MA-207 Differential Equations II

Ronnie Sebastian

Department of Mathematics
Indian Institute of Technology Bombay
Powai, Mumbai - 76

Gamma function

Gamma function

Define for all $p \geq 1$, the Gamma function

$$
\Gamma(p):=\int_{0}^{\infty} t^{p-1} e^{-t} d t
$$

Gamma function

Define for all $p \geq 1$, the Gamma function

$$
\Gamma(p):=\int_{0}^{\infty} t^{p-1} e^{-t} d t
$$

There is a problem if $p<1$, since t^{p-1} is unbounded near 0 .

Gamma function

Define for all $p \geq 1$, the Gamma function

$$
\Gamma(p):=\int_{0}^{\infty} t^{p-1} e^{-t} d t
$$

There is a problem if $p<1$, since t^{p-1} is unbounded near 0 .
For $p>1$, there is no problem because e^{-t} is rapidly decreasing.

Gamma function

Define for all $p \geq 1$, the Gamma function

$$
\Gamma(p):=\int_{0}^{\infty} t^{p-1} e^{-t} d t
$$

There is a problem if $p<1$, since t^{p-1} is unbounded near 0 .
For $p>1$, there is no problem because e^{-t} is rapidly decreasing.

$$
\Gamma(1)=\int_{0}^{\infty} e^{-t} d t=1
$$

Gamma function

Define for all $p \geq 1$, the Gamma function

$$
\Gamma(p):=\int_{0}^{\infty} t^{p-1} e^{-t} d t
$$

There is a problem if $p<1$, since t^{p-1} is unbounded near 0 .
For $p>1$, there is no problem because e^{-t} is rapidly decreasing.

$$
\Gamma(1)=\int_{0}^{\infty} e^{-t} d t=1
$$

For any real number $p \geq 1$,
$\Gamma(p+1)$

Gamma function

Define for all $p \geq 1$, the Gamma function

$$
\Gamma(p):=\int_{0}^{\infty} t^{p-1} e^{-t} d t
$$

There is a problem if $p<1$, since t^{p-1} is unbounded near 0 .
For $p>1$, there is no problem because e^{-t} is rapidly decreasing.

$$
\Gamma(1)=\int_{0}^{\infty} e^{-t} d t=1
$$

For any real number $p \geq 1$,

$$
\Gamma(p+1)=\lim _{x \rightarrow \infty} \int_{0}^{x} t^{p} e^{-t} d t
$$

Gamma function

Define for all $p \geq 1$, the Gamma function

$$
\Gamma(p):=\int_{0}^{\infty} t^{p-1} e^{-t} d t
$$

There is a problem if $p<1$, since t^{p-1} is unbounded near 0 .
For $p>1$, there is no problem because e^{-t} is rapidly decreasing.

$$
\Gamma(1)=\int_{0}^{\infty} e^{-t} d t=1
$$

For any real number $p \geq 1$,

$$
\Gamma(p+1)=\lim _{x \rightarrow \infty} \int_{0}^{x} t^{p} e^{-t} d t=p\left(\lim _{x \rightarrow \infty} \int_{0}^{x} t^{p-1} e^{-t} d t\right)
$$

Gamma function

Define for all $p \geq 1$, the Gamma function

$$
\Gamma(p):=\int_{0}^{\infty} t^{p-1} e^{-t} d t
$$

There is a problem if $p<1$, since t^{p-1} is unbounded near 0 .
For $p>1$, there is no problem because e^{-t} is rapidly decreasing.

$$
\Gamma(1)=\int_{0}^{\infty} e^{-t} d t=1
$$

For any real number $p \geq 1$,

$$
\Gamma(p+1)=\lim _{x \rightarrow \infty} \int_{0}^{x} t^{p} e^{-t} d t=p\left(\lim _{x \rightarrow \infty} \int_{0}^{x} t^{p-1} e^{-t} d t\right)=p \Gamma(p)
$$

$$
\begin{equation*}
\Gamma(p+1)=p \Gamma(p) \Longrightarrow \Gamma(p)=\frac{\Gamma(p+1)}{p} \tag{*}
\end{equation*}
$$

$$
\begin{equation*}
\Gamma(p+1)=p \Gamma(p) \Longrightarrow \Gamma(p)=\frac{\Gamma(p+1)}{p} \tag{*}
\end{equation*}
$$

We use (*) to extend the gamma function to all real numbers except non-positive integers $0,-1,-2, \ldots$

$$
\begin{equation*}
\Gamma(p+1)=p \Gamma(p) \Longrightarrow \Gamma(p)=\frac{\Gamma(p+1)}{p} \tag{*}
\end{equation*}
$$

We use $(*)$ to extend the gamma function to all real numbers except non-positive integers $0,-1,-2, \ldots$
Note $0<p<1 \Longrightarrow 1<p+1<2$, hence $\Gamma(p+1)$ is defined. We use $(*)$ to define $\Gamma(p)$.

$$
\begin{equation*}
\Gamma(p+1)=p \Gamma(p) \Longrightarrow \Gamma(p)=\frac{\Gamma(p+1)}{p} \tag{*}
\end{equation*}
$$

We use $(*)$ to extend the gamma function to all real numbers except non-positive integers $0,-1,-2, \ldots$
Note $0<p<1 \Longrightarrow 1<p+1<2$, hence $\Gamma(p+1)$ is defined. We use $(*)$ to define $\Gamma(p)$.
Next, $-1<p<0 \Longrightarrow 0<p+1<1$. Since $\Gamma(p+1)$ is defined above; use $(*)$ to define $\Gamma(p)$. Proceed like this

$$
\begin{equation*}
\Gamma(p+1)=p \Gamma(p) \Longrightarrow \Gamma(p)=\frac{\Gamma(p+1)}{p} \tag{*}
\end{equation*}
$$

We use $(*)$ to extend the gamma function to all real numbers except non-positive integers $0,-1,-2, \ldots$
Note $0<p<1 \Longrightarrow 1<p+1<2$, hence $\Gamma(p+1)$ is defined. We use ($*$) to define $\Gamma(p)$.
Next, $-1<p<0 \Longrightarrow 0<p+1<1$. Since $\Gamma(p+1)$ is defined above; use $(*)$ to define $\Gamma(p)$. Proceed like this
For example, $\quad \Gamma\left(-\frac{5}{2}\right)=\frac{\Gamma\left(-\frac{3}{2}\right)}{-\frac{5}{2}}=\frac{\Gamma\left(-\frac{1}{2}\right)}{\left(-\frac{5}{2}\right)\left(-\frac{3}{2}\right)}=\frac{\Gamma\left(\frac{1}{2}\right)(=\sqrt{\pi})}{\left(-\frac{5}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{1}{2}\right)}$

Further

$$
\lim _{p \rightarrow 0} \Gamma(p)=\lim _{p \rightarrow 0} \frac{\Gamma(p+1)}{p}= \pm \infty
$$

according as $p \rightarrow 0$ from right or left.

Further

$$
\lim _{p \rightarrow 0} \Gamma(p)=\lim _{p \rightarrow 0} \frac{\Gamma(p+1)}{p}= \pm \infty
$$

according as $p \rightarrow 0$ from right or left.
The graph of Gamma function is shown below.

Gamma inction

Though the gamma function is now defined for all real numbers (except the non positive integers), the integral representation is valid only for $p>0$.

Though the gamma function is now defined for all real numbers (except the non positive integers), the integral representation is valid only for $p>0$.
It is useful to rewrite

$$
\frac{1}{\Gamma(p)}=\frac{p}{\Gamma(p+1)}
$$

This holds for all p if we impose the natural condition that the reciprocal of Γ evaluated at a non positive integer is 0 .

Though the gamma function is now defined for all real numbers (except the non positive integers), the integral representation is valid only for $p>0$.
It is useful to rewrite

$$
\frac{1}{\Gamma(p)}=\frac{p}{\Gamma(p+1)}
$$

This holds for all p if we impose the natural condition that the reciprocal of Γ evaluated at a non positive integer is 0 .

$$
\begin{aligned}
\Gamma(1 / 2) & =\int_{0}^{\infty} t^{-1 / 2} e^{-t} d t \\
& =2 \int_{0}^{\infty} e^{-s^{2}} d s \quad \text { (use the substitution } t=s^{2} \text {) } \\
& =\sqrt{\pi}
\end{aligned}
$$

By translating,

$$
\begin{aligned}
& \Gamma(1 / 2) \quad=\sqrt{\pi} \quad \approx 1.772 \\
& \Gamma(-1 / 2)=\frac{\Gamma(1 / 2)}{-1 / 2}=-2 \sqrt{\pi} \approx-3.545 \\
& \Gamma(-3 / 2)=\frac{\Gamma(-1 / 2)}{-3 / 2}=\frac{4}{3} \sqrt{\pi} \quad \approx 2.363 \\
& \Gamma(3 / 2) \quad=\frac{1}{2} \Gamma(1 / 2) \quad=\frac{1}{2} \sqrt{\pi} \quad \approx 0.886 \\
& \Gamma(5 / 2) \quad=\frac{3}{2} \Gamma(3 / 2) \quad=\frac{3}{4} \sqrt{\pi} \quad \approx 1.329 \\
& \Gamma(7 / 2)=\frac{5}{2} \Gamma(5 / 2)=\frac{15}{8} \sqrt{\pi} \approx 3.323
\end{aligned}
$$

Bessel functions

Bessel functions

Bessel equation is the second-order linear ODE

Bessel functions

Bessel equation is the second-order linear ODE

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0 \quad p \geq 0 \tag{*}
\end{equation*}
$$

Bessel functions

Bessel equation is the second-order linear ODE

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0 \quad p \geq 0 \tag{*}
\end{equation*}
$$

Its solutions are called Bessel functions.

Bessel functions

Bessel equation is the second-order linear ODE

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0 \quad p \geq 0 \tag{*}
\end{equation*}
$$

Its solutions are called Bessel functions.
Bessel functions have applications in physics and engineering:

Bessel functions

Bessel equation is the second-order linear ODE

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0 \quad p \geq 0 \tag{*}
\end{equation*}
$$

Its solutions are called Bessel functions.
Bessel functions have applications in physics and engineering:
Since $x=0$ is a regular singular point of $(*)$, we get a Frobenius solution, called Bessel function of first kind.

Bessel functions

Bessel equation is the second-order linear ODE

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0 \quad p \geq 0 \tag{*}
\end{equation*}
$$

Its solutions are called Bessel functions.
Bessel functions have applications in physics and engineering:
Since $x=0$ is a regular singular point of $(*)$, we get a Frobenius solution, called Bessel function of first kind.
The second linearly independent solution of $(*)$ is called Bessel function of second kind.

Bessel equation is the second-order linear ODE

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0 \quad p \geq 0 \tag{*}
\end{equation*}
$$

Its solutions are called Bessel functions.
Bessel functions have applications in physics and engineering:
Since $x=0$ is a regular singular point of $(*)$, we get a Frobenius solution, called Bessel function of first kind.
The second linearly independent solution of $(*)$ is called Bessel function of second kind.
For Frobenius solution, put $y=x^{r} \sum_{n=0}^{\infty} a_{n}(r) x^{n} \quad a_{0}=1$.

The indicial equation, i.e. coefficient of x^{r}, for Bessel equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0 \quad$ is

$$
I(r)=r(r-1)+r-p^{2}=r^{2}-p^{2}=0
$$

The indicial equation, i.e. coefficient of x^{r}, for Bessel equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0 \quad$ is

$$
I(r)=r(r-1)+r-p^{2}=r^{2}-p^{2}=0
$$

The roots are $r_{1}=p$ and $r_{2}=-p$.

The indicial equation, i.e. coefficient of x^{r}, for Bessel equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0 \quad$ is

$$
I(r)=r(r-1)+r-p^{2}=r^{2}-p^{2}=0
$$

The roots are $r_{1}=p$ and $r_{2}=-p$.
For recurrence relations, equating coefficient of x^{n+r} to 0 (for $n \geq 1$) we get

$$
\left[(r+n)^{2}-p^{2}\right] a_{n}(r)+a_{n-2}(r)=0 \quad n \geq 2
$$

The indicial equation, i.e. coefficient of x^{r}, for Bessel equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0 \quad$ is

$$
I(r)=r(r-1)+r-p^{2}=r^{2}-p^{2}=0
$$

The roots are $r_{1}=p$ and $r_{2}=-p$.
For recurrence relations, equating coefficient of x^{n+r} to 0 (for $n \geq 1$) we get

$$
\begin{aligned}
& {\left[(r+n)^{2}-p^{2}\right] a_{n}(r)+a_{n-2}(r)=0 \quad n \geq 2} \\
& \left((r+1)^{2}-p^{2}\right) a_{1}(r)=0 \Longrightarrow a_{1}(r)=0
\end{aligned}
$$

So all odd terms $a_{2 n+1}(r)=0$.

The indicial equation, i.e. coefficient of x^{r}, for Bessel equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0 \quad$ is

$$
I(r)=r(r-1)+r-p^{2}=r^{2}-p^{2}=0
$$

The roots are $r_{1}=p$ and $r_{2}=-p$.
For recurrence relations, equating coefficient of x^{n+r} to 0 (for $n \geq 1$) we get

$$
\begin{aligned}
& {\left[(r+n)^{2}-p^{2}\right] a_{n}(r)+a_{n-2}(r)=0 \quad n \geq 2} \\
& \left((r+1)^{2}-p^{2}\right) a_{1}(r)=0 \Longrightarrow a_{1}(r)=0
\end{aligned}
$$

So all odd terms $a_{2 n+1}(r)=0$.

$$
\begin{aligned}
a_{2 n}(r) & =\frac{-1}{(r+2 n)^{2}-p^{2}} a_{2 n-2} \\
& =\frac{(-1)^{n}}{\left((r+2)^{2}-p^{2}\right)\left((r+4)^{2}-p^{2}\right) \ldots\left((r+2 n)^{2}-p^{2}\right)}
\end{aligned}
$$

For Frobenius solution, set $r=p$ the larger root.

$$
\begin{aligned}
a_{2 n}(p) & =\frac{(-1)^{n}}{\left((p+2)^{2}-p^{2}\right)\left((p+4)^{2}-p^{2}\right) \ldots\left((p+2 n)^{2}-p^{2}\right)} \\
& =\frac{(-1)^{n}}{(2(2 p+2))(4(2 p+4)) \ldots(2 n(2 p+2 n))} \\
& =\frac{(-1)^{n}}{2^{2 n} n!(1+p) \ldots(n+p)}
\end{aligned}
$$

For Frobenius solution, set $r=p$ the larger root.

$$
\begin{aligned}
a_{2 n}(p) & =\frac{(-1)^{n}}{\left((p+2)^{2}-p^{2}\right)\left((p+4)^{2}-p^{2}\right) \ldots\left((p+2 n)^{2}-p^{2}\right)} \\
& =\frac{(-1)^{n}}{(2(2 p+2))(4(2 p+4)) \ldots(2 n(2 p+2 n))} \\
& =\frac{(-1)^{n}}{2^{2 n} n!(1+p) \ldots(n+p)}
\end{aligned}
$$

The solution

$$
y_{1}(x)=x^{p} \sum_{n \geq 0} \frac{(-1)^{n}}{2^{2 n} n!(1+p) \ldots(n+p)} x^{2 n}
$$

converges on $(0, \infty)$.

For Frobenius solution, set $r=p$ the larger root.

$$
\begin{aligned}
a_{2 n}(p) & =\frac{(-1)^{n}}{\left((p+2)^{2}-p^{2}\right)\left((p+4)^{2}-p^{2}\right) \ldots\left((p+2 n)^{2}-p^{2}\right)} \\
& =\frac{(-1)^{n}}{(2(2 p+2))(4(2 p+4)) \ldots(2 n(2 p+2 n))} \\
& =\frac{(-1)^{n}}{2^{2 n} n!(1+p) \ldots(n+p)}
\end{aligned}
$$

The solution

$$
y_{1}(x)=x^{p} \sum_{n \geq 0} \frac{(-1)^{n}}{2^{2 n} n!(1+p) \ldots(n+p)} x^{2 n}
$$

converges on $(0, \infty)$.
Multiply $y_{1}(x)$ by $\frac{1}{2^{p} \Gamma(1+p)}$

$$
J_{p}(x):=\left(\frac{x}{2}\right)^{p} \sum_{n \geq 0} \frac{(-1)^{n}}{n!\Gamma(n+p+1)}\left(\frac{x}{2}\right)^{2 n} \quad x>0 .
$$

This is called the Bessel function of first kind of order p.

$$
J_{p}(x):=\sum_{n \geq 0} \frac{(-1)^{n}}{n!\Gamma(n+p+1)}\left(\frac{x}{2}\right)^{2 n+p} \quad x>0 .
$$

$$
J_{p}(x):=\sum_{n \geq 0} \frac{(-1)^{n}}{n!\Gamma(n+p+1)}\left(\frac{x}{2}\right)^{2 n+p} \quad x>0
$$

The Bessel function of order 0 is

$$
\begin{aligned}
J_{0}(x) & =\sum_{n \geq 0} \frac{(-1)^{n}}{n!n!}\left(\frac{x}{2}\right)^{2 n} \\
& =1-\left(\frac{x}{2}\right)^{2}+\frac{1}{2!2!}\left(\frac{x}{2}\right)^{4}-\frac{1}{3!3!}\left(\frac{x}{2}\right)^{6}+\ldots
\end{aligned}
$$

$$
J_{p}(x):=\sum_{n \geq 0} \frac{(-1)^{n}}{n!\Gamma(n+p+1)}\left(\frac{x}{2}\right)^{2 n+p} \quad x>0
$$

The Bessel function of order 0 is

$$
\begin{aligned}
J_{0}(x) & =\sum_{n \geq 0} \frac{(-1)^{n}}{n!n!}\left(\frac{x}{2}\right)^{2 n} \\
& =1-\left(\frac{x}{2}\right)^{2}+\frac{1}{2!2!}\left(\frac{x}{2}\right)^{4}-\frac{1}{3!3!}\left(\frac{x}{2}\right)^{6}+\ldots
\end{aligned}
$$

The Bessel function of order 1 is

$$
\begin{aligned}
J_{1}(x) & =\sum_{n \geq 0} \frac{(-1)^{n}}{n!(n+1)!}\left(\frac{x}{2}\right)^{2 n+1} \\
& =\frac{x}{2}-\frac{1}{1!2!}\left(\frac{x}{2}\right)^{3}+\frac{1}{2!3!}\left(\frac{x}{2}\right)^{5}+\ldots
\end{aligned}
$$

Both $J_{0}(x)$ and $J_{1}(x)$ have a damped oscillatory behavior having an infinite number of zeros, these zeros occur alternately like functions $\cos x$ and $\sin x$.

Both $J_{0}(x)$ and $J_{1}(x)$ have a damped oscillatory behavior having an infinite number of zeros, these zeros occur alternately like functions $\cos x$ and $\sin x$.

Both $J_{0}(x)$ and $J_{1}(x)$ have a damped oscillatory behavior having an infinite number of zeros, these zeros occur alternately like functions $\cos x$ and $\sin x$.

Further, they satisfy derivative identities similar to $\cos x$ and $\sin x$.

$$
J_{0}^{\prime}(x)=-J_{1}(x) \quad\left[x J_{1}(x)\right]^{\prime}=x J_{0}(x)
$$

Second independent solution of Bessel equation

Recall $r_{1}=p$ and $r_{2}=-p$ are roots of indicial equation.
So that $r_{1}-r_{2}=2 p$.

Second independent solution of Bessel equation

Recall $r_{1}=p$ and $r_{2}=-p$ are roots of indicial equation.
So that $r_{1}-r_{2}=2 p$.
The analysis to get a second independent solution of the Bessel equation splits into the following cases

Second independent solution of Bessel equation

Recall $r_{1}=p$ and $r_{2}=-p$ are roots of indicial equation.
So that $r_{1}-r_{2}=2 p$.
The analysis to get a second independent solution of the Bessel equation splits into the following cases

- $2 p$ is not an integer
- $2 p$ is an odd positive integer
- $2 p$ is an even positive integer
- $p=0$

Second independent solution of Bessel equation

Case 1: $2 p$ is not an integer.

Second independent solution of Bessel equation

Case 1: $2 p$ is not an integer.
Solving the recursion

$$
\left[(r+n)^{2}-p^{2}\right] a_{n}(r)+a_{n-2}(r)=0 \quad n \geq 2 \quad a_{1}(r)=0
$$

for $r=-p$, we obtain

$$
y_{2}(x)=x^{-p} \sum_{n \geq 0} \frac{(-1)^{n}}{2^{2 n} n!(1-p) \ldots(n-p)} x^{2 n}
$$

Second independent solution of Bessel equation

Case 1: $2 p$ is not an integer.
Solving the recursion

$$
\left[(r+n)^{2}-p^{2}\right] a_{n}(r)+a_{n-2}(r)=0 \quad n \geq 2 \quad a_{1}(r)=0
$$

for $r=-p$, we obtain

$$
y_{2}(x)=x^{-p} \sum_{n \geq 0} \frac{(-1)^{n}}{2^{2 n} n!(1-p) \ldots(n-p)} x^{2 n}
$$

Multiplying by $\frac{1}{2^{-p} \Gamma(1-p)}$

$$
J_{-p}(x):=\left(\frac{x}{2}\right)^{-p} \sum_{n \geq 0} \frac{(-1)^{n}}{n!\Gamma(n-p+1)}\left(\frac{x}{2}\right)^{2 n} \quad x>0
$$

This is a second solution of the Bessel equation linearly independent of $J_{p}(x)$.

Second independent solution of Bessel equation

Case 1: $2 p$ is not an integer.
Solving the recursion

$$
\left[(r+n)^{2}-p^{2}\right] a_{n}(r)+a_{n-2}(r)=0 \quad n \geq 2 \quad a_{1}(r)=0
$$

for $r=-p$, we obtain

$$
y_{2}(x)=x^{-p} \sum_{n \geq 0} \frac{(-1)^{n}}{2^{2 n} n!(1-p) \ldots(n-p)} x^{2 n}
$$

Multiplying by $\frac{1}{2^{-p} \Gamma(1-p)}$

$$
J_{-p}(x):=\left(\frac{x}{2}\right)^{-p} \sum_{n \geq 0} \frac{(-1)^{n}}{n!\Gamma(n-p+1)}\left(\frac{x}{2}\right)^{2 n} \quad x>0 .
$$

This is a second solution of the Bessel equation linearly independent of $J_{p}(x)$.
It is unbounded near $x=0$.

Second independent solution of Bessel equation

Case 2: $2 p$ is a positive integer.

Second independent solution of Bessel equation

Case 2: $2 p$ is a positive integer.
Recall that the second solution is given by

$$
y_{2}(x)=\sum_{n \geq 0} A_{n}^{\prime}(-p) x^{n-p}+\sum_{n \geq 0} A_{n}(-p) x^{n-p} \log x
$$

where

$$
A_{n}(r):=(r+p) a_{n}(r)
$$

Second independent solution of Bessel equation

Case 2: $2 p$ is a positive integer.
Recall that the second solution is given by

$$
y_{2}(x)=\sum_{n \geq 0} A_{n}^{\prime}(-p) x^{n-p}+\sum_{n \geq 0} A_{n}(-p) x^{n-p} \log x
$$

where

$$
A_{n}(r):=(r+p) a_{n}(r)
$$

Case 2(a): $2 p$ is an odd positive integer, that is, $p=\frac{2 l+1}{2}$ for some $l>0$

Second independent solution of Bessel equation

Case 2: $2 p$ is a positive integer.
Recall that the second solution is given by

$$
y_{2}(x)=\sum_{n \geq 0} A_{n}^{\prime}(-p) x^{n-p}+\sum_{n \geq 0} A_{n}(-p) x^{n-p} \log x
$$

where

$$
A_{n}(r):=(r+p) a_{n}(r)
$$

Case 2(a): $2 p$ is an odd positive integer, that is, $p=\frac{2 l+1}{2}$ for some $l>0$

We have seen that $A_{2 n+1}(r)=(r+p) a_{2 n+1}(r)=0$

Second independent solution of Bessel equation

Case 2: $2 p$ is a positive integer.
Recall that the second solution is given by

$$
y_{2}(x)=\sum_{n \geq 0} A_{n}^{\prime}(-p) x^{n-p}+\sum_{n \geq 0} A_{n}(-p) x^{n-p} \log x
$$

where

$$
A_{n}(r):=(r+p) a_{n}(r)
$$

Case 2(a): $2 p$ is an odd positive integer, that is, $p=\frac{2 l+1}{2}$ for some $l>0$

We have seen that $A_{2 n+1}(r)=(r+p) a_{2 n+1}(r)=0$

$$
a_{2 n}(r)=\frac{(-1)^{n}}{\prod_{i=1}^{n}\left((r+2 i)^{2}-p^{2}\right)}
$$

Second independent solution of Bessel equation

Since the polynomial $\prod_{i=1}^{n}\left((r+2 i)^{2}-p^{2}\right)$ evaluated at $r=-p$, is $\prod_{i=1}^{n} 4 i(i-p) \neq 0$,

Second independent solution of Bessel equation

Since the polynomial $\prod_{i=1}^{n}\left((r+2 i)^{2}-p^{2}\right)$ evaluated at $r=-p$, is $\prod_{i=1}^{n} 4 i(i-p) \neq 0$, the function $a_{2 n}(r)$ is analytic in a neighborhood of $-p$.

Second independent solution of Bessel equation

Since the polynomial $\prod_{i=1}^{n}\left((r+2 i)^{2}-p^{2}\right)$ evaluated at $r=-p$, is $\prod_{i=1}^{n} 4 i(i-p) \neq 0$, the function $a_{2 n}(r)$ is analytic in a neighborhood of $-p$.

Thus, $A_{2 n}(-p)=0$ and $A_{2 n}^{\prime}(-p)=a_{2 n}(-p)$.
Thus, in this case we obtain that the second solution is

$$
y_{2}(x)=\sum_{n \geq 0} \frac{(-1)^{n}}{2^{2 n} n!(1-p) \ldots(n-p)} x^{2 n-p}
$$

Second independent solution of Bessel equation

Since the polynomial $\prod_{i=1}^{n}\left((r+2 i)^{2}-p^{2}\right)$ evaluated at $r=-p$, is $\prod_{i=1}^{n} 4 i(i-p) \neq 0$,
the function $a_{2 n}(r)$ is analytic in a neighborhood of $-p$.
Thus, $A_{2 n}(-p)=0$ and $A_{2 n}^{\prime}(-p)=a_{2 n}(-p)$.
Thus, in this case we obtain that the second solution is

$$
y_{2}(x)=\sum_{n \geq 0} \frac{(-1)^{n}}{2^{2 n} n!(1-p) \ldots(n-p)} x^{2 n-p}
$$

Multiplying by $\frac{1}{2^{-p} \Gamma(1-p)}$

$$
J_{-p}(x):=\left(\frac{x}{2}\right)^{-p} \sum_{n \geq 0} \frac{(-1)^{n}}{n!\Gamma(n-p+1)}\left(\frac{x}{2}\right)^{2 n} \quad x>0 .
$$

Case $2(\mathbf{b}): 2 p$ is an even positive integer, that is, p is a positive integer.

Case $2(\mathbf{b}): 2 p$ is an even positive integer, that is, p is a positive integer.
As before, $A_{2 n+1}(r)=0$.

Case 2(b): $2 p$ is an even positive integer, that is, p is a positive integer.
As before, $A_{2 n+1}(r)=0$.
The polynomial $\prod_{i=1}^{n}\left((r+2 i)^{2}-p^{2}\right)$ evaluated at $r=-p$, is
$\prod_{i=1}^{n} 4 i(i-p)$,
Thus, if $n<p$, then $a_{2 n}(r)$ is analytic in a neighborhood of $-p$.
Thus, if $n<p$, then $A_{2 n}(-p)=0$ and

$$
A_{2 n}^{\prime}(-p)=a_{2 n}(-p)=\frac{(-1)^{n}}{2^{2 n} n!(1-p) \ldots(n-p)}=\frac{1}{2^{2 n} n!(p-n)!}
$$

If $n \geq p$, then

$$
\begin{aligned}
A_{2 n}(-p) & =\frac{2(-1)^{n}}{2^{2 n} n!(1-p) \ldots(-1) \cdot 1 \cdot 2 \cdots(n-p)} \\
& =\frac{-2(-1)^{n-p}}{2^{2 n} n!(p-1)!(n-p)!}
\end{aligned}
$$

Define
$f(r):=\left(\prod_{i=1}^{p-1}\left((r+2 i)^{2}-p^{2}\right)\right)(r+3 p)\left(\prod_{i=p+1}^{n}\left((r+2 i)^{2}-p^{2}\right)\right)$

Then

$$
A_{2 n}(r) f(r)=(-1)^{n}
$$

Differentiating the above and setting $r=-p$ we get

$$
A_{2 n}^{\prime}(-p) f(-p)+A_{2 n}(-p) f^{\prime}(-p)=0
$$

Taking log and differentiating $(*)$ we get

$$
\begin{gathered}
f^{\prime}(-p)=f(-p)\left(\frac{1}{2 p}+\sum_{i \in\{1,2, \ldots, n\} \backslash p} \frac{1}{2 i}+\frac{1}{2(i-p)}\right) \\
=f(-p)\left(\frac{H_{n}}{2}-\frac{H_{p-1}}{2}+\frac{H_{n-p}}{2}\right), \\
H_{0}=0, \quad H_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}
\end{gathered}
$$

where

Thus,

$$
\begin{aligned}
A_{2 n}^{\prime}(-p) & =-A_{2 n}(-p)\left(\frac{H_{n}}{2}-\frac{H_{p-1}}{2}+\frac{H_{n-p}}{2}\right) \\
& =\frac{2(-1)^{n-p}}{2^{2 n} n!(p-1)!(n-p)!}\left(\frac{H_{n}}{2}-\frac{H_{p-1}}{2}+\frac{H_{n-p}}{2}\right)
\end{aligned}
$$

Thus, we get

$$
\begin{aligned}
& y_{2}(x)=\sum_{n=0}^{p-1} \frac{1}{2^{2 n} n!(p-n)!} x^{2 n-p}+ \\
& \sum_{n \geq p} \frac{(-1)^{n-p}}{2^{2 n} n!(p-1)!(n-p)!}\left(H_{n}-H_{p-1}+H_{n-p}\right) x^{2 n-p}+ \\
& \quad-\sum_{n \geq p} \frac{2(-1)^{n-p}}{2^{2 n} n!(p-1)!(n-p)!} x^{2 n-p} \log x
\end{aligned}
$$

is a second solution.

Case 3: $p=0$ (Repeated root case)

Case 3: $p=0$ (Repeated root case)
The indicial equation has a repeated root $r_{1}=r_{2}=0$,

Case 3: $p=0$ (Repeated root case)
The indicial equation has a repeated root $r_{1}=r_{2}=0$,

$$
a_{2 n}(r)=\frac{(-1)^{n}}{(r+2)^{2}(r+4)^{2} \ldots(r+2 n)^{2}} \quad a_{2 n+1}(r)=0
$$

Case 3: $p=0$ (Repeated root case)
The indicial equation has a repeated root $r_{1}=r_{2}=0$,

$$
a_{2 n}(r)=\frac{(-1)^{n}}{(r+2)^{2}(r+4)^{2} \ldots(r+2 n)^{2}} \quad a_{2 n+1}(r)=0
$$

Differentiating $a_{2 n}(r)$ with respect to r, we get

$$
a_{2 n}(r)^{\prime}=-2 a_{2 n}(r)\left(\frac{1}{r+2}+\frac{1}{r+4}+\cdots+\frac{1}{r+2 n}\right)
$$

Case 3: $p=0$ (Repeated root case)
The indicial equation has a repeated root $r_{1}=r_{2}=0$,

$$
a_{2 n}(r)=\frac{(-1)^{n}}{(r+2)^{2}(r+4)^{2} \ldots(r+2 n)^{2}} \quad a_{2 n+1}(r)=0
$$

Differentiating $a_{2 n}(r)$ with respect to r, we get

$$
\begin{gathered}
a_{2 n}(r)^{\prime}=-2 a_{2 n}(r)\left(\frac{1}{r+2}+\frac{1}{r+4}+\cdots+\frac{1}{r+2 n}\right) \\
a_{2 n}^{\prime}(0)=\frac{(-1)^{n-1} H_{n}}{2^{2 n}(n!)^{2}}, \quad H_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}
\end{gathered}
$$

Case 3: $p=0$ (Repeated root case)
The indicial equation has a repeated root $r_{1}=r_{2}=0$,

$$
a_{2 n}(r)=\frac{(-1)^{n}}{(r+2)^{2}(r+4)^{2} \ldots(r+2 n)^{2}} \quad a_{2 n+1}(r)=0
$$

Differentiating $a_{2 n}(r)$ with respect to r, we get

$$
\begin{gathered}
a_{2 n}(r)^{\prime}=-2 a_{2 n}(r)\left(\frac{1}{r+2}+\frac{1}{r+4}+\cdots+\frac{1}{r+2 n}\right) \\
a_{2 n}^{\prime}(0)=\frac{(-1)^{n-1} H_{n}}{2^{2 n}(n!)^{2}}, \quad H_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}
\end{gathered}
$$

By theorem stated earlier, the second solution is

$$
y_{2}(x)=J_{0}(x) \ln x-\sum_{n \geq 1} \frac{(-1)^{n} H_{n}}{2^{2 n}(n!)^{2}} x^{2 n} \quad x>0
$$

Case 3: $p=0$ (Repeated root case)
The indicial equation has a repeated root $r_{1}=r_{2}=0$,

$$
a_{2 n}(r)=\frac{(-1)^{n}}{(r+2)^{2}(r+4)^{2} \ldots(r+2 n)^{2}} \quad a_{2 n+1}(r)=0
$$

Differentiating $a_{2 n}(r)$ with respect to r, we get

$$
\begin{gathered}
a_{2 n}(r)^{\prime}=-2 a_{2 n}(r)\left(\frac{1}{r+2}+\frac{1}{r+4}+\cdots+\frac{1}{r+2 n}\right) \\
a_{2 n}^{\prime}(0)=\frac{(-1)^{n-1} H_{n}}{2^{2 n}(n!)^{2}}, \quad H_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}
\end{gathered}
$$

By theorem stated earlier, the second solution is

$$
y_{2}(x)=J_{0}(x) \ln x-\sum_{n \geq 1} \frac{(-1)^{n} H_{n}}{2^{2 n}(n!)^{2}} x^{2 n} \quad x>0
$$

where $y_{1}(x)=J_{0}(x)=\sum_{n \geq 0} \frac{(-1)^{n}}{2^{2 n}(n!)^{2}} x^{2 n}$ is Frobenius solution.

Summary of $p=0$ and $p=1 / 2$

Summary of $p=0$ and $p=1 / 2$

For $p=0$, two independent solutions are $J_{0}(x)$, which is a real analytic function for all \mathbb{R}, and

$$
y_{2}(x)=J_{0}(x) \ln x-\sum_{n \geq 1} \frac{(-1)^{n} H_{n}}{2^{2 n}(n!)^{2}} x^{2 n}
$$

For $p=0$, two independent solutions are $J_{0}(x)$, which is a real analytic function for all \mathbb{R}, and

$$
y_{2}(x)=J_{0}(x) \ln x-\sum_{n \geq 1} \frac{(-1)^{n} H_{n}}{2^{2 n}(n!)^{2}} x^{2 n}
$$

For $p=1 / 2$, two independent solutions are $J_{1 / 2}(x)$ and $J_{-1 / 2}(x)$. These can be expressed in terms of the trigonometric functions (Exercise):

$$
J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x \text { and } J_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cos x
$$

Summary of $p=0$ and $p=1 / 2$

For $p=0$, two independent solutions are $J_{0}(x)$, which is a real analytic function for all \mathbb{R}, and

$$
y_{2}(x)=J_{0}(x) \ln x-\sum_{n \geq 1} \frac{(-1)^{n} H_{n}}{2^{2 n}(n!)^{2}} x^{2 n}
$$

For $p=1 / 2$, two independent solutions are $J_{1 / 2}(x)$ and $J_{-1 / 2}(x)$. These can be expressed in terms of the trigonometric functions (Exercise):

$$
J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x \text { and } J_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cos x
$$

Both exhibit singular behavior at 0 . Near $0, J_{1 / 2}(x)$ is bounded but does not have a bounded derivative, while $J_{-1 / 2}(x)$ is unbounded near 0 .

For real p, define

$$
J_{p}(x):=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(p+n+1)}\left(\frac{x}{2}\right)^{2 n+p}
$$

For real p, define

$$
J_{p}(x):=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(p+n+1)}\left(\frac{x}{2}\right)^{2 n+p}
$$

(1) The above is a well defined power series once we know that the Gamma function never vanishes.
(2) If $p \notin\{0,1,2, \ldots\} J_{p}(x)$ and $J_{-p}(x)$ are the two independent solutions of the Bessel equation.
(3) If $p \in\{0,1,2, \ldots\}$ then $J_{-p}(x)=(-1)^{p} J_{p}(x)$. Thus, in this case the second solution is not $J_{-p}(x)$.

Bessel identities

$$
\begin{aligned}
& \text { (1) } \frac{d}{d x}\left[x^{p} J_{p}(x)\right]=x^{p} J_{p-1}(x) \\
& \text { (2) } \frac{d}{d x}\left[x^{-p} J_{p}(x)\right]=-x^{-p} J_{p+1}(x)
\end{aligned}
$$

Bessel identities

(1) $\frac{d}{d x}\left[x^{p} J_{p}(x)\right]=x^{p} J_{p-1}(x)$
(2) $\frac{d}{d x}\left[x^{-p} J_{p}(x)\right]=-x^{-p} J_{p+1}(x)$

The above two can be obtained by formally differentiating the power series.

Bessel identities

(1) $\frac{d}{d x}\left[x^{p} J_{p}(x)\right]=x^{p} J_{p-1}(x)$
(2) $\frac{d}{d x}\left[x^{-p} J_{p}(x)\right]=-x^{-p} J_{p+1}(x)$

The above two can be obtained by formally differentiating the power series.
(3) $J_{p}^{\prime}(x)+\frac{p}{x} J_{p}(x)=J_{p-1}(x)$
(9) $J_{p}^{\prime}(x)-\frac{p}{x} J_{p}(x)=-J_{p+1}(x)$

Bessel identities

(1) $\frac{d}{d x}\left[x^{p} J_{p}(x)\right]=x^{p} J_{p-1}(x)$
(2) $\frac{d}{d x}\left[x^{-p} J_{p}(x)\right]=-x^{-p} J_{p+1}(x)$

The above two can be obtained by formally differentiating the power series.
(3) $J_{p}^{\prime}(x)+\frac{p}{x} J_{p}(x)=J_{p-1}(x)$
(9) $J_{p}^{\prime}(x)-\frac{p}{x} J_{p}(x)=-J_{p+1}(x)$

These follow from (1) and (2). Expand LHS and divide by $x^{ \pm p}$;

Bessel identities

(1) $\frac{d}{d x}\left[x^{p} J_{p}(x)\right]=x^{p} J_{p-1}(x)$
(2) $\frac{d}{d x}\left[x^{-p} J_{p}(x)\right]=-x^{-p} J_{p+1}(x)$

The above two can be obtained by formally differentiating the power series.
(3) $J_{p}^{\prime}(x)+\frac{p}{x} J_{p}(x)=J_{p-1}(x)$
(9) $J_{p}^{\prime}(x)-\frac{p}{x} J_{p}(x)=-J_{p+1}(x)$

These follow from (1) and (2). Expand LHS and divide by $x^{ \pm p}$;
(6) $J_{p-1}(x)-J_{p+1}(x)=2 J_{p}^{\prime}(x)$
(0) $J_{p-1}(x)+J_{p+1}(x)=\frac{2 p}{x} J_{p}(x)$

Bessel identities

(1) $\frac{d}{d x}\left[x^{p} J_{p}(x)\right]=x^{p} J_{p-1}(x)$
(2) $\frac{d}{d x}\left[x^{-p} J_{p}(x)\right]=-x^{-p} J_{p+1}(x)$

The above two can be obtained by formally differentiating the power series.
(3) $J_{p}^{\prime}(x)+\frac{p}{x} J_{p}(x)=J_{p-1}(x)$
(9) $J_{p}^{\prime}(x)-\frac{p}{x} J_{p}(x)=-J_{p+1}(x)$

These follow from (1) and (2). Expand LHS and divide by $x^{ \pm p}$;
(3) $J_{p-1}(x)-J_{p+1}(x)=2 J_{p}^{\prime}(x)$
(0) $J_{p-1}(x)+J_{p+1}(x)=\frac{2 p}{x} J_{p}(x)$

Add and subtract (3) and (4) to get (5) and (6).

Consequences of Bessel identities

Problem: Let $p>0$. Show that between any two consecutive zeros of $J_{p}(x)$, there exists precisely one zero of $J_{p-1}(x)$ and precisely one zero of $J_{p+1}(x)$

Consequences of Bessel identities

Problem: Let $p>0$. Show that between any two consecutive zeros of $J_{p}(x)$, there exists precisely one zero of $J_{p-1}(x)$ and precisely one zero of $J_{p+1}(x)$

Solution: Let $0<c<d$ be two consecutive zeros of $J_{p}(x)$.

Consequences of Bessel identities

Problem: Let $p>0$. Show that between any two consecutive zeros of $J_{p}(x)$, there exists precisely one zero of $J_{p-1}(x)$ and precisely one zero of $J_{p+1}(x)$

Solution: Let $0<c<d$ be two consecutive zeros of $J_{p}(x)$. So $x^{p} J_{p}(x)$ vanishes at c and d.

Consequences of Bessel identities

Problem: Let $p>0$. Show that between any two consecutive zeros of $J_{p}(x)$, there exists precisely one zero of $J_{p-1}(x)$ and precisely one zero of $J_{p+1}(x)$
Solution: Let $0<c<d$ be two consecutive zeros of $J_{p}(x)$. So $x^{p} J_{p}(x)$ vanishes at c and d. By Rolle's theorem,

$$
\left[x^{p} J_{p}(x)\right]^{\prime}(b)=0 \quad \text { for some } \quad b \in(c, d)
$$

Consequences of Bessel identities

Problem: Let $p>0$. Show that between any two consecutive zeros of $J_{p}(x)$, there exists precisely one zero of $J_{p-1}(x)$ and precisely one zero of $J_{p+1}(x)$

Solution: Let $0<c<d$ be two consecutive zeros of $J_{p}(x)$. So $x^{p} J_{p}(x)$ vanishes at c and d. By Rolle's theorem,

$$
\left[x^{p} J_{p}(x)\right]^{\prime}(b)=0 \quad \text { for some } \quad b \in(c, d)
$$

As

$$
\left[x^{p} J_{p}(x)\right]^{\prime}=x^{p} J_{p-1}(x)
$$

we get $J_{p-1}(b)=0$.

Consequences of Bessel identities

Problem: Let $p>0$. Show that between any two consecutive zeros of $J_{p}(x)$, there exists precisely one zero of $J_{p-1}(x)$ and precisely one zero of $J_{p+1}(x)$

Solution: Let $0<c<d$ be two consecutive zeros of $J_{p}(x)$.
So $x^{p} J_{p}(x)$ vanishes at c and d. By Rolle's theorem,

$$
\left[x^{p} J_{p}(x)\right]^{\prime}(b)=0 \quad \text { for some } \quad b \in(c, d)
$$

As

$$
\left[x^{p} J_{p}(x)\right]^{\prime}=x^{p} J_{p-1}(x)
$$

we get $J_{p-1}(b)=0$.
Repeating the above argument with the identity $\left[x^{-p} J_{p}(x)\right]^{\prime}=-x^{-p} J_{p+1}(x)$, we get that $J_{p+1}(x)$ has a root in (c, d).

Thus, we have proved that both $J_{p-1}(x)$ and $J_{p+1}(x)$ have at least one root in (c, d).

Thus, we have proved that both $J_{p-1}(x)$ and $J_{p+1}(x)$ have at least one root in (c, d).

If $J_{p-1}(x)$ had two roots in (c, d), then from above, we conclude that $J_{p}(x)$ would have a root in (c, d). However, this contradicts the assumption that c and d are consecutive roots. Thus, J_{p-1} has exactly one root in (c, d).

Thus, we have proved that both $J_{p-1}(x)$ and $J_{p+1}(x)$ have at least one root in (c, d).
If $J_{p-1}(x)$ had two roots in (c, d), then from above, we conclude that $J_{p}(x)$ would have a root in (c, d). However, this contradicts the assumption that c and d are consecutive roots. Thus, J_{p-1} has exactly one root in (c, d).

Similarly, $J_{p+1}(x)$ has exactly one root in (c, d).

Thus, we have proved that both $J_{p-1}(x)$ and $J_{p+1}(x)$ have at least one root in (c, d).

If $J_{p-1}(x)$ had two roots in (c, d), then from above, we conclude that $J_{p}(x)$ would have a root in (c, d). However, this contradicts the assumption that c and d are consecutive roots. Thus, J_{p-1} has exactly one root in (c, d).

Similarly, $J_{p+1}(x)$ has exactly one root in (c, d).
Problem: Find a and c so that $J_{2}(x)-J_{0}(x)=a J_{c}^{\prime \prime}(x)$.

Thus, we have proved that both $J_{p-1}(x)$ and $J_{p+1}(x)$ have at least one root in (c, d).

If $J_{p-1}(x)$ had two roots in (c, d), then from above, we conclude that $J_{p}(x)$ would have a root in (c, d). However, this contradicts the assumption that c and d are consecutive roots. Thus, J_{p-1} has exactly one root in (c, d).

Similarly, $J_{p+1}(x)$ has exactly one root in (c, d).
Problem: Find a and c so that $J_{2}(x)-J_{0}(x)=a J_{c}^{\prime \prime}(x)$.
Solution: Using $J_{p-1}(x)-J_{p+1}(x)=2 J_{p}^{\prime}(x)$ for $p=1$, we get

Thus, we have proved that both $J_{p-1}(x)$ and $J_{p+1}(x)$ have at least one root in (c, d).

If $J_{p-1}(x)$ had two roots in (c, d), then from above, we conclude that $J_{p}(x)$ would have a root in (c, d). However, this contradicts the assumption that c and d are consecutive roots. Thus, J_{p-1} has exactly one root in (c, d).

Similarly, $J_{p+1}(x)$ has exactly one root in (c, d).
Problem: Find a and c so that $J_{2}(x)-J_{0}(x)=a J_{c}^{\prime \prime}(x)$.
Solution: Using $J_{p-1}(x)-J_{p+1}(x)=2 J_{p}^{\prime}(x)$ for $p=1$, we get $J_{0}(x)-J_{2}(x)=2 J_{1}^{\prime}(x)$

Thus, we have proved that both $J_{p-1}(x)$ and $J_{p+1}(x)$ have at least one root in (c, d).

If $J_{p-1}(x)$ had two roots in (c, d), then from above, we conclude that $J_{p}(x)$ would have a root in (c, d). However, this contradicts the assumption that c and d are consecutive roots. Thus, J_{p-1} has exactly one root in (c, d).

Similarly, $J_{p+1}(x)$ has exactly one root in (c, d).
Problem: Find a and c so that $J_{2}(x)-J_{0}(x)=a J_{c}^{\prime \prime}(x)$.
Solution: Using $J_{p-1}(x)-J_{p+1}(x)=2 J_{p}^{\prime}(x)$ for $p=1$, we get $J_{0}(x)-J_{2}(x)=2 J_{1}^{\prime}(x)$

Now using $\left[x^{-p} J_{p}(x)\right]^{\prime}=-x^{-p} J_{p+1}$ for $p=0$, we get

Thus, we have proved that both $J_{p-1}(x)$ and $J_{p+1}(x)$ have at least one root in (c, d).

If $J_{p-1}(x)$ had two roots in (c, d), then from above, we conclude that $J_{p}(x)$ would have a root in (c, d). However, this contradicts the assumption that c and d are consecutive roots. Thus, J_{p-1} has exactly one root in (c, d).

Similarly, $J_{p+1}(x)$ has exactly one root in (c, d).
Problem: Find a and c so that $J_{2}(x)-J_{0}(x)=a J_{c}^{\prime \prime}(x)$.
Solution: Using $J_{p-1}(x)-J_{p+1}(x)=2 J_{p}^{\prime}(x)$ for $p=1$, we get
$J_{0}(x)-J_{2}(x)=2 J_{1}^{\prime}(x)$
Now using $\left[x^{-p} J_{p}(x)\right]^{\prime}=-x^{-p} J_{p+1}$ for $p=0$, we get
$J_{0}^{\prime}(x)=-J_{1}(x)$.

Thus, we have proved that both $J_{p-1}(x)$ and $J_{p+1}(x)$ have at least one root in (c, d).

If $J_{p-1}(x)$ had two roots in (c, d), then from above, we conclude that $J_{p}(x)$ would have a root in (c, d). However, this contradicts the assumption that c and d are consecutive roots. Thus, J_{p-1} has exactly one root in (c, d).

Similarly, $J_{p+1}(x)$ has exactly one root in (c, d).
Problem: Find a and c so that $J_{2}(x)-J_{0}(x)=a J_{c}^{\prime \prime}(x)$.
Solution: Using $J_{p-1}(x)-J_{p+1}(x)=2 J_{p}^{\prime}(x)$ for $p=1$, we get
$J_{0}(x)-J_{2}(x)=2 J_{1}^{\prime}(x)$
Now using $\left[x^{-p} J_{p}(x)\right]^{\prime}=-x^{-p} J_{p+1}$ for $p=0$, we get
$J_{0}^{\prime}(x)=-J_{1}(x)$.
Therefore,

$$
J_{2}(x)-J_{0}(x)=-2 J_{1}^{\prime}(x)=2 J_{0}^{\prime \prime}(x) .
$$

Thus, we have proved that both $J_{p-1}(x)$ and $J_{p+1}(x)$ have at least one root in (c, d).

If $J_{p-1}(x)$ had two roots in (c, d), then from above, we conclude that $J_{p}(x)$ would have a root in (c, d). However, this contradicts the assumption that c and d are consecutive roots. Thus, J_{p-1} has exactly one root in (c, d).

Similarly, $J_{p+1}(x)$ has exactly one root in (c, d).
Problem: Find a and c so that $J_{2}(x)-J_{0}(x)=a J_{c}^{\prime \prime}(x)$.
Solution: Using $J_{p-1}(x)-J_{p+1}(x)=2 J_{p}^{\prime}(x)$ for $p=1$, we get
$J_{0}(x)-J_{2}(x)=2 J_{1}^{\prime}(x)$
Now using $\left[x^{-p} J_{p}(x)\right]^{\prime}=-x^{-p} J_{p+1}$ for $p=0$, we get
$J_{0}^{\prime}(x)=-J_{1}(x)$.
Therefore,
$J_{2}(x)-J_{0}(x)=-2 J_{1}^{\prime}(x)=2 J_{0}^{\prime \prime}(x)$.
Hence $a=2$ and $c=0$.

We can use

$$
J_{p-1}(x)+J_{p+1}(x)=\frac{2 p}{x} J_{p}(x)
$$

We can use

$$
\begin{aligned}
& J_{p-1}(x)+J_{p+1}(x)=\frac{2 p}{x} J_{p}(x) \\
& J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x \quad \quad J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cos x
\end{aligned}
$$

We can use

$$
\begin{aligned}
& J_{p-1}(x)+J_{p+1}(x)=\frac{2 p}{x} J_{p}(x) \\
& J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x \quad \quad J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cos x
\end{aligned}
$$

to see that $J_{p}(x)$ are elementary functions for $p \in \mathbb{Z}+\frac{1}{2}$.

We can use

$$
\begin{aligned}
& J_{p-1}(x)+J_{p+1}(x)=\frac{2 p}{x} J_{p}(x) \\
& J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x \quad \quad J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cos x
\end{aligned}
$$

to see that $J_{p}(x)$ are elementary functions for $p \in \mathbb{Z}+\frac{1}{2}$.
For example,

- $J_{3 / 2}(x)=\frac{1}{x} J_{1 / 2}(x)-J_{-1 / 2}(x)$

$$
=\sqrt{\frac{2}{\pi x}}\left(\frac{\sin x}{x}-\cos x\right)
$$

We can use

$$
\begin{aligned}
& J_{p-1}(x)+J_{p+1}(x)=\frac{2 p}{x} J_{p}(x) \\
& J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x \quad \quad J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cos x
\end{aligned}
$$

to see that $J_{p}(x)$ are elementary functions for $p \in \mathbb{Z}+\frac{1}{2}$.
For example,

- $J_{3 / 2}(x)=\frac{1}{x} J_{1 / 2}(x)-J_{-1 / 2}(x)$

$$
=\sqrt{\frac{2}{\pi x}}\left(\frac{\sin x}{x}-\cos x\right)
$$

- $J_{-3 / 2}(x)=-\frac{1}{x} J_{-1 / 2}(x)-J_{1 / 2}(x)$

$$
=-\sqrt{\frac{2}{\pi x}}\left(\frac{\cos x}{x}+\sin x\right)
$$

- $J_{\frac{5}{2}}(x)=\frac{3}{x} J_{\frac{3}{2}}(x)-J_{\frac{1}{2}}(x)$

$$
=\sqrt{\frac{2}{\pi x}}\left(\frac{3 \sin x}{x^{2}}-\frac{3 \cos x}{x}-\sin x\right)
$$

- $J_{\frac{5}{2}}(x)=\frac{3}{x} J_{\frac{3}{2}}(x)-J_{\frac{1}{2}}(x)$

$$
=\sqrt{\frac{2}{\pi x}}\left(\frac{3 \sin x}{x^{2}}-\frac{3 \cos x}{x}-\sin x\right)
$$

These functions are called spherical Bessel functions as they arise in solving wave equations in spherical coordinates.

Theorem (Liouville)

$J_{m+\frac{1}{2}}(x)$'s are the only elementary Bessel functions.

Remark. Integrating some of the Bessel identities we get

$$
\begin{aligned}
& \frac{d}{d x}\left[x^{p} J_{p}(x)\right]=x^{p} J_{p-1}(x) \\
& \quad \Longrightarrow \int_{0}^{x} t^{p} J_{p-1}(t) d t=x^{p} J_{p}(x)+c
\end{aligned}
$$

Remark. Integrating some of the Bessel identities we get

$$
\begin{aligned}
& \frac{d}{d x}\left[x^{p} J_{p}(x)\right]=x^{p} J_{p-1}(x) \\
& \quad \Longrightarrow \int_{0}^{x} t^{p} J_{p-1}(t) d t=x^{p} J_{p}(x)+c \\
& \frac{d}{d x}\left[x^{-p} J_{p}(x)\right]=-x^{-p} J_{p+1}(x) \\
& \quad \Longrightarrow \int_{0}^{x} t^{-p} J_{p+1}(t) d t=-x^{-p} J_{p}(x)+c
\end{aligned}
$$

Remark. Integrating some of the Bessel identities we get

$$
\begin{aligned}
& \frac{d}{d x}\left[x^{p} J_{p}(x)\right]=x^{p} J_{p-1}(x) \\
& \quad \Longrightarrow \int_{0}^{x} t^{p} J_{p-1}(t) d t=x^{p} J_{p}(x)+c \\
& \frac{d}{d x}\left[x^{-p} J_{p}(x)\right]=-x^{-p} J_{p+1}(x) \\
& \quad \Longrightarrow \int_{0}^{x} t^{-p} J_{p+1}(t) d t=-x^{-p} J_{p}(x)+c
\end{aligned}
$$

For example,

$$
\int_{0}^{x} t J_{0}(t) d t=x J_{1}(x)+c
$$

Qualitative properties of solutions

It is rarely possible to solve 2nd order linear ODE

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

in terms of familiar elementary functions.

Qualitative properties of solutions

It is rarely possible to solve 2 nd order linear ODE

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

in terms of familiar elementary functions.
Then how do we understand the nature and properties of solutions.

It is surprising that we can obtain quite a bit of information about the solution from the ODE itself.

Theorem (Sturm separation theorem)

If $y_{1}(x)$ and $y_{2}(x)$ are linearly independent solns of

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

P, Q continuous on (a, b). Then
(1) $y_{1}(x)$ and $y_{2}(x)$ have no common zero in (a, b).
(2) Between any two successive zeros of $y_{1}(x)$, there is exactly one zero of $y_{2}(x)$ and vice versa.

Theorem (Sturm separation theorem)

If $y_{1}(x)$ and $y_{2}(x)$ are linearly independent solns of

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

P, Q continuous on (a, b). Then
(1) $y_{1}(x)$ and $y_{2}(x)$ have no common zero in (a, b).
(2) Between any two successive zeros of $y_{1}(x)$, there is exactly one zero of $y_{2}(x)$ and vice versa.

Proof of (1). Consider the Wronskian

$$
W(x):=W\left(y_{1}, y_{2}\right)=y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x)
$$

Theorem (Sturm separation theorem)

If $y_{1}(x)$ and $y_{2}(x)$ are linearly independent solns of

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

P, Q continuous on (a, b). Then
(1) $y_{1}(x)$ and $y_{2}(x)$ have no common zero in (a, b).
(2) Between any two successive zeros of $y_{1}(x)$, there is exactly one zero of $y_{2}(x)$ and vice versa.

Proof of (1). Consider the Wronskian

$$
W(x):=W\left(y_{1}, y_{2}\right)=y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x)
$$

It satisfies the differential equation $W^{\prime}=-P(x) W$ and so is given by

$$
W(x)=C \exp \left(\int_{a_{0}}^{x}-P(t) d t\right) \quad a_{0} \in(a, b)
$$

Theorem (Sturm separation theorem)

If $y_{1}(x)$ and $y_{2}(x)$ are linearly independent solns of

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

P, Q continuous on (a, b). Then
(1) $y_{1}(x)$ and $y_{2}(x)$ have no common zero in (a, b).
(2) Between any two successive zeros of $y_{1}(x)$, there is exactly one zero of $y_{2}(x)$ and vice versa.

Proof of (1). Consider the Wronskian

$$
W(x):=W\left(y_{1}, y_{2}\right)=y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x)
$$

It satisfies the differential equation $W^{\prime}=-P(x) W$ and so is given by

$$
W(x)=C \exp \left(\int_{a_{0}}^{x}-P(t) d t\right) \quad a_{0} \in(a, b)
$$

In particular, since y_{1} and y_{2} are linearly independent, the Wronskian is nonzero and so it never vanishes. This proves (1).

Proof of (2). Let x_{1} and x_{2} be successive zeros of $y_{1}(x)$.

Proof of (2). Let x_{1} and x_{2} be successive zeros of $y_{1}(x)$.

First let us show y_{2} has a zero in $\left(x_{1}, x_{2}\right)$.
The Wronskian $W(x)$ has the same sign in the interval (a, b) as it never vanishes. Thus, $W\left(x_{1}\right)$ and $W\left(x_{2}\right)$ have the same sign.

Proof of (2). Let x_{1} and x_{2} be successive zeros of $y_{1}(x)$.

First let us show y_{2} has a zero in $\left(x_{1}, x_{2}\right)$.
The Wronskian $W(x)$ has the same sign in the interval (a, b) as it never vanishes. Thus, $W\left(x_{1}\right)$ and $W\left(x_{2}\right)$ have the same sign.
$0 \neq W\left(x_{1}\right)=-y_{1}^{\prime}\left(x_{1}\right) y_{2}\left(x_{1}\right)$
$0 \neq W\left(x_{2}\right)=-y_{1}^{\prime}\left(x_{2}\right) y_{2}\left(x_{2}\right)$

We conclude that $y_{1}^{\prime}\left(x_{1}\right)$ and $y_{1}^{\prime}\left(x_{2}\right)$ are nonzero.

Proof of (2). Let x_{1} and x_{2} be successive zeros of $y_{1}(x)$.
First let us show y_{2} has a zero in $\left(x_{1}, x_{2}\right)$.
The Wronskian $W(x)$ has the same sign in the interval (a, b) as it never vanishes. Thus, $W\left(x_{1}\right)$ and $W\left(x_{2}\right)$ have the same sign.
$0 \neq W\left(x_{1}\right)=-y_{1}^{\prime}\left(x_{1}\right) y_{2}\left(x_{1}\right)$
$0 \neq W\left(x_{2}\right)=-y_{1}^{\prime}\left(x_{2}\right) y_{2}\left(x_{2}\right)$

We conclude that $y_{1}^{\prime}\left(x_{1}\right)$ and $y_{1}^{\prime}\left(x_{2}\right)$ are nonzero.
It follows that $y_{1}^{\prime}\left(x_{1}\right)$ and $y_{1}^{\prime}\left(x_{2}\right)$ have opposite signs since x_{1} and x_{2} are consecutive zeros of y_{1}.

Proof of (2). Let x_{1} and x_{2} be successive zeros of $y_{1}(x)$.
First let us show y_{2} has a zero in $\left(x_{1}, x_{2}\right)$.
The Wronskian $W(x)$ has the same sign in the interval (a, b) as it never vanishes. Thus, $W\left(x_{1}\right)$ and $W\left(x_{2}\right)$ have the same sign.
$0 \neq W\left(x_{1}\right)=-y_{1}^{\prime}\left(x_{1}\right) y_{2}\left(x_{1}\right)$
$0 \neq W\left(x_{2}\right)=-y_{1}^{\prime}\left(x_{2}\right) y_{2}\left(x_{2}\right)$

We conclude that $y_{1}^{\prime}\left(x_{1}\right)$ and $y_{1}^{\prime}\left(x_{2}\right)$ are nonzero.
It follows that $y_{1}^{\prime}\left(x_{1}\right)$ and $y_{1}^{\prime}\left(x_{2}\right)$ have opposite signs since x_{1} and x_{2} are consecutive zeros of y_{1}.
It follows that $y_{2}\left(x_{1}\right)$ and $y_{2}\left(x_{2}\right)$ have opposite signs. Thus, $y_{2}(x)$ has a zero in $\left(x_{1}, x_{2}\right)$.

Proof of (2). Let x_{1} and x_{2} be successive zeros of $y_{1}(x)$.
First let us show y_{2} has a zero in $\left(x_{1}, x_{2}\right)$.
The Wronskian $W(x)$ has the same sign in the interval (a, b) as it never vanishes. Thus, $W\left(x_{1}\right)$ and $W\left(x_{2}\right)$ have the same sign.
$0 \neq W\left(x_{1}\right)=-y_{1}^{\prime}\left(x_{1}\right) y_{2}\left(x_{1}\right)$
$0 \neq W\left(x_{2}\right)=-y_{1}^{\prime}\left(x_{2}\right) y_{2}\left(x_{2}\right)$

We conclude that $y_{1}^{\prime}\left(x_{1}\right)$ and $y_{1}^{\prime}\left(x_{2}\right)$ are nonzero.
It follows that $y_{1}^{\prime}\left(x_{1}\right)$ and $y_{1}^{\prime}\left(x_{2}\right)$ have opposite signs since x_{1} and x_{2} are consecutive zeros of y_{1}.

It follows that $y_{2}\left(x_{1}\right)$ and $y_{2}\left(x_{2}\right)$ have opposite signs. Thus, $y_{2}(x)$ has a zero in $\left(x_{1}, x_{2}\right)$.

If $y_{2}(x)$ had two zeros in the interval $x_{1}<\alpha<\beta<x_{2}$, then by the same reasoning, y_{1} will have a zero in (α, β), which contradicts the assumption that x_{1} and x_{2} are successive zeros of y_{1}.

As a consequence, if y_{1} and y_{2} are linearly independent solution of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0, P, Q$ continuous on (a, b) then the number of zeros of y_{1} and y_{2} on (a, b) differ by at most 1 .

As a consequence, if y_{1} and y_{2} are linearly independent solution of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0, P, Q$ continuous on (a, b) then the number of zeros of y_{1} and y_{2} on (a, b) differ by at most 1 .

In particular, either both have finite number of zeros or both have infinite number of zeros in (a, b).

As a consequence, if y_{1} and y_{2} are linearly independent solution of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0, P, Q$ continuous on (a, b) then the number of zeros of y_{1} and y_{2} on (a, b) differ by at most 1 .

In particular, either both have finite number of zeros or both have infinite number of zeros in (a, b).

- For further discussion, we need that any ODE in the "standard" form $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ can be written in the "normal" form $u^{\prime \prime}+q(x) u=0$.

As a consequence, if y_{1} and y_{2} are linearly independent solution of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0, P, Q$ continuous on (a, b) then the number of zeros of y_{1} and y_{2} on (a, b) differ by at most 1 .

In particular, either both have finite number of zeros or both have infinite number of zeros in (a, b).

- For further discussion, we need that any ODE in the "standard" form $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ can be written in the "normal" form $u^{\prime \prime}+q(x) u=0$.
Define $v(x):=\exp \left(\int_{a_{0}}^{x}-\frac{1}{2} P(t) d t\right)$ and set $u(x)=\frac{y(x)}{v(x)}$.

As a consequence, if y_{1} and y_{2} are linearly independent solution of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0, P, Q$ continuous on (a, b) then the number of zeros of y_{1} and y_{2} on (a, b) differ by at most 1 .

In particular, either both have finite number of zeros or both have infinite number of zeros in (a, b).

- For further discussion, we need that any ODE in the "standard" form $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ can be written in the "normal" form $u^{\prime \prime}+q(x) u=0$.
Define $v(x):=\exp \left(\int_{a_{0}}^{x}-\frac{1}{2} P(t) d t\right)$ and set $u(x)=\frac{y(x)}{v(x)}$.
One easily checks that $u(x)$ satisfies the differential equation

$$
u^{\prime \prime}+q(x) u=0 \quad q(x):=Q(x)-\frac{1}{4} P(x)^{2}-\frac{1}{2} P^{\prime}(x)
$$

As a consequence, if y_{1} and y_{2} are linearly independent solution of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0, P, Q$ continuous on (a, b) then the number of zeros of y_{1} and y_{2} on (a, b) differ by at most 1 .

In particular, either both have finite number of zeros or both have infinite number of zeros in (a, b).

- For further discussion, we need that any ODE in the "standard" form $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ can be written in the "normal" form $u^{\prime \prime}+q(x) u=0$.
Define $v(x):=\exp \left(\int_{a_{0}}^{x}-\frac{1}{2} P(t) d t\right)$ and set $u(x)=\frac{y(x)}{v(x)}$.
One easily checks that $u(x)$ satisfies the differential equation

$$
u^{\prime \prime}+q(x) u=0 \quad q(x):=Q(x)-\frac{1}{4} P(x)^{2}-\frac{1}{2} P^{\prime}(x)
$$

It is clear that the zeros of u are the same as those of y.

As a consequence, if y_{1} and y_{2} are linearly independent solution of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0, P, Q$ continuous on (a, b) then the number of zeros of y_{1} and y_{2} on (a, b) differ by at most 1 .

In particular, either both have finite number of zeros or both have infinite number of zeros in (a, b).

- For further discussion, we need that any ODE in the "standard" form $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ can be written in the "normal" form $u^{\prime \prime}+q(x) u=0$.
Define $v(x):=\exp \left(\int_{a_{0}}^{x}-\frac{1}{2} P(t) d t\right)$ and set $u(x)=\frac{y(x)}{v(x)}$.
One easily checks that $u(x)$ satisfies the differential equation

$$
u^{\prime \prime}+q(x) u=0 \quad q(x):=Q(x)-\frac{1}{4} P(x)^{2}-\frac{1}{2} P^{\prime}(x)
$$

It is clear that the zeros of u are the same as those of y. Also note that we need $P(x)$ to be once differentiable.

Theorem

Let $u(x)$ be a non-trivial solution of $u^{\prime \prime}+q(x) u=0$ on the interval (α, β), with $q(x)$ continuous. Let $[a, b] \subset(\alpha, \beta)$ be a finite interval. Then $u(x)$ has at most finite number of zeros in $[a, b]$. Hence if $u(x)$ has infinitely many zeros on $(0, \infty)$, then the set of zeros of $u(x)$ are not bounded.

Theorem

Let $u(x)$ be a non-trivial solution of $u^{\prime \prime}+q(x) u=0$ on the interval (α, β), with $q(x)$ continuous. Let $[a, b] \subset(\alpha, \beta)$ be a finite interval. Then $u(x)$ has at most finite number of zeros in $[a, b]$. Hence if $u(x)$ has infinitely many zeros on $(0, \infty)$, then the set of zeros of $u(x)$ are not bounded.

Proof. Assume $u(x)$ has infinitely many zeros in $[a, b]$. Then $\exists x_{0} \in[a, b]$ and a sequence of zeros $x_{n} \neq x_{0}$ such that $x_{n} \rightarrow x_{0}$ as $n \rightarrow \infty$.

Theorem

Let $u(x)$ be a non-trivial solution of $u^{\prime \prime}+q(x) u=0$ on the interval (α, β), with $q(x)$ continuous. Let $[a, b] \subset(\alpha, \beta)$ be a finite interval. Then $u(x)$ has at most finite number of zeros in $[a, b]$. Hence if $u(x)$ has infinitely many zeros on $(0, \infty)$, then the set of zeros of $u(x)$ are not bounded.

Proof. Assume $u(x)$ has infinitely many zeros in $[a, b]$. Then $\exists x_{0} \in[a, b]$ and a sequence of zeros $x_{n} \neq x_{0}$ such that $x_{n} \rightarrow x_{0}$ as $n \rightarrow \infty$.
$u\left(x_{0}\right)=\lim _{x_{n} \rightarrow x_{0}} u\left(x_{n}\right)=0$ (u is continuous) and

$$
u^{\prime}\left(x_{0}\right)=\lim _{x_{n} \rightarrow x_{0}} \frac{u\left(x_{n}\right)-u\left(x_{0}\right)}{x_{n}-x_{0}}=0
$$

This contradicts the fact that the Wronskian at x_{0} is nonzero.

Let $u(x)$ be a non-trivial solution of $u^{\prime \prime}+q(x) u=0$. If $q(x)<0$ in (a, b) and continuous then $u(x)$ has atmost one zero in (a, b).

Theorem

Let $u(x)$ be a non-trivial solution of $u^{\prime \prime}+q(x) u=0$. If $q(x)<0$ in (a, b) and continuous then $u(x)$ has atmost one zero in (a, b).

Proof. Assume $u\left(x_{0}\right)=0$. Then $u^{\prime}\left(x_{0}\right) \neq 0$, since Wronskian $W\left(x_{0}\right) \neq 0$.

Theorem

Let $u(x)$ be a non-trivial solution of $u^{\prime \prime}+q(x) u=0$. If $q(x)<0$ in (a, b) and continuous then $u(x)$ has atmost one zero in (a, b).

Proof. Assume $u\left(x_{0}\right)=0$. Then $u^{\prime}\left(x_{0}\right) \neq 0$, since Wronskian $W\left(x_{0}\right) \neq 0$.

Assume x_{1} is next zero of $u(x)$ after x_{0}.

Theorem

Let $u(x)$ be a non-trivial solution of $u^{\prime \prime}+q(x) u=0$. If $q(x)<0$ in (a, b) and continuous then $u(x)$ has atmost one zero in (a, b).

Proof. Assume $u\left(x_{0}\right)=0$. Then $u^{\prime}\left(x_{0}\right) \neq 0$, since Wronskian $W\left(x_{0}\right) \neq 0$.

Assume x_{1} is next zero of $u(x)$ after x_{0}.
If necessary, multiply by -1 and assume that $u^{\prime}\left(x_{0}\right)>0$.

Theorem

Let $u(x)$ be a non-trivial solution of $u^{\prime \prime}+q(x) u=0$. If $q(x)<0$ in (a, b) and continuous then $u(x)$ has atmost one zero in (a, b).

Proof. Assume $u\left(x_{0}\right)=0$. Then $u^{\prime}\left(x_{0}\right) \neq 0$, since Wronskian $W\left(x_{0}\right) \neq 0$.

Assume x_{1} is next zero of $u(x)$ after x_{0}.
If necessary, multiply by -1 and assume that $u^{\prime}\left(x_{0}\right)>0$.
Then $u(x)>0$ on $\left(x_{0}, x_{1}\right)$.

Theorem

Let $u(x)$ be a non-trivial solution of $u^{\prime \prime}+q(x) u=0$. If $q(x)<0$ in (a, b) and continuous then $u(x)$ has atmost one zero in (a, b).

Proof. Assume $u\left(x_{0}\right)=0$. Then $u^{\prime}\left(x_{0}\right) \neq 0$, since Wronskian $W\left(x_{0}\right) \neq 0$.

Assume x_{1} is next zero of $u(x)$ after x_{0}.
If necessary, multiply by -1 and assume that $u^{\prime}\left(x_{0}\right)>0$.
Then $u(x)>0$ on $\left(x_{0}, x_{1}\right)$.
Since $u^{\prime \prime}(x)=-q(x) u(x)>0$ on $\left(x_{0}, x_{1}\right), u^{\prime}(x)$ is an increasing function on (x_{0}, x_{1}).

Theorem

Let $u(x)$ be a non-trivial solution of $u^{\prime \prime}+q(x) u=0$. If $q(x)<0$ in (a, b) and continuous then $u(x)$ has atmost one zero in (a, b).

Proof. Assume $u\left(x_{0}\right)=0$. Then $u^{\prime}\left(x_{0}\right) \neq 0$, since Wronskian $W\left(x_{0}\right) \neq 0$.

Assume x_{1} is next zero of $u(x)$ after x_{0}.
If necessary, multiply by -1 and assume that $u^{\prime}\left(x_{0}\right)>0$.
Then $u(x)>0$ on $\left(x_{0}, x_{1}\right)$.
Since $u^{\prime \prime}(x)=-q(x) u(x)>0$ on $\left(x_{0}, x_{1}\right), u^{\prime}(x)$ is an increasing function on (x_{0}, x_{1}).

By Rolle's theorem u^{\prime} has a zero in $\left(x_{0}, x_{1}\right)$.

Theorem

Let $u(x)$ be a non-trivial solution of $u^{\prime \prime}+q(x) u=0$. If $q(x)<0$ in (a, b) and continuous then $u(x)$ has atmost one zero in (a, b).

Proof. Assume $u\left(x_{0}\right)=0$. Then $u^{\prime}\left(x_{0}\right) \neq 0$, since Wronskian $W\left(x_{0}\right) \neq 0$.

Assume x_{1} is next zero of $u(x)$ after x_{0}.
If necessary, multiply by -1 and assume that $u^{\prime}\left(x_{0}\right)>0$.
Then $u(x)>0$ on $\left(x_{0}, x_{1}\right)$.
Since $u^{\prime \prime}(x)=-q(x) u(x)>0$ on $\left(x_{0}, x_{1}\right), u^{\prime}(x)$ is an increasing function on (x_{0}, x_{1}).

By Rolle's theorem u^{\prime} has a zero in $\left(x_{0}, x_{1}\right)$.
But this is not possible as u^{\prime} is increasing on $\left(x_{0}, x_{1}\right)$.

Let $u(x)$ be a non-trivial solution of $u^{\prime \prime}+q(x) u=0$ Let $q(x)$ be continuous and $q(x)>0$ for all $x>x_{0}>0$.
If $\int_{x_{0}}^{\infty} q(x) d x=\infty$,
then $u(x)$ has infinitely many zeros on $(0, \infty)$.

Theorem

Let $u(x)$ be a non-trivial solution of $u^{\prime \prime}+q(x) u=0$ Let $q(x)$ be continuous and $q(x)>0$ for all $x>x_{0}>0$.
If $\int_{x_{0}}^{\infty} q(x) d x=\infty$,
then $u(x)$ has infinitely many zeros on $(0, \infty)$.
Proof. Assume $u(x)$ has only finitely many zeros on $(0, \infty)$.
Then there is $x_{1}>x_{0}$ such that $u(x) \neq 0$ for $x \geq x_{1}$. Assume $u(x)>0$ for $x \geq x_{1}$.

Theorem

Let $u(x)$ be a non-trivial solution of $u^{\prime \prime}+q(x) u=0$ Let $q(x)$ be continuous and $q(x)>0$ for all $x>x_{0}>0$.
If $\int_{x_{0}}^{\infty} q(x) d x=\infty$,
then $u(x)$ has infinitely many zeros on $(0, \infty)$.
Proof. Assume $u(x)$ has only finitely many zeros on $(0, \infty)$.
Then there is $x_{1}>x_{0}$ such that $u(x) \neq 0$ for $x \geq x_{1}$. Assume $u(x)>0$ for $x \geq x_{1}$.
Then $u^{\prime \prime}(x)=-q(x) u(x)<0$ for $x \geq x_{1}$. Hence $u^{\prime}(x)$ is decreasing for $x \geq x_{1}$.

Theorem

Let $u(x)$ be a non-trivial solution of $u^{\prime \prime}+q(x) u=0$ Let $q(x)$ be continuous and $q(x)>0$ for all $x>x_{0}>0$.
If $\int_{x_{0}}^{\infty} q(x) d x=\infty$,
then $u(x)$ has infinitely many zeros on $(0, \infty)$.
Proof. Assume $u(x)$ has only finitely many zeros on $(0, \infty)$.
Then there is $x_{1}>x_{0}$ such that $u(x) \neq 0$ for $x \geq x_{1}$. Assume $u(x)>0$ for $x \geq x_{1}$.
Then $u^{\prime \prime}(x)=-q(x) u(x)<0$ for $x \geq x_{1}$. Hence $u^{\prime}(x)$ is decreasing for $x \geq x_{1}$.
If we show that $u^{\prime}\left(x_{2}\right)<0$ for some $x_{2}>x_{1}$, then we get for $x>x_{2}$

$$
\begin{aligned}
u(x) & =\int_{x_{2}}^{x} u^{\prime}(t) d t+u\left(x_{2}\right) \leq \int_{x_{2}}^{x} u^{\prime}\left(x_{2}\right) d t+u\left(x_{2}\right) \\
& \leq u^{\prime}\left(x_{2}\right)\left(x-x_{2}\right)+u\left(x_{2}\right)
\end{aligned}
$$

Thus if x is sufficiently large, then $u(x)<0$, a contradiction.

Thus if x is sufficiently large, then $u(x)<0$, a contradiction.
To show that $u^{\prime}(x)<0$ for some $x>x_{1}$. Put

$$
\begin{gathered}
v(x)=-\frac{u^{\prime}(x)}{u(x)}, \quad \text { for } x \geq x_{1} \\
v^{\prime}=\frac{-u^{\prime \prime} u+u^{\prime 2}}{u^{2}}=\frac{q(x) u^{2}+u^{\prime 2}}{u^{2}}=q(x)+v(x)^{2}
\end{gathered}
$$

Thus if x is sufficiently large, then $u(x)<0$, a contradiction.
To show that $u^{\prime}(x)<0$ for some $x>x_{1}$. Put

$$
\begin{gathered}
v(x)=-\frac{u^{\prime}(x)}{u(x)}, \quad \text { for } x \geq x_{1} \\
v^{\prime}=\frac{-u^{\prime \prime} u+u^{\prime 2}}{u^{2}}=\frac{q(x) u^{2}+u^{\prime 2}}{u^{2}}=q(x)+v(x)^{2}
\end{gathered}
$$

Integrating we get

$$
v(x)-v\left(x_{1}\right)=\int_{x_{1}}^{x} q(x) d x+\int_{x_{1}}^{x} v(x)^{2} d x
$$

$\int_{x_{0}}^{\infty} q(x) d x=\infty \Longrightarrow v(x)>0$ for large x.

Thus if x is sufficiently large, then $u(x)<0$, a contradiction.
To show that $u^{\prime}(x)<0$ for some $x>x_{1}$. Put

$$
\begin{gathered}
v(x)=-\frac{u^{\prime}(x)}{u(x)}, \text { for } x \geq x_{1} \\
v^{\prime}=\frac{-u^{\prime \prime} u+u^{\prime 2}}{u^{2}}=\frac{q(x) u^{2}+u^{\prime 2}}{u^{2}}=q(x)+v(x)^{2}
\end{gathered}
$$

Integrating we get

$$
v(x)-v\left(x_{1}\right)=\int_{x_{1}}^{x} q(x) d x+\int_{x_{1}}^{x} v(x)^{2} d x
$$

$\int_{x_{0}}^{\infty} q(x) d x=\infty \Longrightarrow v(x)>0$ for large x.
Thus, $u^{\prime}(x)=-u(x) v(x)$ and this shows that $u^{\prime}(x)<0$ for x large.

Theorem

In Bessel equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0$ Substituting $u(x)=\sqrt{x} y(x)$, we get

$$
u^{\prime \prime}+\left[1+\frac{1-4 p^{2}}{4 x^{2}}\right] u=0
$$

$q(x)=1+\frac{1-4 p^{2}}{4 x^{2}}$ is continuous and $q(x)>0$ for $x>x_{0}>0$.
Further,

$$
\int_{x_{0}}^{\infty}\left(1+\frac{1-4 p^{2}}{4 x^{2}}\right) d x=\infty
$$

By previous theorem, $u(x)$, hence any Bessel function has infinitely many zeros on $(0, \infty)$.

Corollary

Let $Z^{(p)}$ be the set of zeros of Bessel function $J_{p}(x)$ on $(0, \infty)$.

Corollary

Let $Z^{(p)}$ be the set of zeros of Bessel function $J_{p}(x)$ on $(0, \infty)$. Since $Z^{(p)}$ is an infinite set, it is not bounded.

Corollary

Let $Z^{(p)}$ be the set of zeros of Bessel function $J_{p}(x)$ on $(0, \infty)$. Since $Z^{(p)}$ is an infinite set, it is not bounded.

We will conside the following question.

Corollary

Let $Z^{(p)}$ be the set of zeros of Bessel function $J_{p}(x)$ on $(0, \infty)$. Since $Z^{(p)}$ is an infinite set, it is not bounded.

We will conside the following question.
Write $Z^{(p)}=\left\{x_{1}, x_{2}, \ldots\right\}$ as increasing sequence $x_{n}<x_{n+1}$.

Corollary

Let $Z^{(p)}$ be the set of zeros of Bessel function $J_{p}(x)$ on $(0, \infty)$. Since $Z^{(p)}$ is an infinite set, it is not bounded.

We will conside the following question.
Write $Z^{(p)}=\left\{x_{1}, x_{2}, \ldots\right\}$ as increasing sequence $x_{n}<x_{n+1}$.
Question. What is the limit of $x_{n+1}-x_{n}$ as $n \rightarrow \infty$?

Corollary

Let $Z^{(p)}$ be the set of zeros of Bessel function $J_{p}(x)$ on $(0, \infty)$. Since $Z^{(p)}$ is an infinite set, it is not bounded.

We will conside the following question.
Write $Z^{(p)}=\left\{x_{1}, x_{2}, \ldots\right\}$ as increasing sequence $x_{n}<x_{n+1}$.
Question. What is the limit of $x_{n+1}-x_{n}$ as $n \rightarrow \infty$?
We will need the Sturm comparison theorem.

Theorem (Sturm Comparison theorem)

Let $y(x)$ be a non-trivial solutions of

$$
y^{\prime \prime}+q(x) y=0
$$

and $z(x)$ be a non-trivial solutions of

$$
z^{\prime \prime}+r(x) z=0
$$

where $q(x)>r(x)>0$ are continuous.
Then $y(x)$ vanishes at least once between any two consecutive zeros of $z(x)$.

Theorem (Sturm Comparison theorem)

Let $y(x)$ be a non-trivial solutions of

$$
y^{\prime \prime}+q(x) y=0
$$

and $z(x)$ be a non-trivial solutions of

$$
z^{\prime \prime}+r(x) z=0
$$

where $q(x)>r(x)>0$ are continuous.
Then $y(x)$ vanishes at least once between any two consecutive zeros of $z(x)$.

Compare $y^{\prime \prime}+4 y=0$ and $z^{\prime \prime}+z=0$.
Here $(q(x)=) 4>(r(x)=) 1>0$

Theorem (Sturm Comparison theorem)

Let $y(x)$ be a non-trivial solutions of

$$
y^{\prime \prime}+q(x) y=0
$$

and $z(x)$ be a non-trivial solutions of

$$
z^{\prime \prime}+r(x) z=0
$$

where $q(x)>r(x)>0$ are continuous.
Then $y(x)$ vanishes at least once between any two consecutive zeros of $z(x)$.

Compare $y^{\prime \prime}+4 y=0$ and $z^{\prime \prime}+z=0$.
Here $(q(x)=) 4>(r(x)=) 1>0$
Zeros of $y(x)$ are $\pi / 2$ apart and that of $z(x)$ are π apart.

Proof of Sturm Comparison theorem.

Let $x_{1}<x_{2}$ be consecutive zeros of $z(x)$.
Assume $y(x)$ has no zero in $\left(x_{1}, x_{2}\right)$.

Proof of Sturm Comparison theorem.

Let $x_{1}<x_{2}$ be consecutive zeros of $z(x)$.
Assume $y(x)$ has no zero in $\left(x_{1}, x_{2}\right)$.
We may assume $z(x)>0$ and $y(x)>0$ on $\left(x_{1}, x_{2}\right)$. Hence $z^{\prime}\left(x_{1}\right)>0$ and $z^{\prime}\left(x_{2}\right)<0$.

Proof of Sturm Comparison theorem.
Let $x_{1}<x_{2}$ be consecutive zeros of $z(x)$.
Assume $y(x)$ has no zero in (x_{1}, x_{2}).
We may assume $z(x)>0$ and $y(x)>0$ on $\left(x_{1}, x_{2}\right)$. Hence $z^{\prime}\left(x_{1}\right)>0$ and $z^{\prime}\left(x_{2}\right)<0$.
Consider the function $W(x)=y(x) z^{\prime}(x)-y^{\prime}(x) z(x)$

Proof of Sturm Comparison theorem.
Let $x_{1}<x_{2}$ be consecutive zeros of $z(x)$.
Assume $y(x)$ has no zero in $\left(x_{1}, x_{2}\right)$.
We may assume $z(x)>0$ and $y(x)>0$ on $\left(x_{1}, x_{2}\right)$. Hence $z^{\prime}\left(x_{1}\right)>0$ and $z^{\prime}\left(x_{2}\right)<0$.
Consider the function $W(x)=y(x) z^{\prime}(x)-y^{\prime}(x) z(x)$

$$
W^{\prime}(x)=y z^{\prime \prime}-y^{\prime \prime} z=y(-r z)-(-q y) z=(q-r) y z>0
$$

on $\left(x_{1}, x_{2}\right)$.

Proof of Sturm Comparison theorem.
Let $x_{1}<x_{2}$ be consecutive zeros of $z(x)$.
Assume $y(x)$ has no zero in $\left(x_{1}, x_{2}\right)$.
We may assume $z(x)>0$ and $y(x)>0$ on $\left(x_{1}, x_{2}\right)$. Hence
$z^{\prime}\left(x_{1}\right)>0$ and $z^{\prime}\left(x_{2}\right)<0$.
Consider the function $W(x)=y(x) z^{\prime}(x)-y^{\prime}(x) z(x)$

$$
W^{\prime}(x)=y z^{\prime \prime}-y^{\prime \prime} z=y(-r z)-(-q y) z=(q-r) y z>0
$$

on (x_{1}, x_{2}).
Integrating from x_{1} to x_{2}, we get

$$
W\left(x_{2}\right)-W\left(x_{1}\right)>0 \Longrightarrow W\left(x_{2}\right)>W\left(x_{1}\right)
$$

But $W\left(x_{1}\right)=y\left(x_{1}\right) z^{\prime}\left(x_{1}\right)>0$ and $W\left(x_{2}\right)=y\left(x_{2}\right) z^{\prime}\left(x_{2}\right)<0$, a contradiction.

Theorem

Substituting $u(x)=\sqrt{x} y(x)$ in Bessel equation, we get Bessel equation in normal form ($p \geq 0$)

Theorem

Substituting $u(x)=\sqrt{x} y(x)$ in Bessel equation, we get Bessel equation in normal form ($p \geq 0$)

$$
u^{\prime \prime}+q(x) u=0, \quad q(x)=1+\frac{1-4 p^{2}}{4 x^{2}}
$$

Theorem

Substituting $u(x)=\sqrt{x} y(x)$ in Bessel equation, we get Bessel equation in normal form ($p \geq 0$)

$$
u^{\prime \prime}+q(x) u=0, \quad q(x)=1+\frac{1-4 p^{2}}{4 x^{2}}
$$

- $p<1 / 2 \Longrightarrow q(x)>1$
- $p=1 / 2 \Longrightarrow q(x)=1$ (Well known, hence, uninteresting)
- $p>1 / 2 \Longrightarrow q(x)<1$

Use $z^{\prime \prime}+z=0$ and Sturm comparison theorem.

Theorem

Substituting $u(x)=\sqrt{x} y(x)$ in Bessel equation, we get Bessel equation in normal form ($p \geq 0$)

$$
u^{\prime \prime}+q(x) u=0, \quad q(x)=1+\frac{1-4 p^{2}}{4 x^{2}}
$$

- $p<1 / 2 \Longrightarrow q(x)>1$
- $p=1 / 2 \Longrightarrow q(x)=1$ (Well known, hence, uninteresting)
- $p>1 / 2 \Longrightarrow q(x)<1$

Use $z^{\prime \prime}+z=0$ and Sturm comparison theorem.
Let $y_{p}(x)$ be a non-trivial solution of Bessel equation. Then we get

Theorem

- $p<1 / 2 \Longrightarrow$ Between any two roots of $\alpha \cos x+\beta \sin x$ there is a root of $y_{p}(x)$.
- $p=1 / 2 \Longrightarrow x_{2}-x_{1}=\pi$
- $p>1 / 2 \Longrightarrow$ Between any two roots of $y_{p}(x)$ there is a root of $\alpha \cos x+\beta \sin x$.

Theorem

- $p<1 / 2 \Longrightarrow$ Between any two roots of $\alpha \cos x+\beta \sin x$ there is a root of $y_{p}(x)$.
- $p=1 / 2 \Longrightarrow x_{2}-x_{1}=\pi$
- $p>1 / 2 \Longrightarrow$ Between any two roots of $y_{p}(x)$ there is a root of $\alpha \cos x+\beta \sin x$.

We can say more than the above. Suppose $p<1 / 2$ and $a<b<c$ are consecutive roots of $u(x)$. Then $b-a<c-b$. That is, the difference between the successive roots keeps increasing.

Theorem

- $p<1 / 2 \Longrightarrow$ Between any two roots of $\alpha \cos x+\beta \sin x$ there is a root of $y_{p}(x)$.
- $p=1 / 2 \Longrightarrow x_{2}-x_{1}=\pi$
- $p>1 / 2 \Longrightarrow$ Between any two roots of $y_{p}(x)$ there is a root of $\alpha \cos x+\beta \sin x$.

We can say more than the above. Suppose $p<1 / 2$ and $a<b<c$ are consecutive roots of $u(x)$. Then $b-a<c-b$. That is, the difference between the successive roots keeps increasing.

To see this, consider the function $f:=u(x-b+a)$ defined on the interval (b, ∞).

Theorem

- $p<1 / 2 \Longrightarrow$ Between any two roots of $\alpha \cos x+\beta \sin x$ there is a root of $y_{p}(x)$.
- $p=1 / 2 \Longrightarrow x_{2}-x_{1}=\pi$
- $p>1 / 2 \Longrightarrow$ Between any two roots of $y_{p}(x)$ there is a root of $\alpha \cos x+\beta \sin x$.

We can say more than the above. Suppose $p<1 / 2$ and $a<b<c$ are consecutive roots of $u(x)$. Then $b-a<c-b$. That is, the difference between the successive roots keeps increasing.

To see this, consider the function $f:=u(x-b+a)$ defined on the interval (b, ∞).

It is a trivial check that f satisfies the differential equation

$$
f^{\prime \prime}+r(x) f=0 \quad r(x):=q(x-b+a)
$$

Since $p<1 / 2$ the function q is strictly decreasing. Thus, on (b, ∞) we have $r(x)>q(x)>0$.

Since $p<1 / 2$ the function q is strictly decreasing. Thus, on (b, ∞) we have $r(x)>q(x)>0$.

Applying Sturm's comparison theorem we get that there is a $b<x_{0}<c$ such that $f\left(x_{0}\right)=u\left(x_{0}-b+a\right)=0$.

Since $p<1 / 2$ the function q is strictly decreasing. Thus, on (b, ∞) we have $r(x)>q(x)>0$.

Applying Sturm's comparison theorem we get that there is a $b<x_{0}<c$ such that $f\left(x_{0}\right)=u\left(x_{0}-b+a\right)=0$.

Clearly,

- $b<x_{0} \Longrightarrow a<x_{0}-b+a$
- $a<b \Longrightarrow x_{0}-b+a<x_{0}$

Thus,

$$
a<x_{0}-b+a<x_{0}<c
$$

Since $p<1 / 2$ the function q is strictly decreasing. Thus, on (b, ∞) we have $r(x)>q(x)>0$.

Applying Sturm's comparison theorem we get that there is a $b<x_{0}<c$ such that $f\left(x_{0}\right)=u\left(x_{0}-b+a\right)=0$.

Clearly,

- $b<x_{0} \Longrightarrow a<x_{0}-b+a$
- $a<b \Longrightarrow x_{0}-b+a<x_{0}$

Thus,

$$
a<x_{0}-b+a<x_{0}<c
$$

However, $a<b<c$ are successive roots of $u(x)$. This forces that

$$
x_{0}-b+a=b \quad \text { that is } \quad x_{0}=2 b-a
$$

Since $p<1 / 2$ the function q is strictly decreasing. Thus, on (b, ∞) we have $r(x)>q(x)>0$.

Applying Sturm's comparison theorem we get that there is a $b<x_{0}<c$ such that $f\left(x_{0}\right)=u\left(x_{0}-b+a\right)=0$.

Clearly,

- $b<x_{0} \Longrightarrow a<x_{0}-b+a$
- $a<b \Longrightarrow x_{0}-b+a<x_{0}$

Thus,

$$
a<x_{0}-b+a<x_{0}<c
$$

However, $a<b<c$ are successive roots of $u(x)$. This forces that

$$
x_{0}-b+a=b \quad \text { that is } \quad x_{0}=2 b-a
$$

As $x_{0}<c$ we get that $2 b-a<c$, that is, $b-a<c-b$.

Since $p<1 / 2$ the function q is strictly decreasing. Thus, on (b, ∞) we have $r(x)>q(x)>0$.

Applying Sturm's comparison theorem we get that there is a $b<x_{0}<c$ such that $f\left(x_{0}\right)=u\left(x_{0}-b+a\right)=0$.

Clearly,

- $b<x_{0} \Longrightarrow a<x_{0}-b+a$
- $a<b \Longrightarrow x_{0}-b+a<x_{0}$

Thus,

$$
a<x_{0}-b+a<x_{0}<c
$$

However, $a<b<c$ are successive roots of $u(x)$. This forces that

$$
x_{0}-b+a=b \quad \text { that is } \quad x_{0}=2 b-a
$$

As $x_{0}<c$ we get that $2 b-a<c$, that is, $b-a<c-b$.
Next we claim that the difference between any two successive roots of u is strictly less than π.

If not, then let $a<b$ be successive roots such that $b-a \geq \pi$

If not, then let $a<b$ be successive roots such that $b-a \geq \pi$ Since u has infinitely many roots, and their difference is strictly increasing, we may assume that $b-a>\pi$.

If not, then let $a<b$ be successive roots such that $b-a \geq \pi$ Since u has infinitely many roots, and their difference is strictly increasing, we may assume that $b-a>\pi$.

But now we can choose $\alpha, \beta \in \mathbb{R}$ such that $\alpha \cos x+\beta \sin x$ has two roots in (a, b), which contradicts Sturm's comparison theorem.

If not, then let $a<b$ be successive roots such that $b-a \geq \pi$ Since u has infinitely many roots, and their difference is strictly increasing, we may assume that $b-a>\pi$.

But now we can choose $\alpha, \beta \in \mathbb{R}$ such that $\alpha \cos x+\beta \sin x$ has two roots in (a, b), which contradicts Sturm's comparison theorem.

Thus, we have proved that if $\left\{x_{n}\right\}$ are the roots of u in increasing order, then the difference $x_{n+1}-x_{n}$ is strictly increasing and bounded above by π.

If not, then let $a<b$ be successive roots such that $b-a \geq \pi$
Since u has infinitely many roots, and their difference is strictly increasing, we may assume that $b-a>\pi$.

But now we can choose $\alpha, \beta \in \mathbb{R}$ such that $\alpha \cos x+\beta \sin x$ has two roots in (a, b), which contradicts Sturm's comparison theorem.

Thus, we have proved that if $\left\{x_{n}\right\}$ are the roots of u in increasing order, then the difference $x_{n+1}-x_{n}$ is strictly increasing and bounded above by π.

Next let us show that these differences converge to π. If not, then $\left(x_{n+1}-x_{n}\right) \rightarrow \gamma<\pi$. Choose $1<\delta$, sufficiently close to 1 such that $\gamma<\frac{\pi}{\delta}<\pi$.

The function $q(x)$ is decreasing to 1 . Therefore, there is a $x_{0} \in \mathbb{R}$, sufficiently large, such that $q\left(x_{0}\right)<\delta^{2}$. Apply Sturm's comparison on the interval $\left(x_{0}, \infty\right)$ to the differential equations $u^{\prime \prime}+q(x) u=0$ and $z^{\prime \prime}+\delta^{2} z=0$.

The function $q(x)$ is decreasing to 1 . Therefore, there is a $x_{0} \in \mathbb{R}$, sufficiently large, such that $q\left(x_{0}\right)<\delta^{2}$. Apply Sturm's comparison on the interval $\left(x_{0}, \infty\right)$ to the differential equations $u^{\prime \prime}+q(x) u=0$ and $z^{\prime \prime}+\delta^{2} z=0$.

Thus, between any two roots of u there is a root of z. Let a and b be two consecutive roots of u such that $x_{0}<a<b$. Since $b-a<\gamma<\frac{\pi}{\delta}$, find a^{\prime} and b^{\prime} such that $x_{0}<a^{\prime}<a<b<b^{\prime}$ and $b^{\prime}-a^{\prime}=\frac{\pi}{\delta}$.

The function $q(x)$ is decreasing to 1 . Therefore, there is a $x_{0} \in \mathbb{R}$, sufficiently large, such that $q\left(x_{0}\right)<\delta^{2}$. Apply Sturm's comparison on the interval $\left(x_{0}, \infty\right)$ to the differential equations $u^{\prime \prime}+q(x) u=0$ and $z^{\prime \prime}+\delta^{2} z=0$.
Thus, between any two roots of u there is a root of z. Let a and b be two consecutive roots of u such that $x_{0}<a<b$. Since $b-a<\gamma<\frac{\pi}{\delta}$, find a^{\prime} and b^{\prime} such that $x_{0}<a^{\prime}<a<b<b^{\prime}$ and $b^{\prime}-a^{\prime}=\frac{\pi}{\delta}$.
Find α and β such that the function $\alpha \cos \delta x+\beta \sin \delta x$ vanishes at a^{\prime}. This function is a solution to the ODE $z^{\prime \prime}+\delta^{2} z=0$. The next root of this function is at $a^{\prime}+\frac{\pi}{\delta}=b^{\prime}$. Thus, we get a contradiction to Sturm's theorem which says that there is a root of this function in the interval (a, b).

Thus, we have proved

Theorem

If $p<1 / 2$ then the sequence of differences of roots of u, $x_{n+1}-x_{n}$ is increasing and tends to π.

Thus, we have proved
Theorem
If $p<1 / 2$ then the sequence of differences of roots of u, $x_{n+1}-x_{n}$ is increasing and tends to π.

Similarly, we can prove that if $p>1 / 2$ then the sequence of difference of roots of u is decreasing and tends to π.

The first few zeroes of Bessel functions are tabulated below.

	$J_{0}(x)$	$J_{1}(x)$	$J_{2}(x)$	$J_{3}(x)$	$J_{4}(x)$	$J_{5}(x)$
1	2.4048	3.8317	5.1356	6.3802	7.5883	8.7715
2	5.5201	7.0156	8.4172	9.7610	11.0647	12.3386
3	8.6537	10.1735	11.6198	13.0152	14.3725	15.7002
4	11.7915	13.3237	14.7960	16.2235	17.6160	18.9801
5	14.9309	16.4706	17.9598	19.4094	20.8269	22.2178

The first few zeroes of Bessel functions are tabulated below.

	$J_{0}(x)$	$J_{1}(x)$	$J_{2}(x)$	$J_{3}(x)$	$J_{4}(x)$	$J_{5}(x)$
1	2.4048	3.8317	5.1356	6.3802	7.5883	8.7715
2	5.5201	7.0156	8.4172	9.7610	11.0647	12.3386
3	8.6537	10.1735	11.6198	13.0152	14.3725	15.7002
4	11.7915	13.3237	14.7960	16.2235	17.6160	18.9801
5	14.9309	16.4706	17.9598	19.4094	20.8269	22.2178

Question. Why are we concerned with zeros of Bessel function $J_{p}(x)$?
It is often required in mathematical physics to expand a given function in terms of Bessel functions.

Simplest and most useful expansions are of the form

$$
f(x)=\sum_{n=1}^{\infty} a_{n} J_{p}\left(\lambda_{p, n} x\right)=a_{1} J_{p}\left(\lambda_{p, 1} x\right)+a_{2} J_{p}\left(\lambda_{p, 2} x\right)+\ldots
$$

where $f(x)$ is defined on, (say) $[0,1]$, and $\lambda_{p, n}$'s are zeros of Bessel function $J_{p}(x), p \geq 0$.

Simplest and most useful expansions are of the form

$$
f(x)=\sum_{n=1}^{\infty} a_{n} J_{p}\left(\lambda_{p, n} x\right)=a_{1} J_{p}\left(\lambda_{p, 1} x\right)+a_{2} J_{p}\left(\lambda_{p, 2} x\right)+\ldots
$$

where $f(x)$ is defined on, (say) $[0,1]$, and $\lambda_{p, n}$'s are zeros of Bessel function $J_{p}(x), p \geq 0$.
Qn. How to compute the coefficients a_{n} ?

Simplest and most useful expansions are of the form

$$
f(x)=\sum_{n=1}^{\infty} a_{n} J_{p}\left(\lambda_{p, n} x\right)=a_{1} J_{p}\left(\lambda_{p, 1} x\right)+a_{2} J_{p}\left(\lambda_{p, 2} x\right)+\ldots
$$

where $f(x)$ is defined on, (say) $[0,1]$, and $\lambda_{p, n}$'s are zeros of Bessel function $J_{p}(x), p \geq 0$.
Qn. How to compute the coefficients a_{n} ?
Remark: For a scalar a, the scaled Bessel functions $J_{p}(a x)$ are solutions of

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(a^{2} x^{2}-p^{2}\right) y=0
$$

known as scaled Bessel equation.

Orthogonality

Orthogonality

Define an inner product on functions on $[0,1]$ by

$$
\langle f, g\rangle:=\int_{0}^{1} x f(x) g(x) d x
$$

Orthogonality

Define an inner product on functions on $[0,1]$ by

$$
\langle f, g\rangle:=\int_{0}^{1} x f(x) g(x) d x
$$

This is similar to the previous inner product except that $f(x) g(x)$ is now multiplied by x and the interval of integration is from 0 to 1 .

We call a function on $[0,1]$ square integrable with respect to this inner product if

$$
\int_{0}^{1} x f(x)^{2} d x<\infty
$$

The multiplying factor x is called a weight function.

Fix $p \geq 0$. Let $Z^{(p)}=\left\{\lambda_{p, 1}, \lambda_{p, 2}, \ldots\right\}$ denote the set of zeros of $J_{p}(x)$ on $(0, \infty)$.

Theorem

The set of scaled Bessel functions

$$
\left\{J_{p}\left(\lambda_{p, 1} x\right), J_{p}\left(\lambda_{p, 2} x\right), \ldots\right\}
$$

form an orthogonal family w.r.t. above inner product, i.e. $\left\langle J_{p}\left(\lambda_{p, k} x\right), J_{p}\left(\lambda_{p, l} x\right)\right\rangle:=$

$$
\int_{0}^{1} x J_{p}\left(\lambda_{p, k} x\right) J_{p}\left(\lambda_{p, l} x\right) d x= \begin{cases}\frac{1}{2}\left[J_{p+1}\left(\lambda_{p, k}\right)\right]^{2} & \text { if } k=l \\ 0 & \text { if } k \neq l\end{cases}
$$

Theorem

Fix $p \geq 0$ and $Z^{(p)}=\left\{\lambda_{p, 1}, \lambda_{p, 2}, \ldots\right\}$: zeros of $J_{p}(x)$ on $(0, \infty)$. Any square-integrable function $f(x)$ on $[0,1]$ can be expanded in a series of scaled Bessel functions $J_{p}\left(\lambda_{p, n} x\right)$ as

$$
f(x)=\sum_{n \geq 1} c_{n} J_{p}\left(\lambda_{p, n} x\right)
$$

where

$$
c_{n}=\frac{2}{\left[J_{p+1}\left(\lambda_{p, n}\right)\right]^{2}} \int_{0}^{1} x f(x) J_{p}\left(\lambda_{p, n} x\right) d x
$$

This is Fourier-Bessel series of $f(x)$ for parameter p.

Example. Let us compute the Fourier-Bessel series (for $p=0$) of $f(x)=1$ in the interval $0 \leq x \leq 1$.

Example. Let us compute the Fourier-Bessel series (for $p=0$) of $f(x)=1$ in the interval $0 \leq x \leq 1$.
Use $\frac{d}{d x}\left(x^{p} J_{p}(x)\right)=x^{p} J_{p-1}(x)$ for $p=1$.

$$
\int_{0}^{1} x J_{0}\left(\lambda_{0, n} x\right) d x=\left.\frac{1}{\lambda_{0, n}} x J_{1}\left(\lambda_{0, n} x\right)\right|_{0} ^{1}=\frac{J_{1}\left(\lambda_{0, n}\right)}{\lambda_{0, n}}
$$

Example. Let us compute the Fourier-Bessel series (for $p=0$) of $f(x)=1$ in the interval $0 \leq x \leq 1$.
Use $\frac{d}{d x}\left(x^{p} J_{p}(x)\right)=x^{p} J_{p-1}(x)$ for $p=1$.

$$
\begin{gathered}
\int_{0}^{1} x J_{0}\left(\lambda_{0, n} x\right) d x=\left.\frac{1}{\lambda_{0, n}} x J_{1}\left(\lambda_{0, n} x\right)\right|_{0} ^{1}=\frac{J_{1}\left(\lambda_{0, n}\right)}{\lambda_{0, n}} \\
c_{n}=\frac{2}{\left[J_{1}\left(\lambda_{0, n}\right)\right]^{2}} \int_{0}^{1} x f(x) J_{0}\left(\lambda_{0, n} x\right) d x=\frac{2}{\lambda_{0, n} J_{1}\left(\lambda_{0, n}\right)}
\end{gathered}
$$

Example. Let us compute the Fourier-Bessel series (for $p=0$) of $f(x)=1$ in the interval $0 \leq x \leq 1$.
Use $\frac{d}{d x}\left(x^{p} J_{p}(x)\right)=x^{p} J_{p-1}(x)$ for $p=1$.

$$
\begin{gathered}
\int_{0}^{1} x J_{0}\left(\lambda_{0, n} x\right) d x=\left.\frac{1}{\lambda_{0, n}} x J_{1}\left(\lambda_{0, n} x\right)\right|_{0} ^{1}=\frac{J_{1}\left(\lambda_{0, n}\right)}{\lambda_{0, n}} \\
c_{n}=\frac{2}{\left[J_{1}\left(\lambda_{0, n}\right)\right]^{2}} \int_{0}^{1} x f(x) J_{0}\left(\lambda_{0, n} x\right) d x=\frac{2}{\lambda_{0, n} J_{1}\left(\lambda_{0, n}\right)}
\end{gathered}
$$

Thus, the Fourier-Bessel series of $f(x)$ is

$$
\sum_{n \geq 1} \frac{2}{\lambda_{0, n} J_{1}\left(\lambda_{0, n}\right)} J_{0}\left(\lambda_{0, n} x\right)
$$

Example. Let us compute the Fourier-Bessel series (for $p=0$) of $f(x)=1$ in the interval $0 \leq x \leq 1$.
Use $\frac{d}{d x}\left(x^{p} J_{p}(x)\right)=x^{p} J_{p-1}(x)$ for $p=1$.

$$
\begin{gathered}
\int_{0}^{1} x J_{0}\left(\lambda_{0, n} x\right) d x=\left.\frac{1}{\lambda_{0, n}} x J_{1}\left(\lambda_{0, n} x\right)\right|_{0} ^{1}=\frac{J_{1}\left(\lambda_{0, n}\right)}{\lambda_{0, n}} \\
c_{n}=\frac{2}{\left[J_{1}\left(\lambda_{0, n}\right)\right]^{2}} \int_{0}^{1} x f(x) J_{0}\left(\lambda_{0, n} x\right) d x=\frac{2}{\lambda_{0, n} J_{1}\left(\lambda_{0, n}\right)}
\end{gathered}
$$

Thus, the Fourier-Bessel series of $f(x)$ is

$$
\sum_{n \geq 1} \frac{2}{\lambda_{0, n} J_{1}\left(\lambda_{0, n}\right)} J_{0}\left(\lambda_{0, n} x\right)
$$

By next theorem, this converges to 1 for $0<x<1$.

Convergence in norm

Fourier-Bessel series converges to $f(x)$ in norm, i.e.

$$
\left\|f(x)-\sum_{n=1}^{m} c_{n} J_{p}\left(\lambda_{p, n} x\right)\right\| \text { converges to } 0 \text { as } m \rightarrow \infty
$$

Convergence in norm

Fourier-Bessel series converges to $f(x)$ in norm, i.e.

$$
\left\|f(x)-\sum_{n=1}^{m} c_{n} J_{p}\left(\lambda_{p, n} x\right)\right\| \text { converges to } 0 \text { as } m \rightarrow \infty
$$

For pointwise convergence, we have
Bessel expansion theorem
Assume f and f^{\prime} have at most a finite number of jump discontinuities in $[0,1]$, then the Bessel series converges for $0<x<1$ to

$$
\frac{f\left(x_{-}\right)+f\left(x_{+}\right)}{2}
$$

Convergence in norm

Fourier-Bessel series converges to $f(x)$ in norm, i.e.

$$
\left\|f(x)-\sum_{n=1}^{m} c_{n} J_{p}\left(\lambda_{p, n} x\right)\right\| \text { converges to } 0 \text { as } m \rightarrow \infty
$$

For pointwise convergence, we have
Bessel expansion theorem
Assume f and f^{\prime} have at most a finite number of jump discontinuities in $[0,1]$, then the Bessel series converges for $0<x<1$ to

$$
\frac{f\left(x_{-}\right)+f\left(x_{+}\right)}{2}
$$

At $x=1$, the series always converges to 0 for all f,

Convergence in norm

Fourier-Bessel series converges to $f(x)$ in norm, i.e.

$$
\left\|f(x)-\sum_{n=1}^{m} c_{n} J_{p}\left(\lambda_{p, n} x\right)\right\| \text { converges to } 0 \text { as } m \rightarrow \infty
$$

For pointwise convergence, we have
Bessel expansion theorem
Assume f and f^{\prime} have at most a finite number of jump discontinuities in $[0,1]$, then the Bessel series converges for $0<x<1$ to

$$
\frac{f\left(x_{-}\right)+f\left(x_{+}\right)}{2}
$$

At $x=1$, the series always converges to 0 for all f, at $x=0$, if $p=0$ then it converges to $f\left(0_{+}\right)$.
at $x=0$, if $p>0$ then it converges to 0 .

Proof of orthogonality of scaled Bessel functions

Proof of orthogonality of scaled Bessel functions

If a, b are positive scalars, then $u(x)=J_{p}(a x)$ and $v(x)=J_{p}(b x)$ satisfies

$$
\begin{aligned}
u^{\prime \prime}+\frac{1}{x} u^{\prime}+\left(a^{2}-\frac{p^{2}}{x^{2}}\right) u & =0 \\
v^{\prime \prime}+\frac{1}{x} v^{\prime}+\left(b^{2}-\frac{p^{2}}{x^{2}}\right) v & =0
\end{aligned}
$$

Proof of orthogonality of scaled Bessel functions

If a, b are positive scalars, then $u(x)=J_{p}(a x)$ and $v(x)=J_{p}(b x)$ satisfies

$$
\begin{aligned}
& u^{\prime \prime}+\frac{1}{x} u^{\prime}+\left(a^{2}-\frac{p^{2}}{x^{2}}\right) u=0 \\
& v^{\prime \prime}+\frac{1}{x} v^{\prime}+\left(b^{2}-\frac{p^{2}}{x^{2}}\right) v=0
\end{aligned}
$$

Multiply by v and u resp. and subtract, we get

$$
\left(v u^{\prime \prime}-u v^{\prime \prime}\right)+\frac{1}{x}\left(v u^{\prime}-u v^{\prime}\right)+\left(a^{2}-b^{2}\right) u v=0
$$

Proof of orthogonality of scaled Bessel functions

If a, b are positive scalars, then $u(x)=J_{p}(a x)$ and $v(x)=J_{p}(b x)$ satisfies

$$
\begin{aligned}
& u^{\prime \prime}+\frac{1}{x} u^{\prime}+\left(a^{2}-\frac{p^{2}}{x^{2}}\right) u=0 \\
& v^{\prime \prime}+\frac{1}{x} v^{\prime}+\left(b^{2}-\frac{p^{2}}{x^{2}}\right) v=0
\end{aligned}
$$

Multiply by v and u resp. and subtract, we get

$$
\begin{aligned}
& \left(v u^{\prime \prime}-u v^{\prime \prime}\right)+\frac{1}{x}\left(v u^{\prime}-u v^{\prime}\right)+\left(a^{2}-b^{2}\right) u v=0 \\
& \left(u^{\prime} v-v^{\prime} u\right)^{\prime}+\frac{1}{x}\left(u^{\prime} v-v^{\prime} u\right)=\left(b^{2}-a^{2}\right) u v \\
& \left(x\left(u^{\prime} v-v^{\prime} u\right)\right)^{\prime}=\left(b^{2}-a^{2}\right) x u v
\end{aligned}
$$

$$
\left(b^{2}-a^{2}\right) \int_{0}^{1} x u v d x=\left.\left[x\left(u^{\prime} v-v^{\prime} u\right)\right]\right|_{0} ^{1}=\left(u^{\prime} v-v^{\prime} u\right)(1)
$$

$$
\begin{gathered}
\left(b^{2}-a^{2}\right) \int_{0}^{1} x u v d x=\left.\left[x\left(u^{\prime} v-v^{\prime} u\right)\right]\right|_{0} ^{1}=\left(u^{\prime} v-v^{\prime} u\right)(1) \\
\left(b^{2}-a^{2}\right) \int_{0}^{1} x J_{p}(a x) J_{p}(b x) d x=J_{p}^{\prime}(a) J_{p}(b)-J_{p}^{\prime}(b) J_{p}(a)
\end{gathered}
$$

$$
\begin{aligned}
& \left(b^{2}-a^{2}\right) \int_{0}^{1} x u v d x=\left.\left[x\left(u^{\prime} v-v^{\prime} u\right)\right]\right|_{0} ^{1}=\left(u^{\prime} v-v^{\prime} u\right)(1) \\
& \left(b^{2}-a^{2}\right) \int_{0}^{1} x J_{p}(a x) J_{p}(b x) d x=J_{p}^{\prime}(a) J_{p}(b)-J_{p}^{\prime}(b) J_{p}(a)
\end{aligned}
$$

So if $a=\lambda_{p, k}$ and $b=\lambda_{p, l}$ are distinct, then

$$
\int_{0}^{1} x J_{p}\left(\lambda_{p, k} x\right) J_{p}\left(\lambda_{p, l} x\right) d x=0
$$

$$
\begin{gathered}
\left(b^{2}-a^{2}\right) \int_{0}^{1} x u v d x=\left.\left[x\left(u^{\prime} v-v^{\prime} u\right)\right]\right|_{0} ^{1}=\left(u^{\prime} v-v^{\prime} u\right)(1) \\
\left(b^{2}-a^{2}\right) \int_{0}^{1} x J_{p}(a x) J_{p}(b x) d x=J_{p}^{\prime}(a) J_{p}(b)-J_{p}^{\prime}(b) J_{p}(a)
\end{gathered}
$$

So if $a=\lambda_{p, k}$ and $b=\lambda_{p, l}$ are distinct, then

$$
\int_{0}^{1} x J_{p}\left(\lambda_{p, k} x\right) J_{p}\left(\lambda_{p, l} x\right) d x=0
$$

To compute the norm of $J_{p}\left(\lambda_{p, k} x\right)$, consider

$$
\begin{aligned}
& 2 x^{2} u^{\prime}\left[u^{\prime \prime}+\frac{1}{x} u^{\prime}+\left(a^{2}-\frac{p^{2}}{x^{2}}\right) u\right]=0 \\
& \quad=\left[x^{2} u^{\prime 2}+\left(a^{2} x^{2}-p^{2}\right) u^{2}\right]^{\prime}-2 a^{2} x u^{2}
\end{aligned}
$$

Integrate on $[0,1]$,

$$
2 a^{2} \int_{0}^{1} x u^{2} d x=\left.\left[x^{2} u^{\prime 2}+\left(a^{2} x^{2}-p^{2}\right) u^{2}\right]\right|_{0} ^{1}
$$

Integrate on $[0,1]$,

$$
2 a^{2} \int_{0}^{1} x u^{2} d x=\left.\left[x^{2} u^{\prime 2}+\left(a^{2} x^{2}-p^{2}\right) u^{2}\right]\right|_{0} ^{1}
$$

Since $p \geq 0,(p u(0))^{2}=\left(p J_{p}(0)\right)^{2}=0$.
Thus, $\left(x^{2} u^{\prime 2}+\left(a^{2} x^{2}-p^{2}\right) u^{2}\right)(0)=0$.

Integrate on $[0,1]$,

$$
2 a^{2} \int_{0}^{1} x u^{2} d x=\left.\left[x^{2} u^{\prime 2}+\left(a^{2} x^{2}-p^{2}\right) u^{2}\right]\right|_{0} ^{1}
$$

Since $p \geq 0,(p u(0))^{2}=\left(p J_{p}(0)\right)^{2}=0$.
Thus, $\left(x^{2} u^{2}+\left(a^{2} x^{2}-p^{2}\right) u^{2}\right)(0)=0$.
Further, $u^{\prime}(1)=a J_{p}^{\prime}(a)$, so we get

$$
\left(x^{2} u^{\prime 2}+\left(a^{2} x^{2}-p^{2}\right) u^{2}\right)(1)=a^{2} J_{p}^{\prime}(a)^{2}+\left(a^{2}-p^{2}\right) J_{p}(a)^{2}
$$

Integrate on $[0,1]$,

$$
2 a^{2} \int_{0}^{1} x u^{2} d x=\left.\left[x^{2} u^{\prime 2}+\left(a^{2} x^{2}-p^{2}\right) u^{2}\right]\right|_{0} ^{1}
$$

Since $p \geq 0,(p u(0))^{2}=\left(p J_{p}(0)\right)^{2}=0$.
Thus, $\left(x^{2} u^{\prime 2}+\left(a^{2} x^{2}-p^{2}\right) u^{2}\right)(0)=0$.
Further, $u^{\prime}(1)=a J_{p}^{\prime}(a)$, so we get

$$
\left(x^{2} u^{\prime 2}+\left(a^{2} x^{2}-p^{2}\right) u^{2}\right)(1)=a^{2} J_{p}^{\prime}(a)^{2}+\left(a^{2}-p^{2}\right) J_{p}(a)^{2}
$$

Put $a=\lambda_{p, k}$ to get

$$
2 \lambda_{p, k}^{2} \int_{0}^{1} x J_{p}\left(\lambda_{p, k} x\right)^{2} d x=\lambda_{p, k}^{2} J_{p}^{\prime}\left(\lambda_{p, k}\right)^{2}
$$

Integrate on $[0,1]$,

$$
2 a^{2} \int_{0}^{1} x u^{2} d x=\left.\left[x^{2} u^{\prime 2}+\left(a^{2} x^{2}-p^{2}\right) u^{2}\right]\right|_{0} ^{1}
$$

Since $p \geq 0,(p u(0))^{2}=\left(p J_{p}(0)\right)^{2}=0$.
Thus, $\left(x^{2} u^{\prime 2}+\left(a^{2} x^{2}-p^{2}\right) u^{2}\right)(0)=0$.
Further, $u^{\prime}(1)=a J_{p}^{\prime}(a)$, so we get

$$
\left(x^{2} u^{\prime 2}+\left(a^{2} x^{2}-p^{2}\right) u^{2}\right)(1)=a^{2} J_{p}^{\prime}(a)^{2}+\left(a^{2}-p^{2}\right) J_{p}(a)^{2}
$$

Put $a=\lambda_{p, k}$ to get

$$
2 \lambda_{p, k}^{2} \int_{0}^{1} x J_{p}\left(\lambda_{p, k} x\right)^{2} d x=\lambda_{p, k}^{2} J_{p}^{\prime}\left(\lambda_{p, k}\right)^{2}
$$

Thus,

$$
\int_{0}^{1} x J_{p}\left(\lambda_{p, k} x\right)^{2} d x=\frac{1}{2} J_{p}^{\prime}\left(\lambda_{p, k}\right)^{2}=\frac{1}{2} J_{p+1}\left(\lambda_{p, k}\right)^{2}
$$

for last equality, use $x=\lambda_{p, k}$ in $J_{p}^{\prime}(x)-\frac{p}{x} J_{p}(x)=J_{p+1}(x)$

