integer in the set

S := {ak + bl | k, l ∈ Z} .

We claim that e = d. First note that d divides every element of the set S
since d divides a and b. Thus, d divides e. Next we claim that e divides every
element of the set S. Let m ∈ S and assume that e does not divide m. Write

m = te+ r t ∈ Z , 0 < r < e .

Since m, e ∈ S it follows that m − te ∈ S. This shows that r ∈ S, contra-
dicting the minimality of e. This proves that e divides m. In particular, we
may take m = a, b which shows that e divides a and b. Since d is the gcd, it
follows that e divides d. Thus, e = d.

Now we return to our example. Let a = n and b = m and apply the
above proposition. Then we get that there are integers k and l such that
nk+ml = 1. This proves that ml = 1̄. This proves that (Z/nZ)× is a group.
The order of this group is often denoted by ϕ(n) and known as the Euler
totient function. Applying Lagrange’s Theorem to this group we get

Proposition 3.3.2. Let n > 1 be an integer. Then for every a ∈ Z which is
coprime to n, we have that n divides aϕ(n) − 1.
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Proof. Consider the image ā of a in Z/nZ. By Corollary 2.3.8, it follows that
āϕ(n) = 1̄. This is same as saying that n divides aϕ(n) − 1.

Corollary 3.3.3 (Fermat’s Little Theorem). Let p be a prime and suppose
p does not divide a. Then p divides ap−1 − 1.

Proof. We only need to show that (Z/pZ)× has cardinality p− 1. But this is
clear since Z/pZ = {0̄, 1̄, . . . , p− 1} and all classes except 0 are coprime to
p.

3.4 Universal property of quotients

Let G be a group and let K be a normal subgroup. Let π : G→ G/K denote
the natural map. Consider the following two sets.

S1 := {Homomorphisms φ̄ : G/K → H} ,

S2 := {Homomorphisms φ : G→ H such that K ⊂ Ker(φ)} .

There is an obvious map from Φ : S1 → S2, namely,

(3.4.1) Φ(φ̄) := φ̄ ◦ π .

Theorem 3.4.2. Let G and H be groups. Then the map Φ is a bijection.

Proof. Let us first check that Φ is injective. This is clear using the following
general fact about maps of sets. Suppose f, g : Y → Z are two maps. Let
h : X → Y be a surjective map. If f ◦ h = g ◦ h then f = g. We leave the
proof of this simple fact to the reader. From this simple fact the injectivity
of Φ follows immediately since π is clearly a surjection.

Now let us prove that Φ is a surjection. Let φ : G → H be a group
homomorphism such that K ⊂ Ker(φ). We need to show that there is a
group homomorphism φ̄ : G/K → H such that φ = φ̄ ◦ π. The definition
of φ̄ is forced onto us. Suppose a φ̄ existed, then applying φ = φ̄ ◦ π to
g ∈ G we get φ(g) = φ̄(gK). This shows that for a coset C, we may define
φ̄(C) := φ(g), for some element g ∈ C. Let us check that this is independent
of the choice of coset representative. Suppose g′ ∈ C is another element,
then g′ = gk for some k ∈ K. Then

φ(g′) = φ(gk) = φ(g)φ(k) = φ(g) .
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This defines a map φ̄ : G/K → H. It remains to check that φ̄ is a group
homomorphism and that φ = φ̄ ◦ π. The second is obvious. For the first, let
g1K and g2K be two cosets. Then their product in G/K is the coset g1g2K.
By definition we have

φ̄(g1g2K) = φ(g1g2) = φ(g1)φ(g2) = φ̄(g1K)φ̄(g2K) .

This shows that φ̄ is a group homomorphism. The proof of the Theorem is
now complete.

Example 3.4.3. Let us revisit example 3.1.3. There we considered the group
homomorphism f : Z→ µm (see example 2.1.8) given by f(n) = e2πin/m. The
kernel of this group homomorphism is precisely mZ. Thus, using the above
theorem we get that this factors as

Z f //

π ""E
EE

EE
EE

EE
µm

Z/mZ
f̄

;;xxxxxxxx

Notice that the kernel of f̄ is the trivial group. This is because if f̄(n̄) = 1
then e2πin/m = 1 and so n is a multiple of m. Thus, n ∈ mZ and so n̄ is the
trivial element. Applying Proposition 3.2.5 we see that f̄ is an isomorphism
onto its image. However, since the map f̄ is an inclusion, and both Z/mZ
and µm have the same cardinality, it follows that this map is a surjection.
Thus, we get that f̄ is actually an isomorphism of groups.

3.5 Exercises

3.5.1. Let G be a group and suppose there are two group homomorphisms
Φi : Z → G for i = 1, 2. If Φ1(1) = Φ2(1), show that these two are equal.
In other words, a group homomorphism from Z to a group is completely
determined by the image of 1.

3.5.2. Given an element a ∈ G show that there is a unique group homo-
morphism Φ : Z→ G such that Φ(1) = a.

3.5.3. Let a ∈ G be an element of order n. Show that the (cyclic) subgroup
generated by a is isomorphic to Z/nZ.
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3.5.4. Use the previous exercise to show that the order of ai is n
gcd(n,i)

. Note

that this is the same as computing the order of i in Z/nZ.

3.5.5. Suppose H is a cyclic group and f : H → G is a surjective group
homomorphism. Show that G is a cyclic group.

3.5.6. Let G be a cyclic group, show that there is a surjective group homo-
morphism Φ : Z→ G.

3.5.7. Let G and H be arbitrary groups and let f : G → H be a group
homomorphism. Let H1 ⊂ H be a subgroup. Show that f−1(H1) := {g ∈
G | f(g) ∈ H1} is a subgroup of G.

3.5.8. Combine the previous exercises to show that every subgroup of a cyclic
group is cyclic.

3.5.9. Show that for every d|n, there is a unique subgroup of Z/nZ of order
d. In view of the isomorphism between Z/nZ and any cyclic group of order
n, this shows that given any cyclic group of order n and d|n, there is a unique
subgroup of order n.

3.5.10. Show that a subgroup N ⊂ G is normal if and only if NgNh = Ngh
for all g, h ∈ G.

3.5.11. Show that there is a bijection of sets

{Group homomorphisms φ : Z/nZ→ G} ↔ {elements a ∈ G such that an = e}

3.5.12. Let N ⊂ G be a normal subgroup. Suppose H is a subgroup such
that N ⊂ H, then show that N is normal in H, and so there is a group H/N .
Show that there is a “natural” group homomorphism H/N → G/N which is
an inclusion. Thus, H/N is a subgroup of G/N in a natural way.

3.5.13. In view of the previous exercise, show that there is a bijection of sets

{Subgroups H such that N ⊂ H ⊂ G} ↔ {Subgroups of G/N}

Now suppose that H is also normal in G, then show that H/N is normal in
G/N and there is a natural isomorphism G/H ∼= (G/N)/(H/N).

3.5.14. From among the finite groups we have seen so far, give an example of
a group G, a subgroup H and elements x, y ∈ G for which #(HxHy) > #H.

3.5.15. Let H be a subgroup of G. Define the normalizer of H to be N(H) :=
{g ∈ G | gHg−1 = H}. Show that N(H) is a subgroup which contains H.
Show that N(H) is the largest subgroup of G containing H in which H is
normal, that is, if K is any subgroup of G containing H and if H is normal
in K, then K ⊂ N(H).
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3.5.16. Suppose A is an abelian group and there is a surjective homomor-
phism f : A → Z. Let K denote the kernel of f . Show that there is a map
K × Z→ A which is an isomorphism of groups and such that the diagram

K × Z //

π2
##G

GG
GG

GG
GG

A

f
��
Z

Here π2 is the projection onto the second coordinate.
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Chapter 4

Group actions

4.1 Action of Aut(X) on X

Let X be a non-empty set. The first example of a group that we saw was
Aut(X). This group comes with the following obvious map

Θ : Aut(X)×X → X Θ(φ, x) := φ(x) .

This map has the following properties, which are easily checked

(1) Θ(Id, x) = x for all x ∈ X

(2) Θ(φ,Θ(ψ, x)) = Θ(φ ◦ ψ, x)

A group action on a setX is an abstraction of the above properties. Often one
deduces several results about the structure of a group by making a group act
on some set, as we shall see in this chapter. But first let us see the definition
of a group action.

Definition 4.1.1. Let G be a group and let X be a set. We say that G acts
on X if there is a map Φ : G×X → X satisfying the following two properties

(1) Φ(Id, x) = x for all x ∈ X

(2) Φ(φ,Φ(ψ, x)) = Φ(φ ◦ ψ, x)

Let us see a few easy examples of group actions. Take X = G and define
Φ : G×X → X by

39



40 Chapter 4. Group actions

(a) Φ(g, x) = gx

(b) Φ(g, x) = xg−1

(c) Φ(g, x) = gxg−1

One easily checks that these satisfy the assumptions of a group action. Often
instead of writing Φ(g, x) we will simple write g · x or gx. Then the defining
conditions of a group action may be written as ex = x and g(hx) = (gh)x.

4.2 Orbits

Let G act on a set X. Then we can put an equivalence relation (see section
2.3) on the set X. Define x1 ∼ x2 if there is a g ∈ G such that gx1 = x2. Let
us check that this satisfies the hypothesis of a group action. Clearly, since
ex = x, it follows that x ∼ x. Secondly, if x ∼ y then there is g ∈ G such
that gx = y. Applying g−1 to both sides we get x = g−1y which shows that
y ∼ x. Finally, if x ∼ y and y ∼ z then there exist g, h ∈ G such that gx = y
and hy = z. Applying h on gx = y we get h(gx) = (hg)x = hy = z. This
proves that x ∼ z.

The orbit of an element x ∈ X, under this action of G, is the equivalence
class of x under the above equivalence relation. We will denote it by OrbG(x)
or simply Orb(x).

In view of Lemma 2.3.1 and the discussion following this lemma, it follows
that X breaks into a disjoint union of orbits. Thus, there is Λ ⊂ X such that

X =
⊔
x∈Λ

Orb(xi) .

Let us see some examples.

Example 4.2.1. Let X = {1, 2, . . . , n} and let Sn = Aut(X) act on X as we
saw above. Then there is only one orbit. For example, if we apply (1, j) on
1, then we get j. This proves that every j ∈ X is in the orbit of 1.

Consider the cyclic subgroup generated by (123). That is, let H =
{e, (123), (132)}. Then we may restrict the action of Sn on X to H. By
this we simply mean that the map Φ : Sn × X → X can be restricted to

H × X ⊂ Sn × X
Φ−→ X, and the restricted map continues to satisfy the

defining conditions of a group action. This is obvious. Let us compute the
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orbits in X under the action of H. By applying the powers of (123) on 1 we
easily see that the orbit of 1 is {1, 2, 3}. If j /∈ {1, 2, 3} then it is clear that
every element of H fixes j. Thus, the orbit of j /∈ {1, 2, 3} is {j}. Thus, the
orbit decomposition of X under the action of H is

X = {1, 2, 3} t
n⊔
j=4

{j}

Example 4.2.2. Let G be a group and let H be a subgroup. Consider the set
of cosets G/H. Then G acts on G/H as follows. Define Φ(g, xH) = gxH. It
is easily checked that this defines a group action. It is clear in this case as
well that there is only one orbit. For example, we can take the coset H, and
every other coset gH is given by Φ(g,H).

Definition 4.2.3. Let G act on a set X. We say the action is transitive if
there is only one orbit.

Example 4.2.4. Let G act on a set X and let Orb(x) be the orbit of an ele-
ment x ∈ X. Notice that under the map Φ : G×X → X, the set G×Orb(x)
gets mapped to Orb(x). This shows that G acts on Orb(x) and this action
has only one orbit. Thus, the action of G on Orb(x) is transitive. Similarly,
some of the earlier examples of actions were also transitive.

Example 4.2.5. Let G act on itself by conjugation. That is, take X = G and
define Φ(g, x) = gxg−1. If G is an abelian group then every orbit contains
only one element, that is, Orb(x) = {x}. In fact, it is clear that G is abelian
iff for this action each orbit contains only one element.

For an arbitrary group G, not necessarily abelian, the orbit of the identity
Orb(e) = {e}.

Example 4.2.6. Let Y := {X ⊂ G | #X = pl}. For X ∈ Y define
g ·X := {gx |x ∈ X}. One checks easily that this defines an action on Y .

4.3 Stabilizers

Definition 4.3.1. Let G act on a set X. The stabilizer of an element x ∈ X
is the set Stab(x) := {g ∈ G | gx = x}
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It is trivial to check that the stabilizer is a subgroup of G. In fact, as we
will see in the proof of the next result, the orbit of x is identified with the
set G/Stab(x) in a natural way.

Proposition 4.3.2. Let G be a finite group acting on X. For every x ∈ X
we have #Orb(x) ·#Stab(x) = #G.

Proof. Define a map f : G→ Orb(x) by g 7→ gx. By the definition of orbit,
this map is surjective. We claim the coset gStab(x) maps to gx. This is clear
since if h ∈ Stab(x) then ghx = gx. Conversely, if gx = tx then we get that
g−1tx = x, that is, g−1t ∈ Stab(x). This shows that gx = tx iff t ∈ gStab(x).
This proves that f−1(gx) = gStab(x) for all g ∈ G. For any map of finite
sets f : X → Y we have #X =

∑
y∈Y #f−1(y). Applying this to f , taking

X = G and Y = Orb(x) we get that

#G =
∑

y∈Orb(x)

#f−1(y) .

Since the #f−1(y) = #Stab(x) for every y we get that

#G = #Orb(x) ·#Stab(x) .

This completes the proof of the proposition.

Let us see an application of Proposition 4.3.2.

Definition 4.3.3. Let G be a group. The center of G is the set of elements
which commute with every other element, that is, Z(G) := {x ∈ G | gx =
xg ∀g ∈ G}.

It is clear that Z(G) is a subgroup of G.

Theorem 4.3.4. Let G be a p-group, that is, #G is a power of p, say pl.
Then Z(G) is a non-trivial subgroup.

Proof. To see this we make G act on itself by conjugation and analyse the
orbits. Recall that the conjugation action is defined as follows. For g, x ∈ G
define g · x := gxg−1. Clearly, for every x ∈ G, the orbit of x contains x. It
is clear that Orb(x) = {x} iff gxg−1 = x for all g ∈ G, that is, iff gx = xg
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for all g ∈ G, that is, iff x ∈ Z(G). Thus, decomposing the set X = G into
disjoint orbits, we get

G =
⊔

x∈Z(G)

Orb(x) t
⊔

x/∈Z(G)

Orb(x) .

Suppose x /∈ Z(G). Then since 1 < #Orb(x) =
#G

#Stab(x)
and #G = pl, we

see that #Orb(x) is a power of p and in particular is a multiple of p. Thus,
computing cardinality we get that

pl = #G = #Z(G) + p(∗) .

If Z(G) = {e} then we get a contradiction since p does not divide the RHS.
This proves that Z(G) is non-trivial.

As an application of the above result let us show that every group of order
p2 is abelian. A group of order p is necessarily cyclic. In fact, any element
x 6= e will generate the group by Lagrange’s Theorem 2.3.7.

Theorem 4.3.5. Let G be a group or order p2. Then G is abelian.

Proof. The preceding theorem shows that Z(G) is non-trivial. If Z(G) = G
then there is nothing to prove. Let us assume that Z(G) $ G. Then it is
forced to be a group of cardinality p. Clearly, Z(G) is a normal subgroup.
Let H be the group G/Z(G). Then H is a group of order p and so is cyclic.
Let g0 ∈ G \ Z(G) be any element. We claim that every element of G can
be written as gi0h for some h ∈ Z(G). Consider the group homomorphism
G→ H. The image of g0 is non-trivial and so it generates the whole group H.
Thus, if g ∈ G is an element, then there is an i such that gZ(G) = gi0Z(G).
This proves that g = gi0h for some h ∈ Z(G). But by writing any two
elements of G in this form it is clear that all elements of G commute with
each other, proving that Z(G) = G. This is a contradiction. Thus, Z(G) = G
and so G is abelian.

4.4 Sylow’s Theorem

Recall the definition of the normalizer of a subset from Example 2.1.6. Note
that if H is a subgroup of G and N(H) is the normalizer of H, then H is
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a normal subgroup of N(H). This follows trivially from the definition of
N(H). We will use this observation in the following Lemma.

Let G be a group of order plm with gcd(m, p) = 1. A subgroup of G of
order pl will be called a p-Sylow subgroup.

Lemma 4.4.1. Let Q1 ⊂ G be a p-Sylow subgroup. Let Q2 ⊂ G be a p-group.
If Q2 ⊂ N(Q1) then Q2 ⊂ Q1. Moreover, if Q2 is also a p-Sylow subgroup
then Q2 = Q1.

Proof. Since Q1 ⊂ N(Q1) is a normal subgroup, it follows that N(Q1)/Q1 is
a group and the natural map N(Q1)→ N(Q1)/Q1 is a group homomorphism.
Let us consider the composite map

Q2 ⊂ N(Q1)→ N(Q1)/Q1 .

Since

#(N(Q1)/Q1) =
#N(Q1)

#Q1

,

and the RHS divides #G/#Q1 = m, it follows that #(N(Q1)/Q1) is not a
multiple of p. If f : A→ B is a group homomorphism between finite groups
of coprime cardinality, then f(A) = e. This is an easy exercise which is left
to the reader. But applying this to our specific situation we see that the
image of Q2 is trivial, or equivalently, Q2 is contained in the kernel of the
map N(Q1) → N(Q1)/Q1. But the kernel is precisely Q1. This proves that
Q2 ⊂ Q1. If Q2 is a p-Sylow subgroup then both Q1 and Q2 have the same
cardinality, it follows that Q1 = Q2.

Theorem 4.4.2 (Sylow’s Theorem). Let G be a group of order plm with
gcd(m, p) = 1. Then

(a) G contains a subgroup of order pl.

(b) The number of p-Sylow subgroups is congruent to 1 mod p.

(c) All the p-Sylow subgroups are conjugates of each other.

(d) The number of p-Sylow subgroups divides m.
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Proof. Let Y be the set consisting of all subsets of G of order pl. Then

#Y =

(
plm

pl

)

=

pl−1∏
i=1

plm− pl − i
pl − i

.

It is clear that the highest power of p which divides plm − pl − i is exactly
the highest power of p which divides pl − i. From this it follows that #Y is
not a multiple of p.

As we saw before, G acts on Y by left translation. More precisely, this is
given as follows. Let T ∈ Y . Then T is a subset of G of order pl.

g · T := {gt | t ∈ T} .

There is at least one orbit Orb(T ) such that #Orb(T ) is not divisible by p.
On the contrary, suppose p divides each #Orb(T ), then since Y is a union
of these orbits, p will divide #Y , which is a contradiction. Let us fix T0 such
that p does not divide #Orb(T0).

We will prove (a) by induction on m. If m = 1 then there is nothing to
prove. Let us assume that m > 1 and that (a) is true for all groups of size
plr where 1 ≤ r < m. Notice that G does not fix any T ∈ Y . In fact, choose
a t0 ∈ T and an element t1 /∈ T . Then the set t1t

−1
0 · T contains t1 and so it

is not equal to T . Thus, Stab(T ) is a proper subgroup of G. By Theorem
4.3.2 we have that #Orb(T0) · #Stab(T0) = #G. Since p does not divide
#Orb(T0) it follows that #Stab(T0) = plr for some r < m. By induction
hypothesis the subgroup Stab(T0) contains a subgroup of order pl. Thus, G
contains a subgroup of order pl. This proves (a).

To prove (b), let S denote the set of all p-Sylow subgroups of G. Let
Q0 ∈ S. We make Q0 act on S by conjugation, that is, for x ∈ Q0 and
Q ∈ S define x · Q := xQx−1. Clearly, if x ∈ Q0 then xQ0x

−1 = Q0, and so
OrbQ0(Q0) = {Q0}. Here we have emphasized in the notation that we are
looking at the orbit under the Q0 action and not under the G action. Suppose
Q1 ∈ S and Q1 6= Q0. We claim that it is not possible that #OrbQ0(Q1) = 1.
If this happens, then we get that xQ1x

−1 = Q1 for all x ∈ Q0, that is, Q0 ⊂
NG(Q1). By Lemma 4.4.1 it follows that Q0 = Q1, which is a contradiction.
Thus, if Q1 6= Q0 then #OrbQ0(Q1) > 1. By Theorem 4.3.2 it follows that
#OrbQ0(Q1) · #StabQ0(Q1) = #Q0 = pl. Thus, if Q1 6= Q0 it follows that
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#OrbQ0(Q1) is a multiple of p. Thus, S breaks into disjoint orbits under the
action of Q0, exactly one of these orbits has cardinality 1 while the others
have cardinality multiples of p, that is,

#S = 1 + p(∗) .

This proves (b).
Now let us show that there is only one orbit in S. Let S ′ ⊂ S denote

the orbit of Q0 under the G action by conjugation, that is, S ′ = OrbG(Q0).
We need to show that S ′ = S. If possible let Q1 ∈ S \ S ′. We will con-
sider the action of Q1 on S ′ by conjugation. If Q′ ∈ S ′ then we claim
that #OrbQ1(Q

′) > 1. If not, then #OrbQ1(Q
′) = 1, which means that

Q1 ⊂ NG(Q′). By Lemma 4.4.1 we will get that Q1 = Q′, which is a contra-
diction since Q′ ∈ S ′ and Q1 /∈ S ′. By Theorem 4.3.2 we get that

#OrbQ1(Q
′) ·#StabQ1(Q

′) = #Q1 = pl

and this shows that #OrbQ1(Q
′) is a multiple of p. Since this happens for

all Q′ ∈ S ′, it follows that the cardinality of S ′ is a multiple of p, since S ′ is
a disjoint union of its orbits.

Now let us consider the action of Q′ on S ′ by conjugation. Clearly, if
x ∈ Q′ then xQ′x−1 = Q′, and so OrbQ′(Q

′) = {Q′}. Suppose H ∈ S ′ and
H 6= Q′. We claim that it is not possible that #OrbQ′(H) = 1. If this
happens, then we get that xHx−1 = H for all x ∈ Q′, that is, Q′ ⊂ NG(H).
By Lemma 4.4.1 it follows that Q′ = H, which is a contradiction. Thus, if
H 6= Q′ then #OrbQ′(H) > 1. As we saw above, it follows that #OrbQ′(H)
is a multiple of p. Thus, S ′ breaks into disjoint orbits under the action of Q′,
exactly one of these orbits has cardinality 1 while the others have cardinality
multiples of p, that is,

#S ′ = 1 + p(∗) .
But this is a contradiction since we saw earlier that #S ′ is a multiple of p.
This proves that S ′ = S, which proves (c).

To prove (d), fix a p-Sylow subgroup Q ∈ S. Since there is only one G-
orbit, we have S = OrbG(Q). By Theorem 4.3.2 we see that #S ·#Stab(Q) =
#G. It is clear that StabG(Q) = N(Q) ⊃ Q and so it has cardinality plr. It
follows that #S divides m.

This completes the proof of the Theorem.

Corollary 4.4.3. Let G be a group such that p divides #G. Then G contains
an element of order p.
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Proof. Let #G = plm, where gcd(m, p) = 1. Then G contains a subgroup Q
of order pl. Any element in Q will have order a power of p. From this one
easily shows that there is an element of order p, and that is left to the reader
as an exercise.

Proposition 4.4.4. Let H ⊂ G be a p-group. Then H is contained in a
p-Sylow subgroup.

Proof. Let S denote the set of all p-Sylow subgroups of G. Let H act on S
be conjugation. As we saw before, if Q ∈ S and #OrbH(Q) > 1, then by
Theorem 4.3.2 we easily get the p divides #OrbH(Q). If this happens for all
Q ∈ S then we would get that p divides #S, which we know is not true from
the preceding theorem. Thus, there is a Q ∈ S such that #OrbH(Q) = 1,
which is same as saying that H ⊂ N(Q). Lemma 4.4.1 shows that H ⊂ Q,
which proves the Proposition.

4.5 Symmetric groups

In this section we will prove Theorem 1.4.7.

Theorem 4.5.1. We have in the group Sn

(1) If α = (a1, a2, . . . , ar) and β = (b1, b2, . . . , bs) are two disjoint cycles then
αβ = βα.

(2) If α = (a1, a2, . . . , ar) is a cycle then

(a1, a2, . . . , ar) = (a1, a2)(a2, a3)(a3, a4) . . . (ar−1, ar) .

(3) If α = (a1, a2, . . . , ar) is a cycle then its inverse is (ar, ar−1, . . . , a3, a2, a1).

(4) If α = (a1, a2, . . . , ar) is a cycle then it has order r.

(5) Every element of Sn can be written as a product of disjoint cycles.

(6) If an element is written as a product of disjoint cycles c1c2 . . . cl and
c′1c
′
2 . . . c

′
s in two ways, then l = s and the cycles ci are equal to the

cycles c′j up to permutation. In other words, every element is written as
a product of disjoint cycles in a “unique” way.
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Proof. The first four assertions are easy and are left to the reader. We will
prove the last two assertions.

Let X denote the set {1, 2, . . . , n}. Let γ ∈ Sn be an element. Let H〈γ〉
denote the cyclic subgroup generated by γ in Sn. Let a ∈ X. By the orbit
of a under γ we shall mean the subset

O(γ, a) := {γi(a) | i ∈ Z} ⊂ X .

This is simply the orbit of a under the action of the cyclic subgroup H〈γ〉
generated by γ in Sn. Clearly, a ∈ O(γ, a). There are distinct elements
a1, a2, . . . , ar such that

(4.5.2) X =
r⊔
i=1

O(γ, ai) .

We have simply decomposed X into disjoint orbits for the action of the
subgroup H〈γ〉.

Fix a ∈ X. Let i > 0 be the smallest positive integer such that γi(a) = a.
Then we claim that

O(γ, a) := {a, γ(a), γ2(a), . . . , γi−1(a)} .

Moreover, all the above elements are distinct. If the elements are not distinct,
then that will contradict the minimality of i. Given any integer l we can
divide it by i and write l = si+ j where 0 ≤ j < i. Then it follows that

γl(a) = γj((γi)s(a)) .

But the map γi fixes a. Thus, all its powers also fix a. Then the above
becomes γl(a) = γj(a), which proves the claim.

In particular, the above shows that

(a, γ(a), γ2(a), . . . , γi−1(a))

defines a cycle in Sn. We apply this discussion to the elements a1, a2, . . . , ar
in equation (4.5.2). Then we get product of disjoint cycles

γ′ := (a1, γ(a1), . . . , γi1−1(a1))(a2, γ(a2), . . . , γi2−1(a2)) . . . (ar, γ(ar), . . . , γ
ir−1(ar))

We claim that the above element in Sn represents the map γ. It suffices to
show that for any a ∈ X, we have γ′(a) = γ(a). From equation (4.5.2) there
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is a unique al and unique j such that 0 ≤ j < il and such that a = γj(al).
Then

γ(a) = γ(γj(al))

= γ′(a)

Recall that if j = il− 1 then by the definition of il we have γil(al) = al. This
shows that γ = γ′. Thus, we have proved (5) which says that every element
of Sn can be written as a product of disjoint cycles.

To prove that the above expression is unique, let us assume that

γ = c′1c
′
2 . . . c

′
s = c1c2 . . . cl

are two expressions for γ as product of disjoint cycles. Let H〈γ〉 denote the
cyclic subgroup generated by γ. Consider the action of H〈γ〉 on X. Let us
write c′1 = (b1, b2, . . . , bt). Since applying γ is the same as applying c′1c

′
2, . . . c

′
s,

and bi occur only in c′1, this shows that

O(γ, b1) = {b1, b2, . . . , bt} = {b1, γ(b1), γ2(b1), . . . , γt−1(b1)} .

We easily conclude that there are exactly s orbits for the action of H〈γ〉 on
X. In the same way, using the other expression for γ as product of disjoint
cycles, we see that the number of orbits is l. This proves that s = l. Thus,
we may write

γ = c′1c
′
2 . . . c

′
l = c1c2 . . . cl .

Next let us show that, after rearranging the indices if necessary, c′i = ci.
Choose an a ∈ X. Then there are unique i and j such that a appears in
the cycles c′i and cj. After renumbering the indices we may assume that a
appears in the cycles c′1 and c1. Applying γ as above we see that c′1 and c1

are forced to be the cycle

(a, γ(a), γ2(a), . . . , γt−1(a)) ,

where t is the smallest positive integer such that γt(a) = a. This completes
the proof of the Theorem.

4.6 Exercises

4.6.1. Let G be a finite group. G acts on itself by conjugation. If there are
exactly two distinct orbits then prove that G has order 2.
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4.6.2. Let H ⊂ G be a normal subgroup of G. Let G act on itself by
conjugation. Prove that H is a union of orbits. Is it true if the subgroup is
not normal? If not, give an example to justify your claim.

4.6.3. Let G be a finite p-group, that is, order of G is a power of the prime p.
Let H be a non-trivial normal subgroup of G. Then prove that H ∩Z(G) 6=
{e}.
4.6.4. Define a map

Ψ : {Group actions η : G×X → X} → {Group homomorphisms δ : G→ Aut(X)}

as follows. Given a group action η define Ψ(η)(g) : X → X by(
Ψ(η)(g)

)
(x) = η(g, x) .

Show that Ψ(η)(g) is in Aut(X). Thus, we get a set map Ψ(η) : G→ Aut(X).
Show that this is a group homomorphism.

4.6.5. Now define a map

Φ : {Group homomorphisms δ : G→ Aut(X)} → {Group actions η : G×X → X}

as follows. For a group homomorphism δ, define

Φ(δ)(g, x) =
(
δ(g)

)
(x) .

Show that Φ(δ) defines an action og G on X.

4.6.6. With Ψ and Φ as in the preceding exercises show that Φ ◦Ψ = Id and
Ψ ◦ Φ = Id.

4.6.7. Let G be a group of order 6. Show that the 3-Sylow subgroup is
normal in G. More generally, if G is a group of order pq and p < q show that
the q-Sylow subgroup is normal.

4.6.8. Consider the set of polynomials in n variable R := C[T1, T2, . . . , Tn]
with coefficients in complex numbers. Let Sn act on R as follows. For a
polynomial f(T1, T2, . . . , Tn) define

σ · f := f(Tσ(1), Tσ(2), . . . , Tσ(n)) .

For example, if n = 3 and we take f(T1, T2, T3) = T 2
1 + T 3

2 + 4T1T2T
5
3 ,

σ = (132) then
σ · f = T 2

3 + T 3
1 + 4T3T1T

5
2 .
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Show that this defines an action of Sn on R. Further, show that this action
has the special property that σ · (f + g) = (σ · f) + (σ · g) and σ · (fg) =
(σ · f)(σ · g). In other words this action of Sn on R preserves the addition
and multiplication in R.

4.6.9. Continuing with the notation in the above exercise, let

P =
∏

1≤i<j≤n

(Ti − Tj) .

Show that for every σ ∈ Sn we have σ · P = ±P . For every σ ∈ Sn we
denote this sign which appears as sgn(σ). Thus, we have defined a map
sgn : Sn → {±1} and we may write σ · P = sgn(σ)P . Show that sgn is a
surjective group homomorphism. Show that sgn(12) = −1. The kernel of
sgn is denoted An.

4.6.10. In view of Theorem 4.5.1 every element of Sn may be written as a
product of transpositions. Recall that a transposition is a cycle of the form
(a, b). Let γ ∈ Sn. Suppose we write γ =

∏r
i=1 αi =

∏l
j=1 βj as a product

of transpositions in two ways. Use sgn to show that r ≡ l mod 2. Thus, it
makes sense to say that an element of Sn is a product of an odd number of
transpositions or an even number of transpositions. Clearly, the group An
contains exactly those elements which are a product of an even number of
transpositions.

4.6.11. A group which has no non-trivial normal subgroups is called a simple
group. In a series of exercises we shall prove that if n ≥ 5, then An is a
simple group. Recall that we had defined the sign homomorphism from Sn
to {±1} and An is the kernel of this homomorphism. Show that the image
of a transposition under sgn is −1.

4.6.12. A 3-cycle is a permutation of the form (a1, a2, a3). Show that a
3-cycle is a product of two transpositions.

4.6.13. Let α be a transposition. Show that α cannot be written as a product
of 3-cycles. Let α and β be transpositions. Show that the product αβ can
be written as a product of 3-cycles.

4.6.14. Show that every element of An can be written as a product of 3-cycles.

4.6.15. For n ≥ 5 show that there is γ ∈ An such that γ(a1, a2, a3)γ−1 =
(a1, a3, a2). This is not true for n = 4, why? (WARNING: You have to find
γ ∈ An and not γ ∈ Sn)
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4.6.16. For n ≥ 5 show that there is γ ∈ An such that γ(a1, a2, a3)γ−1 =
(a1, a2, a4).

4.6.17. Notice that (a1, a2, a3) = (a2, a3, a1). Use this observation and the
previous two exercises to show that for n ≥ 5 and permutations (a, b, c), (a′, b′, c′)
there is γ ∈ An such that γ(a, b, c)γ−1 = (a′, b′, c′).

For the remaining exercises n ≥ 5.

4.6.18. Let N 6= {e} be a normal subgroup of An. Suppose there is an
element α = α1α2 . . . αr ∈ N where the αi are mutually disjoint cycles and
α1 = (a1, a2, a3, a4, . . . , ai) with i ≥ 4. Take γ ∈ An to be γ = (a2, a3, a1).
Show that γαγ−1α−1 = (a4, a1, a2). Since N is normal we get, using the
previous exercises, that N contains all the 3-cycles and so N = An.

4.6.19. Let us assume that the hypothesis of the previous exercise is not
satisfied. This means that every element of N is a product of mutually
disjoint cycles of length ≤ 3. Since mutually disjoint cycles commute, we
may assume that α = α1α2 . . . αr, where the lengths are in decreasing order.
If r = 1, then N contains α1 which is either a transposition (this is not
possible, why?) or it is a 3-cycle. Thus, if r = 1, then we are done, why?

4.6.20. So assume r ≥ 2. There are three cases now. First, α1 is a 3-cycle
and α2 is a 3-cycle. Second α1 is a 3-cycle and α2 is a transposition. Third,
both α1, α2 are transpositions.

4.6.21. Consider the first case. Let α1 = (a1, a2, a3) and α2 = (a4, a5, a6).
Let γ = (a2, a3, a4). Show that γαγ−1α−1 = (a1, a4, a2, a3, a5), so we are
reduced to the case of exercise 4.6.18.

4.6.22. Consider the second case. Let α1 = (a1, a2, a3) and α2 = (a4, a5). Let
γ = (a2, a3, a4). Show that γαγ−1α−1 = (a1, a4, a2, a3, a5), so we are reduced
to the case of exercise 4.6.18.

4.6.23. Consider the third case. Let α1 = (a1, a2) and α2 = (a3, a4). Let
γ = (a2, a3, a4). Show that γαγ−1α−1 = (a1, a4)(a2, a3). Thus, N con-
tains β = (a1, a4)(a2, a3). Let γ = (a1, a2, a5) and show that γβγ−1β−1 =
(a1, a4, a3, a5, a2), so we are reduced to the case of exercise 4.6.18.

4.6.24. Consider the set

SL(2,R) = G = {
(
a b
c d

)
|ad− bc = 1, a, b, c, d ∈ R}.
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G is the set of 2 × 2 matrices with real entries with determinant 1. Show
that G is a group under matrix multiplication. Consider the set,

H = {z = x+ iy ∈ C | y > 0}.

Define for g =

(
a b
c d

)
∈ G and z ∈ C,

g · z =
az + b

cz + d
.

Show that g · z defines an action on H.
4.6.25. Find Stab(i) for the above action.

4.6.26. Let G be a group with a action on a set X. The action is called
transitive if given x, y ∈ X there exists an element g ∈ G such that g ·x = y.
Prove that the action defined in exercise 4.6.24 is transitive.

4.6.27. Is the above action transitive if you replace SL(2,R) with

SL(2,Z) = G = {
(
a b
c d

)
|ad− bc = 1, a, b, c, d ∈ Z}?
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Chapter 5

Products

5.1 Products

Suppose we are given a collection of groups Gi, indexed by a set I. Then we
may form the group ∏

i∈I

Gi .

The multiplication is the obvious coordinate wise multiplication. For exam-
ple, for G1 ×G2 we multiply

(a, α) · (b, β) = (ab, αβ) .

5.2 Semi-direct products

Let G be a a group and suppose there are two subgroups H and K such that
K is normal in G. Then consider the subset

KH := {kh | k ∈ K,h ∈ H} .

We claim that KH is a subgroup of G. Let us first check that it is closed
under multiplication. Suppose we are given two elements k1h1 and k2h2 then
we have

k1h1k2h2 = k1(h1k2h
−1
1 )h1h2

Since K is normal, we have that h1k2h
−1
1 ∈ K and so the above is also an

element of KH. Now assume that the pair of subgroups H and K satisfy
the following additional conditions

55
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1. H ∩K = {e}

2. KH = G.

These two conditions force that every element in the group G can be written
uniquely as a product kh. We only need to check the uniqueness of this
representation as a product. Suppose k1h1 = k2h2 then we get k−1

2 k1 =
h2h

−1
1 . But since the LHS is in K and the RHS is in H, it follows that

k−1
2 k1 = h2h

−1
1 = e ,

which shows that h1 = h2 and k1 = k2. We see that G, as a set, is like a
product of H and K. The group structure, however, is different from that
of H ×K. Moreover, for each element h ∈ H we get an automorphism of K
given by k 7→ hkh−1.

Motivated by this we may define the semi-direct product of two groups
as follows.

Definition 5.2.1. Suppose H and K are groups and suppose we are given
a group homomorphism ϕ : H → Aut(K). Here Aut(K) denotes the group
of bijective group homomorphisms from K to itself. Then we may form the
semi-direct product K oϕ H as follows. The elements of K oϕ H are given
by tuples (k, h). Multiplication is defined as

(k1, h1) · (k2, h2) :=
(
k1

(
ϕ(h1)(k2)

)
, h1h2

)
.

One easily checks that this product is associative and that it defines a
group structure. Suppose we are given two homomorphisms ϕ1, ϕ2 : H →
Aut(K) then we may ask when the resulting groups K oϕ1 H and K oϕ2 H
are isomorphic. In this direction we give two results. Suppose f : H → H
is a group automorphism. Then the groups K oϕ H and K oϕ◦f H are
isomorphic. Define a map

(5.2.2) K oϕ◦f H → K oϕ H (k, h) 7→ (k, f(h)) .

One easily checks that this defines a group isomorphism. Similarly, suppose
f : K → K is a group automorphism. Then we get the composite H

ϕ−→
Aut(K)

cf−→ Aut(K). Here cf is conjugation by f . Precisely,

(cf ◦ ϕ)(h) = f ◦ ϕ(h) ◦ f−1 .

In this case too we have a map defined as follows

K oϕ H → K ocf◦ϕ H (k, h) 7→ (f(k), h) .

One checks easily that this map defines a group isomorphism.
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5.3 Exercises

5.3.1. Show that the semi-direct product K oϕ H is a product iff ϕ is the
trivial homomorphism.

5.3.2. Let G and H be finite groups such that there is a prime p such that
p|#G and p|#H. Show that G×H is not cyclic. (HINT: A cyclic group has
a unique subgroup of order d if d divides the order of the group.)

5.3.3. Let G be a finite group. Let R be a normal p-subgroup of G (not
necessarily a Sylow subgroup).

1. Show that R is contained in every p-Sylow subgroup of G.

2. Suppose that S is another normal p-subgroup of G then RS is also a
normal p-subgroup of G.

3. Show that the subgroup Op(G), defined as the subgroup generated by
all the normal p subgroups of G, is the largest normal p subgroup of G.
Show that Op(G) equals the intersection of all the Sylow p subgroups
of G.

4. Prove that Ḡ = G/Op(G) has no non-trivial normal p subgroups.

5.3.4. Let K be a group. Consider the set Aut(K) of bijective group homo-
morphisms from K to itself. Show that this forms a group under composition
of homomorphisms. Let p be a prime. For l ∈ (Z/pZ)× let ml denote the
multiplication by l map on Z/pZ. Show that the natural map

(Z/pZ)× → Aut(Z/pZ) l 7→ ml

is an isomorphism.

5.3.5. Let G be a group of order pq, with p < q. Use Sylow’s Theorem to
conclude that the q-Sylow subgroup is normal. Let K denote the q-Sylow
subgroup. Conjugation defines a group homomorphism ϕ : G→ Aut(K).

1. Show that K is contained in the kernel of ϕ.

2. If p does not divide q − 1, then show that G is isomorphic to Z/pZ ×
Z/qZ.
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3. Assume that p divides q − 1 and that G is not abelian. The map ϕ
factors to give a map ϕ̄ : G/K → Aut(K). Show that there is a non-
trivial homomorphism ϕ̄ : Z/pZ → Aut(K) such that G is isomorphic
to a semi-direct product Z/pZ oϕ̄ K.

4. The group (Z/qZ)× is always cyclic. Although this is not too hard to
prove, we will not prove this assertion. Assume that p divides q − 1.
Suppose that there are two non-abelian groups G1 and G2 of cardinality
pq. Use (5.2.2) to show thatG1 andG2 are isomorphic. This proves that
when p divides q− 1 there is only one non-abelian group of cardinality
pq.
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Finitely generated abelian
groups

A group G is said to be finitely generated if there is a finite set S ⊂ G such
that every element of G can be written as a product

∏l
i=1 xi, where xi ∈ S.

We do not require that the xi’s are distinct. In this chapter we will write
abelian groups additively and the identity element will be denoted 0.

6.1 Direct products and direct sums

We have already seen the definition of a direct product of groups, which
we now recall. Given groups Gi, for i ∈ I, the direct product of the Gi is
the group

∏
i∈I Gi with coordinate wise multiplication. Now consider the

situation where Ai’s are abelian groups. Inside the product
∏

i∈I Ai there is
a subgroup, which we denote ⊕

i∈I

Ai ⊂
∏
i∈I

Ai

and defined as follows. The elements of the set
⊕

i∈I Ai are precisely those
elements of

∏
i∈I Ai which are nonzero only in finitely many coordinates.

Clearly, this is a subgroup. This group is called the direct sum of the Ai’s.
When each of the Ai’s is isomorphic to Z, then the resulting group is called
a free abelian group. Equivalently, an abelian group A is said to be free if
there is a collection of elements ai ∈ A indexed by a set I such that the
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natural map ⊕
i∈I

Z[ei]→ A
∑
i∈I

ni[ei] 7→
∑
i∈I

niai

is an isomorphism. (The ei simply indicates the i’th coordinate.) Note that
the sum is actually a finite sum since only finitely many of the ni are non-zero,
by the definition of elements in

⊕
i∈I Z[ei].

6.2 Finitely generated torsion free abelian groups

Let A be an abelian group. An element a ∈ A is called a torsion element if
a 6= 0 and there is an n > 0 such that na = 0. If there is no torsion element in
A then we say that A is torsion free. The group Q under addition is torsion
free. Similarly, every free abelian group is torsion free. In this section we will
show that a finitely generated and torsion free abelian group is free. First
we will define the “rank” of a free abelian group.

Definition 6.2.1. Let A and B be abelian groups. Let Hom(A,B) denote
the set of homomorphisms of abelian groups f : A→ B.

Using the addition in B we may define a group structure on Hom(A,B).
Given f, g ∈ Hom(A,B) define (f+g)(a) := f(a)+g(a). The inverse (−f) is
defined as (−f)(a) := −f(a), where −f(a) is the inverse of f(a) in B. One
easily checks that Hom(A,B) is an abelian group with the identity element
being the trivial homomorphism, that is, the homomorphism f : A → B
with f(a) = 0 for all a ∈ A.

Lemma 6.2.2. Let A be an abelian group and consider the additive group
Q. Then Hom(A,Q) is a Q vector space.

Proof. The proof is left as an exercise to the reader.

Definition 6.2.3. Let A be an abelian group. The rank of A is defined to be
the dimension of the vector space Hom(A,Q).

Remark 6.2.4. Now we make the following simple observations.

(1) Let A,B,C be abelian groups. Then there is a natural map

Φ : Hom(A,C)⊕ Hom(B,C)→ Hom(A⊕B,C)

and this is an isomorphism of abelian groups.
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(2) Given an abelian group C, there is a natural isomorphism of abelian
groups

C → Hom(Z, C) .

(3) Let ψ : A → B be a group homomorphism. Then it induces a map
Hom(B,C)→ Hom(A,C) given by f 7→ f ◦ ψ.

(4) Let V be a Q vector space. Then it is also an abelian group under the
operation of vector addition. It is easily checked (using the definition of
a vector space) that V is a torsion free abelian group. If W is another Q
vector space and T : V → W is a group homomorphism, then T is also
a Q-linear map.

Let us check the first assertion. Suppose we are given f ∈ Hom(A,C)
and g ∈ Hom(B,C). Then we define Φ(f, g) ∈ Hom(A⊕B,C) as follows

Φ(f, g)(a, b) := f(a) + g(b) .

It is trivial to check that Φ is a group homomorphism, and this is left to
the reader. Clearly, A sits inside A ⊕ B as (a, 0). Thus, if Φ(f, g) = 0 then
restricting it to A it follows that f = 0. Similarly, we get that Φ(f, g) = 0
implies that g = 0. This shows that Φ is an inclusion. Suppose we are given
h ∈ Hom(A⊕ B,C) then let f be the restriction of h to A and let g be the
restriction of h to B. It can be checked easily that Φ(f, g) = h, which shows
that Φ is surjective.

The second assertion is also easily checked using the fact that a homo-
morphism from Z→ C is defined completely by the image of 1. We leave it
to the reader to check (2), and the remaining assertions.

By Z⊕r we mean the group
⊕r

i=1 Z[ei].

Lemma 6.2.5. Suppose there is an isomorphism φ : Z⊕r ∼−→ Z⊕s. Then
r = s.

Proof. In view of the isomorphism φ we get an isomorphism of groups

Hom(Z⊕s,Q)→ Hom(Z⊕r,Q) .

As observed above, both these are vector spaces and this group homomor-
phism is actually a vector space homomorphism. Since this map is bijective,
it follows that these vector spaces are isomorphic. However, by the observa-
tions above we get that the ranks are s and r, respectively. Thus, it follows
that r = s.
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The following theorem is the key input in proving the main result in the
chapter.

Theorem 6.2.6. Let A ⊂ B be abelian groups. Then the induced map
Hom(B,Q)→ Hom(A,Q) is surjective.

Proof. Let f : A → Q be an element of Hom(A,Q). Consider pairs (C, g)
where A ⊂ C ⊂ B and g : C → Q is a map whose restriction to A is f . Our
aim is to show that there is a pair (B, h). This is a standard argument using
Zorn’s lemma and we briefly sketch the argument. Introduce a partial order
on the pair (C, g) ≤ (C ′, g′) iff C ⊂ C ′ and the restriction of g′ to C is g.
Arguing “as usual” we see that maximal elements exist.

Let (C, g) be a maximal pair with respect to this ordering. Assume that
C $ B. Choose b ∈ B \ C.

Suppose there is an n > 0 such that nb ∈ C, then let n be the smallest
such positive integer. Consider the map

C ⊕ Z→ B

given by (c, l) 7→ c + lb. The image of this is precisely the subgroup of
B generated by C and b. Let us denote this subgroup by C ′. Suppose
(c, l) is in the kernel. Then this means that lb = −c ∈ C. It is easily
checked, using Proposition 3.3.1, that n divides l. Thus, writing l = kn we
see that the kernel exactly contains elements of the type (−knb, kn). Next we
define a homomorphism from C ⊕ Z → Q. Using the bijection Φ it follows
that we only need to specify homomorphisms C → Q and Z → Q. Take

g : C → Q and define h : Z → Q by sending 1 to
1

n
g(nb). It is trivial to

check that (−knb, kn) 7→ 0. Thus, using Theorem 3.4.2 it follows that we
get a homomorphism g′ : C ′ → Q. The restriction of this homomorphism to
C is clearly g. This contradicts the maximality of the pair (C, g). Thus, it
is forced that C = B.

Now consider the second case when there is no n > 0 such that nb ∈ C.
This implies that the natural map C ⊕ Z → B given by (c, n) 7→ c+ nb has
no kernel. Thus, it is an isomorphism onto its image, which is precisely the
subgroup generated by C and b, and denoted as C ′. As before, we may define
a homomorphism C ′ → Q by specifying it to be g on C and, for example, 0
on Z. Again, this produces a pair (C ′, g′) which contradicts the maximality
of (C, g). Thus, it is forced that C = B.

This completes the proof of the Theorem.
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Lemma 6.2.7. Let A be a torsion free group who rank is 0. Then A = 0.

Proof. Note that an element a ∈ A is torsion free iff the map from Z → A
given by sending 1 7→ a is injective. Suppose there is such an a ∈ A. Then we
have an inclusion 0→ Z→ A. From the previous Theorem we get that there
is a surjection Hom(A,Q) → Hom(Z,Q). But note that Hom(Z,Q) = Q.
But if the rank of A is 0, then this is not possible. Thus, it is forced that
A = 0.

Proposition 6.2.8. Let A ⊂ Z⊕r be a subgroup. Then A is free. Moreover
A ∼= Z⊕s where s = rank(A).

Proof. We will prove this proposition by induction on the rank of A. The
base case for induction is when the rank of A is 0. But then the preceding
Lemma shows that A = 0, and so the proposition is true in this case. From
now on we assume that rank(A) = s ≥ 1 and that the proposition is true
when rank < s.

We may assume that the projection A ⊂ Z⊕r π−→ Z onto the first coordi-
nate is non-zero. Let B denote the image of A. By exercise 2.4.1 it follows
that B is generated by one element, say b, that is, B ∼= Z. In terms of a
diagram this means that the following commutes

A �
� i //

π◦i
��

Z⊕r

π
��

bZ � � // Z

Thus, we have a surjective map A → bZ ∼= Z. Apply exercise 3.5.16 we see
that A ∼= K ×Z, where K denotes the kernel of this map. Since A is torsion
free, it easily follows that K is torsion free. We saw in Remark 6.2.4 that

Hom(A,Q) = Hom(K,Q)⊕ Hom(Z,Q) .

In view of this rank(K) = s − 1 < s. It is clear that K ⊂ Z⊕r−1 =
(0, α2, α3, . . . , αr) ⊂ Z⊕r. By induction we see that K is free and K ∼= Z⊕s−1.
Since A ∼= K × Z it follows that A ∼= Z⊕s. This completes the proof of the
proposition.

Theorem 6.2.9. Let A be a finitely generated and torsion free abelian group
of rank s. Then A is isomorphic to Z⊕s.
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Proof. The idea of the proof is to reduce to the case of the previous propo-
sition. Since A is finitely generated there is an r and a surjective group
homomorphism φ : Z⊕r → A. One easily checks that the map

Hom(A,Z)→ Hom(Z⊕r,Z)

induced by φ is an inclusion. As explained in Remark 6.2.4, it is easily
checked that Hom(Z⊕r,Z) ∼= Z⊕r. Thus, we are in the situation of the
previous proposition, which yields that Hom(A,Z) ∼= Z⊕l.

Next we claim that there is a natural map

ev : A→ Hom(Hom(A,Z))

which is an inclusion when A torsion free. This map is defined as follows

ev(a)(f) := f(a) .

Consider the map from Z → A which sends 1 7→ a. Since A is torsion free
this map is an inclusion. From Theorem 6.2.6 we know that the induced map
Hom(A,Q)→ Hom(Z,Q) is surjective. Let f ∈ Hom(A,Q) be such that the
image of f is non-zero. Let a1, a2, . . . , ar be a set of generators for A. Write
f(ai) = mi/ni and let n be the lcm of the ni’s. Then the image of f lands

inside
1

n
Z ⊂ Q. Since multiplication by n defines an isomorphism

1

n
Z ∼= Z,

it follows that the map (nf) : A → Z is such that (nf)(a) 6= 0. This shows
that ev(a) 6= 0. Thus, ev is an inclusion. This shows that

A
∼−→ ev(A) ⊂ Z⊕l .

Finally applying the previous proposition again we see that A is free. If we
write A ∼= Z⊕t, then using Hom(A,Q) ∼= Hom(Z⊕t,Q) we see that t = s =
rank(A). This completes the proof of the Theorem.

Remark 6.2.10. For a free abelian group Z⊕r it is easily checked that ev
defined above is an isomorphism. Thus, it follows that for a torsion free and
finitely generated abelian group the map ev is an isomorphism.

6.3 Exercises

6.3.1. Let V be a Q vector space. Then it is also an abelian group under
the operation of vector addition. Show that (using the definition of a vector
space) V is a torsion free abelian group.
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6.3.2. In continuation with the above exercise, if W is another Q vector space
and T : V → W is a group homomorphism, show that T is also a Q-linear
map.

Structure theorem for finite abelian groups.

6.3.3. Let G be an abelian group. From Sylow’s theorem it is clear that for
every prime dividing the order of G, there is a unique p-Sylow subgroup of
G, call this G(p). Suppose #G =

∏n
i=1 p

ri
i . Since G is abelian, there is an

obvious group homomorphism

(6.3.4) Ψ :
n∏
i=1

G(pi)→ G.

What is this group homomorphism?

6.3.5. Suppose H and H ′ are subgroups of G such that gcd(#H,#H ′) = 1,
then show that H ∩H ′ = {e}. Use this to show that the map Ψ above is an
inclusion and so an isomorphism.

In view of the above exercise, it suffices to understand the structure of
abelian groups of order pn. In the next several exercises G will be a group of
order pn. A character of G is a group homomorphism χ : G → S1 := {z ∈
C | | z | = 1}.
6.3.6. Let H ⊂ G be a subgroup. Let x ∈ G \H and let a be the smallest
positive integer such that ax ∈ H. Show that a is a power of p.

6.3.7. Show that the kernel of the natural map H × 〈x〉 → G, given by
(h,mx) 7→ h + mx, is cyclic and generated by the element (−ax, ax). Here
〈x〉 is the subgroup of G generated by x.

6.3.8. Let χ be a character of H. Show that we can extend χ to a character
of the subgroup generated by H and x. Show that we can extend χ to a
character of G. (HINT: Define a character of H × 〈x〉 which is trivial on
(−ax, ax) and is equal to χ when restricted to H)

6.3.9. Show that any finite subgroup of S1 is cyclic. In particular, for any
character χ, the image χ(G) is cyclic.

6.3.10. Let x0 be an element of G of largest possible order, say pm. Consider
the character of 〈x0〉 defined by imposing χ(x0) := e2πi/pm . Extend this to a
character χ of G. Show that χ(G) is equal to the subgroup of S1 generated
by e2πi/pm . Apriori, χ(G) could have been a larger subgroup than the one
generated by e2πi/pm .
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6.3.11. Show that 〈x0〉∩Ker(χ) = {0}. Show that the natural map Ker(χ)×
〈x0〉 → G is an isomorphism. Conclude the proof of the following. Let G
be a finite abelian group of size pn. Then G ∼= Z/pr1 × . . . × Z/prt with∑t

i=1 ri = n. We may further assume that r1 ≤ r2 ≤ . . . ≤ rt.

6.3.12. Show that there exist characters χ1, χ2, . . . , χt such that the map

g 7→ (χ1(g), χ2(g), . . . , χt(g))

induces an isomorphism

G
∼−→ χ1(G)× χ2(G)× . . .× χt(G) .

6.3.13. Let g ∈ G \ pG. Show that there is an i such that χi(〈g〉) = χi(G).
Show that Ker(χi)× 〈g〉 → G is an isomorphism.

6.3.14. Let H be a non-trivial and proper subgroup of G. Let a be the
largest positive integer such that H ⊂ paG. Define

H ′ := {g ∈ G | pag ∈ H}

Show that paH ′ = H.

6.3.15. Show that H ′ 6⊂ pG.

6.3.16. Let h ∈ H ′ \ pG. From exercise 6.3.13, we can find χ such that
Ker(χ) × 〈h〉 → G is an isomorphism. Show that Ker(χ|H′) × 〈h〉 → H ′ is
an isomorphism. Conclude by induction on the size of G that there is an
isomorphism

Φ : G
∼−→ Z/pr1Z× Z/pr2Z× · · · × Z/prtZ

such that the image of H ′ is a subgroup of the type

pa1Z/pr1Z× pa2Z/pr2Z× · · · × patZ/prtZ .

Since H = paH ′ it follows that H is also of the same type.

6.3.17. Now let G be any finite abelian group, not necessarily a p-group.
Use equation (6.3.4) to show that there are integers 1 < n1 ≤ n2 ≤ . . . ≤ nr
such that ni divides ni+1 and

G ∼= Z/n1Z× Z/n2Z× . . .× Z/nrZ .
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6.3.18. Let G be a finite abelian group. Show that the set of characters of G
is a finite set. This set is often denoted Ĝ. There is a natural group structure
on Ĝ, what is it?

6.3.19. Let G be a finite group. Show that the set of characters of G is a
finite group.

6.3.20. Show that the set of characters of Q is not a finite group.

6.3.21. Let A be an abelian group. Let Tors(A) denote the set which contains
all torsion elements of A and 0. Show that Tors(A) is a subgroup of A. Show
that the quotient A/Tors(A) has no torsion.

6.3.22. In the remaining exercises let A be a finitely generated abelian group.
Then A/Tors(A) is a finitely generated and torsion free abelian group, and so
is free. Show that we get a surjective map A→ Z⊕r whose kernel is exactly
Tors(A).

6.3.23. Let a1, . . . , ar ∈ A be elements which map to ei ∈ Z⊕r. Let H ⊂ A
be the subgroup of A generated by the ai’s. Show that H ∼= Z⊕r.
6.3.24. Show that the obvious map Tors(A)⊕H → A is an isomorphism. In
particular, this shows that there is a surjection A → Tors(A), proving that
Tors(A) is a finitely generated torsion abelian group. Show that Tors(A) is
a finite abelian group.

6.3.25. Show that every finitely generated abelian group is isomorphic to

Z⊕r × Z/n1Z× Z/n2Z× . . .× Z/nsZ

where 1 ≤ n1 and ni divides ni+1.
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