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Ordinary and singular points

Definition

Consider the second-order linear ODE in standard form

y′′ + p(x)y′ + q(x)y = 0 (∗)

1 x0 ∈ R is called an ordinary point of (∗) if p(x) and q(x) are
analytic at x0

2 x0 ∈ R is called regular singular point if (x− x0)p(x) and
(x− x0)2q(x) are analytic at x0.
This is equivalent to saying that there are functions b(x) and
c(x) which are analytic at x0 such that

p(x) =
b(x)

(x− x0)
q(x) =

c(x)

(x− x0)2

3 If x0 ∈ R is not ordinary or regular singular, then we call it
irregular singular.
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Ordinary and singular points

Example

x = 0 is an irregular singular point of x3y′′ + xy′ + y = 0

Let us write the ODE in standard form

y′′ +
1

x2
y′ +

1

x3
y = 0

Then

p(x) =
1

x2
q(x) =

1

x3

Clearly,

xp(x) =
1

x
x2q(x) =

1

x

are not analytic at 0. Thus, x = 0 is an irregular singular point.
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Example

Consider the Cauchy-Euler equation

x2y′′ + b0xy
′ + c0y = 0 b0, c0 ∈ R

x = 0 is a regular singular point, since we can write the ODE as

y′′ +
b0
x
y′ +

c0
x2
y = 0

All x 6= 0 are ordinary points.

Assume x > 0

Note that y = xr solves the equation iff

r(r − 1) + b0r + c0 = 0

⇐⇒ r2 + (b0 − 1)r + c0 = 0

Let r1 and r2 denote the roots of this quadratic equation.
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Example (continues . . .)

If the roots r1 6= r2 are real, then

xr1 and xr2

are two independent solutions.

If the roots r1 = r2 are real, then

xr1 and (log x)xr1

are two independent solutions.

If the roots are complex (written as a± ib), then

xa cos(b log x) and xa sin(b log x)

are two independent solutions.

This example motivates us to look for solutions which involve xr.
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First solution in regular singular case

Consider x2y′′ + xb(x)y′ + c(x)y = 0 with

b(x) =
∑
i≥0

bix
i c(x) =

∑
i≥0

cix
i

analytic functions in a small neighborhood of 0.

x = 0 is a regular singular point.

Define the indicial equation

I(r) := r(r − 1) + b0r + c0

Look for solution of the type

y(x) =
∑
n≥0

anx
n+r

by substituting this into the differential equation and setting the
coefficient of xn+r to 0.
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First solution in regular singular case

We get the following
1 The coefficient of xr is I(r)a0, thus we need I(r)a0 = 0

2 The coefficient of xn+r, for n ≥ 1, is

I(n+ r)an +
n−1∑
i=0

bn−i(i+ r)ai +
n−1∑
i=0

cn−iai

We need this to be 0

Let r1 and r2 be roots of I(r) = 0. Assume r1 and r2 are real and
r1 ≥ r2.

Define a0 = 1.

Set r = r1 in the above equation and define an, for n ≥ 1,
inductively by the equation

an(r1) = −
∑n−1

i=0 bn−i(i+ r1)ai +
∑n−1

i=0 cn−iai
I(n+ r1)
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First solution in regular singular case

Since I(n+ r1) 6= 0 for n ≥ 1, an(r1) is a well defined real number.

Thus,
y1(x) =

∑
n≥0

an(r1)x
n+r1

is a possible solution to the above differential equation.
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First solution in regular singular case

Theorem

Consider the ODE x2y′′ + xb(x) y′ + c(x) y = 0 (∗)
where b(x) and c(x) are analytic at 0. Then x = 0 is a regular
singular point of ODE.

Then (∗) has a solution of the form

y(x) = xr
∑
n≥0

anx
n a0 6= 0, r ∈ C (∗∗)

The solution (∗∗) is called Frobenius solution or fractional power
series solution.

The power series
∑
n≥0

anx
n converges on (−ρ, ρ), where ρ is the

minimum of the radius of convergence of b(x) and c(x). We will
consider the solution y(x) in the open interval (0, ρ).
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Second solution in regular singular case

The analysis now breaks into the following three cases

r1 − r2 /∈ Z
r1 = r2

0 6= r1 − r2 ∈ Z
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Second solution: r1 − r2 /∈ Z
In this case, because of the assumption that r1 − r2 /∈ Z, it follows
that I(n+ r2) 6= 0 for any n ≥ 1.

Thus, as before, the second solution is given by

y2(x) =
∑
n≥0

an(r2)x
n+r2

Example

Consider the ODE x2y′′ − x
2y
′ + (1+x)

2 y = 0

Observe that x = 0 is a regular singular point.

I(r) = r(r − 1)− 1
2r +

1
2

= (2r(r − 1)− r + 1)/2

= (2r2 − 3r + 1)/2

= (r − 1)(2r − 1)/2

Roots of I(r) = 0 are r1 = 1 and r2 = 1/2
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Second solution: r1 − r2 /∈ Z

Example (continues . . . 2x2y′′ − xy′ + (1 + x)y = 0)

Their difference r1 − r2 = 1/2 is not an integer.

The equation defining an, for n ≥ 1, is

I(n+ r)an +
1

2
an−1 = 0

Thus,

an(r) = −
an−1(r)

(n+ r − 1)(2n+ 2r − 1)

Thus, an(r1) = an(1) = −
an−1

n(2n+ 1)

= (−1)n 1

n!((2n+ 1)(2n− 1) . . . 3
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Second solution: r1 − r2 /∈ Z

Example (continues . . . 2x2y′′ − xy′ + (1 + x)y = 0)

y1(x) = x

1 +
∑
n≥1

(−1)nxn

n!(2n+ 1)(2n− 1) . . . 3



an(r2) = −
an−1

n(2n− 1)

= (−1)n 1

n!(2n− 1)(2n− 3) . . . 1

y2(x) = x1/2

1 +
∑
n≥1

(−1)nxn

n!(2n− 1)(2n− 3) . . . 1


Since |an| are smaller that 1

n! , it is clear that both solutions
converge on (0,∞).
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Second solution: r1 = r2

Consider the function of two variables

ψ(r, x) :=
∑
n≥0

an(r)x
n+r

Consider the differential operator

L := x2
d2

dx2
+ xb(x)

d

dx
+ c(x)

We have already computed the coefficient of xn+r in Lψ(r, x).
Recall that this is given by

1 The coefficient of xr is I(r)a0
2 The coefficient of xn+r, for n ≥ 1, is

I(n+ r)an(r) +

n−1∑
i=0

bn−i(i+ r)ai(r) +

n−1∑
i=0

cn−iai(r)
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Second solution: r1 = r2

Consider the functions an(r), defined inductively using the
equations

a0(r) := 1

and for n ≥ 1

I(n+ r)an(r) +
n−1∑
i=0

bn−i(i+ r)ai(r) +
n−1∑
i=0

cn−iai(r) = 0

With these definitions, it follows that

Lψ(r, x) = I(r)xr
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Second solution: r1 = r2

If r1 − r2 /∈ Z then the second solution is given by

y2(x) = xr2
∑
n≥0

an(r2)x
n

Now let us consider the case when I has repeated roots

Since I has repeated roots r1 = r2, it follows that, for every n ≥ 1,
the polynomial

∏n
i=1 I(i+ r) does not vanish at r = r1

Consequently, it is clear that the an(r) are analytic in a small
neighborhood around r = r1 = r2.
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Second solution: r1 = r2

Now let us apply the differential operator d
dr on both sides of the

equation Lψ(r, x) = I(r)xr. Clearly the operators L and d
dr

commute with each other, and so we get

d

dr
Lψ(r, x) = L

d

dr
ψ(r, x)

= L
∑
n≥0

(
a′n(r)x

n+r + an(r)x
n+r log x

)
=

d

dr
I(r)xr

= I ′(r)xr + I(r)xr log x

Thus, if we plug in r = r1 = r2 in the above, then we get

L
(∑

n≥0
a′n(r2)x

n+r2 + an(r2)x
n+r2 log x

)
= 0
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Second solution: r1 = r2

Theorem (Second solution: r1 = r2)

A second solution to the differential equation is given by

∑
n≥0

a′n(r2)x
n+r2 +

∑
n≥0

an(r2)x
n+r2 log x
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Second solution: r1 = r2

Example

Consider the ODE

x2y′′ + 3xy′ + (1− 2x)y = 0

This has a regular singularity at x = 0.

I(r) = r(r − 1) + 3r + 1

= r2 + 2r + 1

has a repeated roots −1,−1.

Let us find the Frobenius solution directly by putting

y = xr
∑
n≥0

an(r)x
n a0 = 1

y′ =
∑
n≥0

(n+ r)an(r)x
n+r−1

y′′ =
∞∑
n≥0

(n+ r)(n+ r − 1)an(r)x
n+r−2

19 / 33
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Second solution: r1 = r2

Example (continues . . .)

x2y(x, r)′′ + 3xy(x, r)′ + (1− 2x)y(x, r)

=

∞∑
n=0

[(n+ r)(n+ r − 1) + 3(n+ r) + 1] an(r)x
n+r

−
∞∑
n=0

2an(r)x
n+r+1

Recursion relations for n ≥ 1 are

an(r) =
2an−1(r)

(n+ r)(n+ r − 1) + 3(n+ r) + 1

=
2an−1(r)

(n+ r + 1)2

=
2n

[(n+ r + 1)(n+ r) . . . (r + 2)]2
a0
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Second solution: r1 = r2

Example (continues . . .)

Setting r = −1 (and a0 = 1) yields the fractional power series
solution

y1(x) =
1

x

∑
n≥0

2n

(n!)2
xn

The power series converges on (0,∞).

The second solution is

y2(x) = y1(x) log x+ x−1
∑
n≥1

a′n(−1)xn

where

an(r) =
2n

[(n+ r + 1)(n+ r) . . . (r + 2)]2

a′n(r) =
−2.2n [(n+ r + 1)(n+ r) . . . (r + 2)]′

[(n+ r + 1)(n+ r) . . . (r + 2)]3
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Second solution: r1 = r2

Example (continued)

= −2an(r)
(

1

n+ r + 1
+

1

n+ r
+ · · ·+ 1

r + 2

)

Putting r = −1, we get

a′n(−1) = −
2n+1Hn

(n!)2

where

Hn = 1 +
1

2
+ · · ·+ 1

n
(These are the partial sums of the harmonic series.)

So the second solution is

y2(x) = y1(x)log x−
1

x

∑
n≥1

2n+1Hn

(n!)2
xn

It is clear that this series converges on (0,∞).
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Second solution: 0 6= r1 − r2 ∈ Z

Define
N := r1 − r2

Note that each an(r) is a rational function in r, in fact, the
denominator is exactly

∏n
i=1 I(i+ r).

The polynomial
∏n

i=1 I(i+ r) evaluated at r2 vanishes iff n ≥ N .
For n ≥ N it vanishes to order exactly 1.

Thus, if we define

An(r) := an(r)(r − r2)

then it is clear that for every n ≥ 0, the function An(r) is analytic
in a neighborhood of r2.
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Second solution: 0 6= r1 − r2 ∈ Z

In particular, An(r2) and A′n(r2) are well defined real numbers.

Multiplying the equation Lψ(r, x) = I(r)xr with r − r2 we get

(r − r2)Lψ(r, x) = L(r − r2)ψ(r, x) = (r − r2)I(r)xr

Note that
(r − r2)ψ(r, x) =

∑
n≥0

An(r)x
n+r

24 / 33
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Second solution: 0 6= r1 − r2 ∈ Z
Now let us apply the differential operator d

dr on both sides of the
equation L(r − r2)ψ(r, x) = (r − r2)I(r)xr to get
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Second solution: 0 6= r1 − r2 ∈ Z
If we set r = r2 into the equation

L
(∑

n≥0
A′n(r)x

n+r +An(r)x
n+r log x

)
= I(r)xr + (r − r2)I ′(r)xr+

(r − r2)I(r)xr log x

we get the second solution

L
(∑

n≥0
A′n(r2)x

n+r2 +An(r2)x
n+r2 log x

)
= 0

Theorem (Second solution: 0 6= r1 − r2 ∈ Z)

A second solution to the differential equation is given by∑
n≥0

A′n(r2)x
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Second solution: 0 6= r1 − r2 ∈ Z

Example

Consider the ODE xy′′ − (4 + x)y′ + 2y = 0 (∗)

Multiplying (∗) with x, we get x = 0 is a regular singular point.
I(r) = r(r − 1)− 4r + 0 = r(r − 5) = 0

with the roots differing by a positive integer.

Put y(x, r) = xr
∞∑
n=0

an(r)x
n, a0(r) = 1, into the ODE to get

x
∑
n≥0

(n+ r)(n+ r − 1)an(r)x
n+r−2

−(4 + x)
∑
n≥0

(n+ r)an(r)x
n+r−1 + 2

∑
n≥0

an(r)x
n+r = 0

the coefficient of xn+r−1 for n ≥ 1 gives
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Second solution: 0 6= r1 − r2 ∈ Z

Example (continues . . .)

(n+ r)(n+ r − 1)an(r)− 4(n+ r)an(r)− (n+ r − 1)an−1(r)
+2an−1(r) = 0

For n ≥ 1,
(n+ r)(n+ r − 5)an = (n+ r − 3)an−1

an(r) =
(n+ r − 3)

(n+ r)(n+ r − 5)
an−1

=
(n+ r − 3) . . . (r − 2)

(n+ r) . . . (1 + r)(n+ r − 5) . . . (r − 4)
a0

For the first solution, set r = r1 = 5 (and a0 = 1), we get

an(5) =
(n+ 2) . . . (3)

(n+ 5) . . . 6(n) . . . 1

=
(n+ 2)!/2

(n!)(n+ 5)!/5!
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Second solution: 0 6= r1 − r2 ∈ Z

Example (continues . . .)

=
60

n!(n+ 5)(n+ 4)(n+ 3)

Thus

y1(x) =
∑
n≥0

60

n!(n+ 5)(n+ 4)(n+ 3)
xn+5

Recall N = r1 − r2 = 5− 0 is integer, so the second solution is

y2(x) =
∑
n≥0

A′n(r2)x
n+r2 +

∑
n≥0

An(r2)x
n+r2 log x

where, for n ≥ 0

An(r) = (r − r2)an(r)
Since r2 = 0, the above becomes

An(r) = ran(r)
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Second solution: 0 6= r1 − r2 ∈ Z

Example

In this example, we can easily check that none of the an(r) have a
singularity at r = 0.

Thus, An(0) = 0 for all n ≥ 0; and A′n(0) = an(0) for all n ≥ 0.

a1(0) =
1
2 ; a2(0) =

1
12 ;

It is easily checked that for n ≥ 3

an(r) =
(n+ r − 3)(n+ r − 4)

n!12

Thus, a3(0) = a4(0) = 0.
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Second solution: 0 6= r1 − r2 ∈ Z

Example

Therefore a second solution is

y2(x) = 1 +
x

2
+
x2

12
+
∑
n≥5

(n− 3)(n− 4)

n!12
xn

= 1 +
x

2
+
x2

12
+
∑
k≥0

1

k!(k + 5)(k + 4)(k + 3)12
xk+5

Since ∑
k≥0

1

k!(k + 5)(k + 4)(k + 3)12
xk+5

is a multiple of y1(x),
we get that a second solution is

y2(x) = 1 +
x

2
+
x2

12
.
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Summary

While solving an ODE around a regular singular point by the
Frobenius method, the cases encountered are

roots not differing by an integer

repeated roots

roots differing by a positive integer

The larger root always yields a fractional power series solution.

In the first case, the smaller root also yields a fractional power
series solution.

In the second and third cases, the second solution may involve a
log term.
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Let us write down some classical ODE’s.

(Euler equation) αx2y′′ + βxy′ + γy = 0

(Bessel equation) x2y′′ + xy′ + (x2 − ν2)y = 0. We will
next look at this case more closely.

(Laguerre equation) xy′′ + (1− x)y′ + λy = 0
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