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Ordinary and singular points

Consider the second-order linear ODE in standard form
y' +p@)y +a(z)y=0 (%)
@ 1o € R is called an ordinary point of (x) if p(x) and ¢(z) are
analytic at xg

@ zo € R is called regular singular point if (x — zo)p(z) and
(x — x0)%g(x) are analytic at zg.
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Ordinary and singular points

Consider the second-order linear ODE in standard form
y" +p(x)y + q(z)y =0 (*)

@ 1o € R is called an ordinary point of (x) if p(x) and ¢(z) are
analytic at xg

@ zo € R is called regular singular point if (x — zo)p(z) and
(x — x0)%g(x) are analytic at zg.
This is equivalent to saying that there are functions b(z) and
c(x) which are analytic at z( such that

b(x)

_ c(x)

(x — x0)?

q(z) =

x — xp)

O If g € R is not ordinary or regular singular, then we call it
irregular singular.
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Ordinary and singular points

x = 0 is an irregular singular point of 23y” + 21/ +y =0
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Ordinary and singular points

x = 0 is an irregular singular point of 23y" + 2y’ +y =0

Let us write the ODE in standard form

7z 1 / 1
Yy + 5y +3y=0
T Zz
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Ordinary and singular points

Example

x = 0 is an irregular singular point of 23y" + 2y’ +y =0

Let us write the ODE in standard form
1 1
v+ <y +5y=0
x T

Then
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Ordinary and singular points

Example

x = 0 is an irregular singular point of 23y” + 21/ +y =0

Let us write the ODE in standard form
1 1
v+ <y +5y=0
x T

Then

Clearly, .
@) == Pgle) =

are not analytic at 0. Thus, z = 0 is an irregular singular point.
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Consider the Cauchy-Euler equation

22y + boxy +coy =0 by,co €R
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Consider the Cauchy-Euler equation
22y + boxy +coy =0 by,co €R
x = 0 is a regular singular point, since we can write the ODE as

b c
y//_l__Oy/_i__(;y:O
T X
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Example

Consider the Cauchy-Euler equation
22y + boxy +coy =0 by,co €R
x = 0 is a regular singular point, since we can write the ODE as

b c
y//_l__Oy/_i__(;y:O
T X

All x # 0 are ordinary points.

Assume

Note that y = x" solves the equation iff
r(r—1)+bor +co=0

=24 (bg—1)r+c=0
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Example

Consider the Cauchy-Euler equation
22y + boxy +coy =0 by,co €R

x = 0 is a regular singular point, since we can write the ODE as

bo

C
v+ =y + 5y =0
x xT

All = 0 are ordinary points.

Assume

Note that y = x" solves the equation iff
r(r—1)+bor +co=0

=24 (bg—1)r+c=0

Let 1 and ro denote the roots of this quadratic equation.
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Example (continues ...)

o If the roots 1 # 79 are real, then

T1

T and 2™

are two independent solutions.
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Example (continues ...)

o If the roots 1 # 79 are real, then

T1

T and 2™

are two independent solutions.
@ If the roots 1 = ry are real, then

T1

z" and (logz)z™

are two independent solutions.
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Example (continues ...)

o If the roots 1 # 79 are real, then

T1

T and 2™

are two independent solutions.

@ If the roots 1 = ry are real, then

T1

" and (logz)z"™

are two independent solutions.

o If the roots are complex (written as a £ ib), then

x%cos(blogx) and x%sin(b logx)

are two independent solutions.
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Example (continues ...)

o If the roots 1 # 79 are real, then

T1

T and 2™

are two independent solutions.

@ If the roots 1 = ry are real, then

T1

" and (logz)z"™

are two independent solutions.

o If the roots are complex (written as a £ ib), then
x%cos(blogx) and x%sin(b logx)

are two independent solutions.

This example motivates us to look for solutions which involve z".
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First solution in regular singular case

Consider 22y" 4+ xb(z)y’ + c(z)y = 0 with
b(x) = Z bz c(x) = Z cix
>0 i>0

analytic functions in a small neighborhood of 0.
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First solution in regular singular case

Consider 22y" 4+ xb(z)y’ + c(z)y = 0 with
b(x) = Z bz c(x) = Z cix
>0 i>0

analytic functions in a small neighborhood of 0.
x = 0 is a regular singular point.

Define the indicial equation

I(r) :==r(r—1)+ bor + co
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First solution in regular singular case

Consider 22y" 4+ xb(z)y’ + c(z)y = 0 with
= Z bz c(x) = Z cix
i>0 i>0

analytic functions in a small neighborhood of 0.
x = 0 is a regular singular point.
Define the indicial equation

I(r) :==r(r —1) +bor + co

Look for solution of the type
I

by substituting this into the differential equation and setting the

coefficient of ™" to 0.
6/33



First solution in regular singular case

We get the following
@ The coefficient of " is I(r)ag, thus we need I(r)ag =0
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First solution in regular singular case

We get the following
@ The coefficient of " is I(r)ag, thus we need I(r)ag =0
@ The coefficient of "7, for n > 1, is

n—1 n—1
I(n+r)ay + Z bn—i(i +7)a; + Z Cn—iQ;

i=0 i=0
We need this to be 0
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Let 71 and ry be roots of I(r) = 0. Assume 71 and 79 are real and
Ty > To.
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First solution in regular singular case

We get the following
@ The coefficient of " is I(r)ag, thus we need I(r)ag =0
@ The coefficient of "7, for n > 1, is

n—1 n—1
I(n+r)a, + Z bp—i(i +1)a; + Z Cr—iQ;
i=0 i=0

We need this to be 0

Let 71 and ry be roots of I(r) = 0. Assume 71 and 79 are real and
Ty > To.

Define ag = 1.

Set r = r1 in the above equation and define a,,, for n > 1,

inductively by the equation

Soig boili + r)ai + Y0 eniag
I(n+r)

an(r) = —
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First solution in regular singular case

Since I(n+r1) # 0 forn > 1, a,(ry) is a well defined real number.
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First solution in regular singular case

Since I(n+r1) # 0 forn > 1, a,(ry) is a well defined real number.

Thus,
yl(x) — Zan(rl)$n+m

n>0

is a possible solution to the above differential equation.
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First solution in regular singular case

Theorem

Consider the ODE 2%y + xb(z)y' + c(x)y =0 (%)

where b(x) and c(x) are analytic at 0. Then x =0 is a regular
singular point of ODE.
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First solution in regular singular case

Theorem
Consider the ODE 2%y + xb(z)y' + c(x)y =0 (%)
where b(x) and c(x) are analytic at 0. Then x =0 is a regular

singular point of ODE.
Then (%) has a solution of the form

y(x) =2" Y ana" ag#£0, 1€C  (xx)

n>0

The solution (xx) is called Frobenius solution or fractional power
series solution.
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First solution in regular singular case

Theorem
Consider the ODE 2%y + xb(z)y' + c(x)y =0 (%)
where b(x) and c(x) are analytic at 0. Then x =0 is a regular

singular point of ODE.
Then (%) has a solution of the form

y(x) =x" Z anx” ag#0, reC  (xx)
n>0

The solution (xx) is called Frobenius solution or fractional power

series solution.

The power series Zan:v” converges on (—p, p), where p is the
n>0

minimum of the radius of convergence of b(z) and c(xz). We will

consider the solution y(x) in the open interval (0, p).
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Second solution in regular singular case

The analysis now breaks into the following three cases
°er —re¢Z
@0 r =r9
e 0#ri—ro€Z
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Second solution: 1 — 19 ¢ Z

In this case, because of the assumption that 7y — ry ¢ Z, it follows
that I(n + rg) # 0 for any n > 1.
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Second solution: 1 — 19 ¢ Z

In this case, because of the assumption that 7y — ry ¢ Z, it follows
that I(n + rg) # 0 for any n > 1.

Thus, as before, the second solution is given by

ya(w) =Y an(ro)a*"

n>0
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Second solution: 1 — 19 ¢ Z

In this case, because of the assumption that 7y — ry ¢ Z, it follows
that I(n + rg) # 0 for any n > 1.

Thus, as before, the second solution is given by

ya(w) =Y an(ro)a*"

n>0

Example

Consider the ODE  2?y” — 2y + %y -0
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Example
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Second solution: 1 — 19 ¢ Z

In this case, because of the assumption that 7y — ry ¢ Z, it follows
that I(n + rg) # 0 for any n > 1.

Thus, as before, the second solution is given by

ya(w) =Y an(ro)a*"

n>0

Example

Consider the ODE  2?y” — 2y + %y -0

Observe that = 0 is a regular singular point.
Iry=r(r—1)—3r+1
=2r(r—1)—r+1)/2
=(2r2 —3r+1)/2
=(r—-1)(2r—-1)/2

Roots of I(r) =0 are and
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Second solution: 1 — 19 ¢ Z

Example (continues ... 2z%y" —xy’ + (1+ x)y = 0)

Their difference 71 — r9 = 1/2 is not an integer.
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Second solution: 1 — 19 ¢ Z

Example (continues ... 2z%y" —xy’ + (1+ x)y = 0)

Their difference 71 — r9 = 1/2 is not an integer.

The equation defining a,, for n > 1, is

1
I(?’L a4 T)an + ian—l =0
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Second solution: 1 — 19 ¢ Z

Example (continues ... 2z%y" —xy’ + (1+ x)y = 0)
Their difference 71 — r9 = 1/2 is not an integer.

The equation defining a,, for n > 1, is

1
I(?’L a4 T)an + ian—l =0

Thus,
an(r) = — @n-1(r)
" m+r—1)2n+2r—-1)
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Second solution: 1 — 19 ¢ Z

Example (continues ... 2z%y" —xy’ + (1+ x)y = 0)

Their difference 71 — r9 = 1/2 is not an integer.

The equation defining a,, for n > 1, is

1
I(?’L a4 T)an +-ap-1=0

2
Thus,
an(r) = — @n-1(r)
" m+r—1)2n+2r—-1)
an—1
ThUS, an(rl) = an(l) = —m

N 1
=(=1) n!((2n+1)(2n—1)...3

12/33



Second solution: 1 — 19 ¢ Z

Example (continues ... 2z%y" —xy’ + (14 x)y = 0)

- (=1 a"
yi(z) =z 1+;n!(2n+1)(2n_ 1)...3
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Second solution: 1 — 19 ¢ Z

Example (continues ... 2z%y" —xy’ + (14 x)y = 0)

yi(z) =z (1 +; n!(2n +1)(2n —1). ..3)

an(re) = _n(#_—ll)

= (-1)" 1

n!(2n—1)(2n —3)...1

- (=1)"a"
ya(z) = 212 (1 + ; n!(2n —1)(2n —3)... 1)
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Second solution: 1 — 19 ¢ Z

Example (continues ... 2z%y" —xy’ + (14 x)y = 0)

yi(z) =z 1+;n!(2n+1)(2n_ 1)...3
an(r2) = —n(#__ll)
=(-1)" !

n!(2n—1)(2n —3)...1

—1)"gn
ya(z) = 22 [ 1 +T; nl(2n _(1)(;71_ 3)...1

Since |a,| are smaller that -, it is clear that both solutions
converge on (0, 00).
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Second solution: r; = 19

Consider the function of two variables

Y(r,x) = Z an(r)z" "

n>0
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Second solution: r; = 19

Consider the function of two variables

x) = Z an(r)z" "

n>0

Consider the differential operator

d? d
2
L:==x T —— + xb(x )dz—i—c(a:)

We have already computed the coefficient of """ in Li(r, ).
Recall that this is given by

Q@ The coefficient of 2" is I(r)ag
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Second solution: r; = 19

Consider the function of two variables

x) = Z an(r)z" "

n>0

Consider the differential operator
d? d
L=z —
v' o + zb(x )d:v + c(z)
We have already computed the coefficient of """ in Li(r, ).
Recall that this is given by

Q@ The coefficient of 2" is I(r)ag
@ The coefficient of 2", forn > 1, is

n—1 n—1
I(n+71)an(r) + > boi(i+1)ai(r) + > cniai(r)
=0 =0

14/33



Second solution: r; = 19

Consider the functions a,(r), defined inductively using the
equations
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Second solution: r; = 19

Consider the functions a,(r), defined inductively using the
equations
ap(r) =1

and forn >1

n—1 n—1

I(n+r)ay(r) + Z bp—i(i +1)a;(r) + Z cn—iai(r) =0

=0 1=0
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Second solution: r; = 19

Consider the functions a,(r), defined inductively using the

equations
ap(r) =1
and forn >1
n—1 n—1
I(n+r)ay(r) + Z bp—i(i +7)a;(r) + Z Cn—iai(r) =0
=0 1=0

With these definitions, it follows that

Lyp(r,z) = I(r)z"
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Second solution: r; = 19

If 1 — ro ¢ 7Z then the second solution is given by

ya(z) = 2™ Z an(re)x"”

n>0

16 /33



Second solution: r; = 19

If 1 — ro ¢ 7Z then the second solution is given by

ya(z) = 2™ Z an(re)x"”

n>0

Now let us consider the case when I has repeated roots
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Second solution: r; = 19

If 1 — ro ¢ 7Z then the second solution is given by

ya(z) = 2™ Z an(re)x"”

n>0

Now let us consider the case when I has repeated roots

Since I has repeated roots | = ro, it follows that, for every n > 1,
the polynomial JT"" ; I(i 4+ r) does not vanish at 7 =4

Consequently, it is clear that the a,(r) are analytic in a small
neighborhood around r = | = 9.
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Second solution: r; = 19

Now let us apply the differential operator % on both sides of the
equation L (r,x) = I(r)a". Clearly the operators L and %
commute with each other, and so we get
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Second solution: r; = 19

Now let us apply the differential operator % on both sides of the
equation L (r,x) = I(r)a". Clearly the operators L and %
commute with each other, and so we get

d d
%Iﬂ/](rv x) = L%ﬂ’(ﬂ x)
d
_ / n-+r n-+r _ r
= LT;) (an(r)x + ap(r)x log:c) = dTI(r)x
=TI'(r)z" + I(r)z" logz

17/33



Second solution: r; = 19

Now let us apply the differential operator % on both sides of the
equation L (r,x) = I(r)a". Clearly the operators L and %
commute with each other, and so we get

d d
%Iﬂ/](rv x) = L%ﬂ’(ﬂ x)

=1L Z (an, ()™ + an(r)a" " logz) = %I(r)ﬂ
n>0
=TI'(r)z" + I(r)z" logz

Thus, if we plug in r =71 = r9 in the above, then we get
L(Z al (r2)x" "2 + ay(r2) 2" log x) =0

n>0
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Second solution: r; = 19

Theorem (Second solution: 71 = r3)

A second solution to the differential equation is given by
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Second solution: r; = 19

Theorem (Second solution: 71 = r3)

A second solution to the differential equation is given by

Z a,, (r2)x" "2 + Z an(re)z" " 2log x

n>0 n>0
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Second solution: 7 = 19

Consider the ODE
2y +3zy + (1 —22)y =0

v
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Second solution: 7 = 19

Consider the ODE
2y +3zy + (1 —22)y =0

This has a regular singularity at z = 0.
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Second solution: 7 = 19

Consider the ODE
2y +3zy + (1 —22)y =0
This has a regular singularity at z = 0.
Ir)y=r(r—1)+3r+1
=r2+2r+1
has a repeated roots —1, —1.
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Second solution: 7 = 19

Consider the ODE
2y +3zy + (1 —22)y =0
This has a regular singularity at z = 0.
Ir)y=r(r—1)+3r+1
=r2+2r+1
has a repeated roots —1, —1.
Let us find the Frobenius solution directly by putting

y=a"Y an(r)a” ap=1

n>0
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Consider the ODE
2y +3zy + (1 —22)y =0
This has a regular singularity at z = 0.
Ir)y=r(r—1)+3r+1
=r2+2r+1
has a repeated roots —1, —1.
Let us find the Frobenius solution directly by putting

y=a"Y an(r)a” ap=1

n>0

v = Y (4 ran(r)am !

n>0
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Second solution: 7 = 19

Consider the ODE
2y +3zy + (1 —22)y =0
This has a regular singularity at z = 0.
Ir)y=r(r—1)+3r+1
=r2+2r+1
has a repeated roots —1, —1.
Let us find the Frobenius solution directly by putting

y=a"Y an(r)a” ap=1

n>0

/= 30+ raa(rie
n>0
00

y' = Z(n +7)(n+r—1)an(r)z™t 2
n>0
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Second solution: r; = 19

Example (continues .. .)

:c2y(x r) + 3zy(x,r) + (1 — 22)y(z,r)

Z n+r)(n+r—1)+3n+r)+ 1 ap(r)z™"
n=0

_ Z 2a,, (’I")CL'n+T+1
n=0
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Second solution: r; = 19

Example (continues .. .)

22y(z,r)" + 3xy(x,r) + (1 — 22)y(x,7)

= [(n+7r)(n+r—1)+3(n+r)+1] (7)™

n=0

(9
- Z 2a,, (’I")CL'n+T+1
n=0

Recursion relations for n > 1 are
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Second solution: 7 = 19

Example (continues .. .)

:c2y(x r) + 3zy(x,r) + (1 — 22)y(z,r)

Z n+r)(n+r—1)+3n+r)+ 1 ap(r)z™"
n=0

- Z 2a,, (’I")CL'n+T+1
n=0

Recursion relations for n > 1 are
2ap,—1(r)
n+r)n+r—1)+3n+r)+1
2ay,1(1)
(n+r+1)2
2T'L
(ntr+Dm+r)...r+2p2 "

an(r) =
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Second solution: 7 = 19

Example (continues ...)

Setting r = —1 (and ag = 1) yields the fractional power series
solution " o
_ = n
yi(e) = p Z (n!)2 z
n>0

The power series converges on (0, 00).

21/33



Second solution: 7 = 19

Example (continues ...)

Setting r = —1 (and ag = 1) yields the fractional power series
solution " o
_ = n
yi(e) = p Z (n!)2 z
n>0

The power series converges on (0, 00).

The second solution is

y2() = ya(@)logz + 271 Y ap(~1)a"
n>1
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Second solution: 7 = 19

Example (continues ...)

Setting r = —1 (and ag = 1) yields the fractional power series
solution " o
_ = n
yi(e) = p Z (n!)2 z
n>0

The power series converges on (0, c0).
The second solution is
Y2 (2) = y1 () logz + 21 Z al (=1)z"
n>1
where
2n
n+r+1)(n+r)... (r+2))2
, —22" [(mn+r+D(n+r)...(r+2)]
an (1) = 5
(m+r+1)(n+r)...(r+2)]

w) =1
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Second solution: 7 = 19

Example (continued)

2an(r) (— Ty
= —4Qp\Tr
" n+r+1 n+r r+2
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Second solution: 7 = 19

Example (continued)

1 1
= —2a,(r) <n+r+1 o T
Putting = —1, we get
(-1 = -2 M
(n!)?
where

1 1
2 n

(These are the partial sums of the harmonic series.)

1

+’I“+2

)
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Second solution: 7 = 19

Example (continued)

1 1
= —2ax(r) <n—|—r+1 - n+r *
Putting = —1, we get
(1) = 2
(n!)?
where

1 1
H,=1+—-—+---4+ —
2 n

(These are the partial sums of the harmonic series.)

So the second solution is

1

+’I“+2

)

22/33



Second solution: 7 = 19

Example (continued)

= —2a,(r) <
Putting = —1, we get
_2n+1Hn
(n!)?

1 1
+ +
n+r+1 n+r

where 0 |
H,=1+—-—+---4+ —
2 n

(These are the partial sums of the harmonic series.)

So the second solution is

It is clear that this series converges on (0, c0).

1

+’I“+2

)
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Second solution: 0 #£ r| — 19 € Z

Define
N = r —To

Note that each a,(r) is a rational function in r, in fact, the
denominator is exactly [[i", I(i 4 7).
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Second solution: 0 #£ r| — 19 € Z

Define
N = rn —T2

Note that each a,(r) is a rational function in r, in fact, the
denominator is exactly [[i", I(i 4 7).

The polynomial []?"_, I(i + r) evaluated at r vanishes iff n > N.
For n > N it vanishes to order exactly 1.

Thus, if we define
Ap(r) == an(r)(r —re)

then it is clear that for every n > 0, the function A, (r) is analytic
in a neighborhood of rs.
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Second solution: 0 #£ r| — 19 € Z

In particular, A, (r2) and A/, (r2) are well defined real numbers.
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Multiplying the equation Li(r,x) = I(r)a" with r — ro we get

(r—ro)Lp(r,x) = L(r —ro)¢(r,x) = (r —ro)I(r)z"
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In particular, A, (r2) and A/, (r2) are well defined real numbers.

Multiplying the equation Li(r,x) = I(r)a" with r — ro we get

(r—ro)Lp(r,x) = L(r —ro)¢(r,x) = (r —ro)I(r)z"

Note that

(r—ro)h Z Ap(r)z" "

n>0
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Second solution: 0 #£ r| — 19 € Z

Now let us apply the differential operator d% on both sides of the
equation L(r — ro)(r,xz) = (r — ro)I(r)z" to get

%L(r —ro)y(r,x) = LC%(T —r2)(r, x)
- dii(r —ro)I(r)x”

=I(r)a" + (r —ro)'(r)a” + (r — r2)I(r)az" logx
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Second solution: 0 #£ r| — 19 € Z

Now let us apply the differential operator d% on both sides of the
equation L(r — ro)(r,xz) = (r — ro)I(r)z" to get

%L(r —ro)(r,x) = LC%(T — ro)Y(r, )

= dii(r —ro)I(r)x”

=I(r)a" + (r —ro)'(r)a” + (r — r2)I(r)az" logx

Thus we get
Ld%’ ( ;;:)An(r)x””) = L;i(;;o An(r)acn'”)

- L( Z Al (1) 4+ A (r)2™ 7 log $>
n>0
=I(r)z" + (r —ro)I'(r)z"+
(r —ro)I(r)x"logz
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Second solution: 0 #£ r| — 19 € Z

If we set 7 = 75 into the equation

L( Z AL (P2 4+ Ay (r)2™ T log ac) =I(r)a" + (r —ro)I'(r)a"+

n>0

(r —ro)I(r)x"logz
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If we set 7 = 75 into the equation

L( Z AL (P2 4+ Ay (r)2™ T log ac) =I(r)a" + (r —ro)I'(r)a"+

n>0

(r —ro)I(r)x"logz
we get the second solution

L ( Z Al (r9)x"™ 172 4 Ay (r2)2"™ T2 log a:) =0

n>0

26 /33



Second solution: 0 #£ r| — 19 € Z

If we set 7 = 75 into the equation

L( Z AL (P2 4+ Ay (r)2™ T log ac) =I(r)a" + (r —ro)I'(r)a"+

n>0

(r —ro)I(r)x"logz
we get the second solution

L ( Z Al (r9)x"™ 172 4 Ay (r2)2"™ T2 log a:) =0

n>0

Theorem (Second solution: 0 # r; — ry € Z)

A second solution to the differential equation is given by
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Second solution: 0 #£ r| — 19 € Z

If we set 7 = 75 into the equation

L( Z AL (P2 4+ Ay (r)2™ T log ac) =I(r)a" + (r —ro)I'(r)a"+

n>0

(r —ro)I(r)x"logz
we get the second solution

L ( Z Al (r9)x"™ 172 4 Ay (r2)2"™ T2 log a:) =0

n>0

Theorem (Second solution: 0 # r; — ry € Z)

A second solution to the differential equation is given by

Z Al (ro)z"™ T2 + Z Ap(re)z" " 2log x

n>0 n>0
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Second solution: 0 #£ r| — 19 € Z

Consider the ODE 2y —(4d+z)y +2y=0 (%)
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Second solution: 0 #£ r| — 19 € Z

Example

Consider the ODE 2y —(4d+z)y +2y=0 (%)

Multiplying (%) with =, we get = 0 is a regular singular point.
Iry=r(r—1)—4r+0=r(r—5)=0

with the roots differing by a positive integer.
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n=0
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Second solution: 0 #£ r| — 19 € Z

Example
Consider the ODE 2y —(4d+z)y +2y=0 (%)

Multiplying (%) with =, we get = 0 is a regular singular point.
Iry=r(r—1)—4r+0=r(r—5)=0
with the roots differing by a positive integer.
o0

Put y(z,r) = x”Zan(T)x", ap(r) =1, into the ODE to get
n=0

x Z(n +7)(n 47— Day(r)z" 2
n>0

—(4+9:)Z(n+r)an A 1+2Zan )zt =0

n>0 n>0
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Second solution: 0 #£ r| — 19 € Z

Example

Consider the ODE 2y —(4d+z)y +2y=0 (%)

Multiplying (%) with =, we get = 0 is a regular singular point.
Iry=r(r—1)—4r+0=r(r—5)=0

with the roots dif(fgring by a positive integer.

Put y(z,r) = x”Zan(T)x", ap(r) =1, into the ODE to get
n=0

x Z(n +7)(n 47— Day(r)z" 2
n>0

—(4+9:)Z(n+r)an A 1+2Zan )zt =0

n>0 n>0

the coefficient of 2"~ for n > 1 gives
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Second solution: 0 #£ r| — 19 € Z

Example (continues ...)

m+r)n+r—1Day(r) —4n+7r)a,(r) — (n+r —1a,—1(r)
+2a,-1(r) =0
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Second solution: 0 #£ r| — 19 € Z

Example (continues ...)
(n+r)(n+7r—1an(r) —4(n+r)an(r) — (n+r —1)apn—1(r)
+2a,-1(r) =0
Forn > 1,
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Second solution: 0 #£ r| — 19 € Z

Example (continues ...)
(n+7r)(n+7r—1an(r) —4n+r)a(r) — (n+r—1)an—1(r)
+2a,-1(r) =0
Forn > 1,
(n+r)n+r—>5)a,=Mn+r—3)an_1
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Second solution: 0 #£ r| — 19 € Z

Example (continues ...)

m+r)n+r—1Day(r) —4n+7r)a,(r) — (n+r —1a,—1(r)

+2a,-1(r) =0
Forn > 1,
(m+r)n+r—>5a,=n+r—3)ap—1
B (n+r—3)
an(r) = (mn+r)yn+r—>5) "'

_ (n+r—3)...(r—2) a0
m+r)...l+r)(n+7r—-5)...(r—4)
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Second solution: 0 #£ r| — 19 € Z

Example (continues ...)

m+r)n+r—1Day(r) —4n+7r)a,(r) — (n+r —1a,—1(r)

+2a,-1(r) =0
Forn > 1,
(n+r)n+r—>5)a,=Mn+r—3)an_1
B (n+r—3)
an(r) = (mn+r)yn+r—>5) "'

_ (n+r—3)...(r—2) a0
m+r)...l+r)(n+7r—-5)...(r—4)

For the first solution, set r =r; =5 (and ag = 1), we get
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Second solution: 0 #£ r| — 19 € Z

Example (continues ...)

m+r)n+r—1Day(r) —4n+7r)a,(r) — (n+r —1a,—1(r)

+2a,-1(r) =0
Forn > 1,
(m+r)n+r—>5a,=n+r—3)ap—1
B (n+r—3)
an(r) = (mn+r)yn+r—>5) "'

_ (n+r—3)...(r—2) a0
m+r)...l+r)(n+7r—-5)...(r—4)
For the first solution, set r =r; =5 (and ag = 1), we get
an(5) = n+2)...(3)
" (n+5)...6(n)...1
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Second solution: 0 #£ r| — 19 € Z

Example (continues ...)

m+r)n+r—1Day(r) —4n+7r)a,(r) — (n+r —1a,—1(r)

+2a,-1(r) =0
Forn > 1,
(m+r)n+r—>5a,=n+r—3)ap—1
B (n+r—3)
an(r) = (mn+r)yn+r—>5) "'

_ (n+r—3)...(r—2) "
(n+r)...(L+r)(n+tr—5)...(r—4) °
For the first solution, set r =r; =5 (and ag = 1), we get
an(5) = n+2)...(3)
(n+5)...6(n)...1
_ (n+2)1/2
~ (n)(n+5)!/5!
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Second solution: 0 #£ r| — 19 € Z

Example (continues .. .)
60
" nl(n+5)(n+4)(n+3)
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Second solution: 0 #£ r| — 19 € Z

60
" nl(n+5)(n+4)(n+3)
_ 60 n+5
@)= nl(n+5)(n+4)(n+3)

n>0
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Second solution: 0 #£ r| — 19 € Z

Example (continues .. .)
60
" nl(n+5)(n+4)(n+3)
60 n+5
T) = 7
n(@) RZX] nl(n+5)(n+4)(n + 3)
Recall N = r; —;2 =5 — 0 is integer, so the second solution is

ya(x) = Z Al (rg)x™t"2 + Z Ap(r2)x™ " 2log

n>0 n>0

Thus
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T) = 7
n(@) RZX] nl(n+5)(n+4)(n + 3)
Recall N = r; —;2 =5 — 0 is integer, so the second solution is

ya(x) = Z Al (rg)x™t"2 + Z Ap(r2)x™ " 2log

n>0 n>0

Thus

where, for n > 0
Ap(r) = (r —r2)an(r)
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Second solution: 0 #£ r| — 19 € Z

Example (continues .. .)
60
" nl(n+5)(n+4)(n+3)
60 n+5
T) = 7
n(@) RZX] nl(n+5)(n+4)(n + 3)
Recall N = r; —;2 =5 — 0 is integer, so the second solution is

ya(z) = Z Al (rg)x™t"2 + Z Ay (re)z" " 2log x

n>0 n>0

Thus

where, for n > 0
Ap(r) = (r —r2)an(r)
Since 9 = 0, the above becomes
Apn (1) = ray(r)
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Second solution: 0 #£ r| — 19 € Z

In this example, we can easily check that none of the a,(r) have a
singularity at r = 0.
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Second solution: 0 #£ r| — 19 € Z

Example
In this example, we can easily check that none of the a,(r) have a
singularity at r = 0.

Thus, A,,(0) =0 for all n > 0; and A/,(0) = a,(0) for all n > 0.
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Second solution: 0 #£ r| — 19 € Z

Example

In this example, we can easily check that none of the a,(r) have a
singularity at r = 0.

Thus, A,,(0) =0 for all n > 0; and A/,(0) = a,(0) for all n > 0.

a1(0) = 3; a2(0) = 15;
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Second solution: 0 #£ r| — 19 € Z

Example
In this example, we can easily check that none of the a,(r) have a
singularity at r = 0.

Thus, A,,(0) =0 for all n > 0; and A/,(0) = a,(0) for all n > 0.
a1(0) = 1; ax(0) = &;
It is easily checked that for n > 3

(n+r—3)(n+r—4)
nll2

an(r) =
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Second solution: 0 #£ r| — 19 € Z

Example

In this example, we can easily check that none of the a,(r) have a
singularity at r = 0.

Thus, A,,(0) =0 for all n > 0; and A/,(0) = a,(0) for all n > 0.
a1(0) = 1; ax(0) = &;
It is easily checked that for n > 3

(n+r—3)(n+r—4)
nll2

an(r) =

Thus, a3(0) = a4(0) = 0.
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Second solution: 0 #£ r| — 19 € Z

Therefore a second solution is

- —4
ya(x) =1+ = +7+Zn (n )a:"
n>5

T 1 k
S Tl +5
HERRT +k§>:0 K1k + 5)(k + 4)(k + 3)12
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Second solution: 0 #£ r| — 19 € Z

Therefore a second solution is

(n—3
yo(x) =1+ = +—+Z
n>>5

n—4)

xn

1 k+5

xXr
— 144
+2+12+k§>:0k:!(k+5)(k:

Since

+ 4)(k + 3)12

k+5

1
kz k\(k + 5)(k + 4) (k + 3)12

is a multiple of ¥ (x),
we get that a second solution is

T $2

yg()_1+ P ==

2 12
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While solving an ODE around a regular singular point by the
Frobenius method, the cases encountered are
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@ roots not differing by an integer

32/33



While solving an ODE around a regular singular point by the
Frobenius method, the cases encountered are

@ roots not differing by an integer

@ repeated roots

32/33



While solving an ODE around a regular singular point by the
Frobenius method, the cases encountered are

@ roots not differing by an integer
@ repeated roots

@ roots differing by a positive integer

32/33



While solving an ODE around a regular singular point by the
Frobenius method, the cases encountered are

@ roots not differing by an integer
@ repeated roots
@ roots differing by a positive integer

The larger root always yields a fractional power series solution.
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While solving an ODE around a regular singular point by the
Frobenius method, the cases encountered are

@ roots not differing by an integer
@ repeated roots
@ roots differing by a positive integer
The larger root always yields a fractional power series solution.

In the first case, the smaller root also yields a fractional power
series solution.
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While solving an ODE around a regular singular point by the
Frobenius method, the cases encountered are

@ roots not differing by an integer
@ repeated roots
@ roots differing by a positive integer
The larger root always yields a fractional power series solution.

In the first case, the smaller root also yields a fractional power
series solution.

In the second and third cases, the second solution may involve a
log term.
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Let us write down some classical ODE's.
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Let us write down some classical ODE's.

o (Euler equation)  az?y” + Bxy’ +~yy =0
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Let us write down some classical ODE's.
o (Euler equation)  ax?y” + Bxy’ + vy =0

o (Bessel equation) 2%y + xy’ + (2% — v?)y = 0. We will
next look at this case more closely.
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Let us write down some classical ODE's.
o (Euler equation)  ax?y” + Bxy’ + vy =0
o (Bessel equation)  z2y” + xy’ + (22 — 1)y = 0. We will
next look at this case more closely.

o (Laguerre equation) zy”" 4+ (1—2)y +Ay=0
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