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Gamma function

Define for all p ≥ 1, the Gamma function

Γ(p) :=

∫ ∞
0

tp−1e−tdt

There is a problem if p < 1, since tp−1 is unbounded near 0.
For p > 1, there is no problem because e−t is rapidly decreasing.

Γ(1) =

∫ ∞
0

e−tdt = 1

For any real number p ≥ 1,

Γ(p+ 1) = lim
x→∞

∫ x

0
tpe−tdt = p

(
lim
x→∞

∫ x

0
tp−1e−tdt

)
= pΓ(p)
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Γ(p+ 1) = pΓ(p) =⇒ Γ(p) =
Γ(p+ 1)

p
(∗)

We use (∗) to extend the gamma function to all real numbers
except non-positive integers 0,−1,−2, . . .

Note 0 < p < 1 =⇒ 1 < p+ 1 < 2, hence Γ(p+ 1) is defined.
We use (∗) to define Γ(p).

Next, −1 < p < 0 =⇒ 0 < p+ 1 < 1. Since Γ(p+ 1) is defined
above; use (∗) to define Γ(p). Proceed like this

For example, Γ(−5

2
) =

Γ(−3
2)

−5
2

=
Γ(−1

2)

(−5
2)(−3

2)
=

Γ(12)(=
√
π)

(−5
2)(−3

2)(−1
2)
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Further

lim
p→0

Γ(p) = lim
p→0

Γ(p+ 1)

p
= ±∞

according as p→ 0 from right or left.

The graph of Gamma function is shown below.
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Though the gamma function is now defined for all real numbers
(except the non positive integers),
the integral representation is valid only for p > 0.

It is useful to rewrite

1

Γ(p)
=

p

Γ(p+ 1)

This holds for all p if we impose the natural condition that the
reciprocal of Γ evaluated at a non positive integer is 0.

Γ(1/2) =

∫ ∞
0

t−1/2e−tdt

= 2

∫ ∞
0

e−s
2
ds (use the substitution t = s2)

=
√
π
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By translating,

Γ(1/2) =
√
π ≈ 1.772

Γ(−1/2) =
Γ(1/2)

−1/2
= −2

√
π ≈ −3.545

Γ(−3/2) =
Γ(−1/2)

−3/2
=

4

3

√
π ≈ 2.363

Γ(3/2) =
1

2
Γ(1/2) =

1

2

√
π ≈ 0.886

Γ(5/2) =
3

2
Γ(3/2) =

3

4

√
π ≈ 1.329

Γ(7/2) =
5

2
Γ(5/2) =

15

8

√
π ≈ 3.323
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Bessel functions

Bessel equation is the second-order linear ODE

x2y′′ + xy′ + (x2 − p2)y = 0 p ≥ 0 (∗)

Its solutions are called Bessel functions.

Bessel functions have applications in physics and engineering:

Since x = 0 is a regular singular point of (∗), we get a Frobenius
solution, called Bessel function of first kind.

The second linearly independent solution of (∗) is called Bessel
function of second kind.

For Frobenius solution, put y = xr
∞∑
n=0

an(r)xn a0 = 1.
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The indicial equation, i.e. coefficient of xr, for Bessel equation
x2y′′ + xy′ + (x2 − p2)y = 0 is

I(r) = r(r − 1) + r − p2 = r2 − p2 = 0

The roots are r1 = p and r2 = −p.
For recurrence relations, equating coefficient of xn+r to 0 (for
n ≥ 1) we get

[(r + n)2 − p2]an(r) + an−2(r) = 0 n ≥ 2

((r + 1)2 − p2)a1(r) = 0 =⇒ a1(r) = 0

So all odd terms a2n+1(r) = 0.

a2n(r) =
−1

(r + 2n)2 − p2
a2n−2

=
(−1)n

((r + 2)2 − p2)((r + 4)2 − p2) . . . ((r + 2n)2 − p2)

8 / 56
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For Frobenius solution, set r = p the larger root.

a2n(p) =
(−1)n

((p+ 2)2 − p2)((p+ 4)2 − p2) . . . ((p+ 2n)2 − p2)

=
(−1)n

(2(2p+ 2))(4(2p+ 4)) . . . (2n(2p+ 2n))

=
(−1)n

22nn!(1 + p) . . . (n+ p)

The solution y1(x) = xp
∑
n≥0

(−1)n

22nn!(1 + p) . . . (n+ p)
x2n

converges on (0,∞).

Multiply y1(x) by
1

2pΓ(1 + p)

Jp(x) :=
(x

2

)p∑
n≥0

(−1)n

n! Γ(n+ p+ 1)

(x
2

)2n
x > 0.

This is called the Bessel function of first kind of order p.
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Jp(x) :=
∑
n≥0

(−1)n

n! Γ(n+ p+ 1)

(x
2

)2n+p
x > 0.

The Bessel function of order 0 is

J0(x) =
∑
n≥0

(−1)n

n!n!

(x
2

)2n
= 1−

(x
2

)2
+

1

2!2!

(x
2

)4
− 1

3!3!

(x
2

)6
+ . . .

The Bessel function of order 1 is

J1(x) =
∑
n≥0

(−1)n

n!(n+ 1)!

(x
2

)2n+1

=
x

2
− 1

1!2!

(x
2

)3
+

1

2!3!

(x
2

)5
+ . . .
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n!n!

(x
2

)2n
= 1−

(x
2

)2
+

1

2!2!

(x
2

)4
− 1

3!3!

(x
2

)6
+ . . .

The Bessel function of order 1 is

J1(x) =
∑
n≥0

(−1)n

n!(n+ 1)!

(x
2

)2n+1

=
x

2
− 1

1!2!

(x
2

)3
+

1

2!3!

(x
2

)5
+ . . .
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Both J0(x) and J1(x) have a damped oscillatory behavior having
an infinite number of zeros, these zeros occur alternately like
functions cosx and sinx.

Further, they satisfy derivative identities similar to cosx and sinx.

J ′0(x) = −J1(x) [xJ1(x)]′ = xJ0(x)
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Second independent solution of Bessel equation

Recall r1 = p and r2 = −p are roots of indicial equation.
So that r1 − r2 = 2p.

The analysis to get a second independent solution of the Bessel
equation splits into the following cases

2p is not an integer

2p is an odd positive integer

2p is an even positive integer

p = 0
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Second independent solution of Bessel equation

Case 1: 2p is not an integer.

Solving the recursion

[(r + n)2 − p2]an(r) + an−2(r) = 0 n ≥ 2 a1(r) = 0.

for r = −p, we obtain

y2(x) = x−p
∑
n≥0

(−1)n

22nn!(1− p) . . . (n− p)
x2n

Multiplying by
1

2−pΓ(1− p)

J−p(x) :=
(x

2

)−p∑
n≥0

(−1)n

n! Γ(n− p+ 1)

(x
2

)2n
x > 0.

This is a second solution of the Bessel equation linearly
independent of Jp(x).
It is unbounded near x = 0.
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Second independent solution of Bessel equation

Case 2: 2p is a positive integer.

Recall that the second solution is given by

y2(x) =
∑
n≥0

A′n(−p)xn−p +
∑
n≥0

An(−p)xn−plog x

where
An(r) := (r + p)an(r)

Case 2(a): 2p is an odd positive integer, that is, p = 2l+1
2 for

some l > 0

We have seen that A2n+1(r) = (r + p)a2n+1(r) = 0

a2n(r) =
(−1)n∏n

i=1((r + 2i)2 − p2)
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Second independent solution of Bessel equation

Since the polynomial
∏n
i=1((r + 2i)2 − p2) evaluated at r = −p, is∏n

i=1 4i(i− p) 6= 0,

the function a2n(r) is analytic in a neighborhood of −p.

Thus, A2n(−p) = 0 and A′2n(−p) = a2n(−p).
Thus, in this case we obtain that the second solution is

y2(x) =
∑
n≥0

(−1)n

22nn!(1− p) . . . (n− p)
x2n−p

Multiplying by
1

2−pΓ(1− p)

J−p(x) :=
(x

2

)−p∑
n≥0

(−1)n

n! Γ(n− p+ 1)

(x
2

)2n
x > 0.
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Case 2(b): 2p is an even positive integer, that is, p is a positive
integer.

As before, A2n+1(r) = 0.
The polynomial

∏n
i=1((r + 2i)2 − p2) evaluated at r = −p, is∏n

i=1 4i(i− p),
Thus, if n < p, then a2n(r) is analytic in a neighborhood of −p.
Thus, if n < p, then A2n(−p) = 0 and

A′2n(−p) = a2n(−p) =
(−1)n

22nn!(1− p) . . . (n− p)
=

1

22nn!(p− n)!

If n ≥ p, then

A2n(−p) =
2(−1)n

22nn!(1− p) . . . (−1) · 1 · 2 · · · (n− p)

=
−2(−1)n−p

22nn!(p− 1)!(n− p)!
Define

f(r) :=
( p−1∏
i=1

((r+ 2i)2−p2)
)

(r+ 3p)
( n∏
i=p+1

((r+ 2i)2−p2)
)

(∗)
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Then
A2n(r)f(r) = (−1)n

Differentiating the above and setting r = −p we get

A′2n(−p)f(−p) +A2n(−p)f ′(−p) = 0

Taking log and differentiating (∗) we get

f ′(−p) = f(−p)
( 1

2p
+

∑
i∈{1,2,...,n}\p

1

2i
+

1

2(i− p)

)
= f(−p)

(Hn

2
− Hp−1

2
+
Hn−p

2

)
,

where

H0 = 0, Hn = 1 +
1

2
+ · · ·+ 1

n
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Thus,

A′2n(−p) = −A2n(−p)
(Hn

2
− Hp−1

2
+
Hn−p

2

)
=

2(−1)n−p

22nn!(p− 1)!(n− p)!

(Hn

2
− Hp−1

2
+
Hn−p

2

)
Thus, we get

y2(x) =

p−1∑
n=0

1

22nn!(p− n)!
x2n−p+

∑
n≥p

(−1)n−p

22nn!(p− 1)!(n− p)!

(
Hn −Hp−1 +Hn−p

)
x2n−p+

−
∑
n≥p

2(−1)n−p

22nn!(p− 1)!(n− p)!
x2n−plog x

is a second solution.
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Case 3: p = 0 (Repeated root case)

The indicial equation has a repeated root r1 = r2 = 0,

a2n(r) =
(−1)n

(r + 2)2(r + 4)2 . . . (r + 2n)2
a2n+1(r) = 0

Differentiating a2n(r) with respect to r, we get

a2n(r)′ = −2a2n(r)

(
1

r + 2
+

1

r + 4
+ · · ·+ 1

r + 2n

)

a′2n(0) =
(−1)n−1Hn

22n(n!)2
, Hn = 1 +

1

2
+ · · ·+ 1

n

By theorem stated earlier, the second solution is

y2(x) = J0(x) lnx−
∑
n≥1

(−1)nHn

22n(n!)2
x2n x > 0

where y1(x) = J0(x) =
∑
n≥0

(−1)n

22n(n!)2
x2n is Frobenius solution.
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Summary of p = 0 and p = 1/2

For p = 0, two independent solutions are J0(x), which is a real
analytic function for all R, and

y2(x) = J0(x) lnx−
∑
n≥1

(−1)nHn

22n(n!)2
x2n

For p = 1/2, two independent solutions are J1/2(x) and J−1/2(x).
These can be expressed in terms of the trigonometric functions
(Exercise):

J 1
2
(x) =

√
2

πx
sinx and J− 1

2
(x) =

√
2

πx
cosx

Both exhibit singular behavior at 0. Near 0, J1/2(x) is bounded
but does not have a bounded derivative, while J−1/2(x) is
unbounded near 0.
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22n(n!)2
x2n

For p = 1/2, two independent solutions are J1/2(x) and J−1/2(x).
These can be expressed in terms of the trigonometric functions
(Exercise):

J 1
2
(x) =

√
2

πx
sinx and J− 1

2
(x) =

√
2

πx
cosx

Both exhibit singular behavior at 0. Near 0, J1/2(x) is bounded
but does not have a bounded derivative, while J−1/2(x) is
unbounded near 0.

20 / 56



Summary of p = 0 and p = 1/2

For p = 0, two independent solutions are J0(x), which is a real
analytic function for all R, and

y2(x) = J0(x) lnx−
∑
n≥1

(−1)nHn

22n(n!)2
x2n

For p = 1/2, two independent solutions are J1/2(x) and J−1/2(x).
These can be expressed in terms of the trigonometric functions
(Exercise):

J 1
2
(x) =

√
2

πx
sinx and J− 1

2
(x) =

√
2

πx
cosx

Both exhibit singular behavior at 0. Near 0, J1/2(x) is bounded
but does not have a bounded derivative, while J−1/2(x) is
unbounded near 0.

20 / 56



For real p, define

Jp(x) :=

∞∑
n=0

(−1)n

n! Γ(p+ n+ 1)

(x
2

)2n+p

1 The above is a well defined power series once we know that
the Gamma function never vanishes.

2 If p /∈ {0, 1, 2, . . .} Jp(x) and J−p(x) are the two independent
solutions of the Bessel equation.

3 If p ∈ {0, 1, 2, . . .} then J−p(x) = (−1)pJp(x). Thus, in this
case the second solution is not J−p(x).
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Bessel identities

1
d

dx
[xpJp(x)] = xpJp−1(x)

2
d

dx
[x−pJp(x)] = −x−pJp+1(x)

The above two can be obtained by formally differentiating the
power series.

3 J ′p(x) +
p

x
Jp(x) = Jp−1(x)

4 J ′p(x)− p

x
Jp(x) = −Jp+1(x)

These follow from (1) and (2). Expand LHS and divide by
x±p;

5 Jp−1(x)− Jp+1(x) = 2J ′p(x)

6 Jp−1(x) + Jp+1(x) =
2p

x
Jp(x)

Add and subtract (3) and (4) to get (5) and (6).

22 / 56



Bessel identities

1
d

dx
[xpJp(x)] = xpJp−1(x)

2
d

dx
[x−pJp(x)] = −x−pJp+1(x)

The above two can be obtained by formally differentiating the
power series.

3 J ′p(x) +
p

x
Jp(x) = Jp−1(x)

4 J ′p(x)− p

x
Jp(x) = −Jp+1(x)

These follow from (1) and (2). Expand LHS and divide by
x±p;

5 Jp−1(x)− Jp+1(x) = 2J ′p(x)

6 Jp−1(x) + Jp+1(x) =
2p

x
Jp(x)

Add and subtract (3) and (4) to get (5) and (6).

22 / 56



Bessel identities

1
d

dx
[xpJp(x)] = xpJp−1(x)

2
d

dx
[x−pJp(x)] = −x−pJp+1(x)

The above two can be obtained by formally differentiating the
power series.

3 J ′p(x) +
p

x
Jp(x) = Jp−1(x)

4 J ′p(x)− p

x
Jp(x) = −Jp+1(x)

These follow from (1) and (2). Expand LHS and divide by
x±p;

5 Jp−1(x)− Jp+1(x) = 2J ′p(x)

6 Jp−1(x) + Jp+1(x) =
2p

x
Jp(x)

Add and subtract (3) and (4) to get (5) and (6).

22 / 56



Bessel identities

1
d

dx
[xpJp(x)] = xpJp−1(x)

2
d

dx
[x−pJp(x)] = −x−pJp+1(x)

The above two can be obtained by formally differentiating the
power series.

3 J ′p(x) +
p

x
Jp(x) = Jp−1(x)

4 J ′p(x)− p

x
Jp(x) = −Jp+1(x)

These follow from (1) and (2). Expand LHS and divide by
x±p;

5 Jp−1(x)− Jp+1(x) = 2J ′p(x)

6 Jp−1(x) + Jp+1(x) =
2p

x
Jp(x)

Add and subtract (3) and (4) to get (5) and (6).

22 / 56



Bessel identities

1
d

dx
[xpJp(x)] = xpJp−1(x)

2
d

dx
[x−pJp(x)] = −x−pJp+1(x)

The above two can be obtained by formally differentiating the
power series.

3 J ′p(x) +
p

x
Jp(x) = Jp−1(x)

4 J ′p(x)− p

x
Jp(x) = −Jp+1(x)

These follow from (1) and (2). Expand LHS and divide by
x±p;

5 Jp−1(x)− Jp+1(x) = 2J ′p(x)

6 Jp−1(x) + Jp+1(x) =
2p

x
Jp(x)

Add and subtract (3) and (4) to get (5) and (6).

22 / 56



Bessel identities

1
d

dx
[xpJp(x)] = xpJp−1(x)

2
d

dx
[x−pJp(x)] = −x−pJp+1(x)

The above two can be obtained by formally differentiating the
power series.

3 J ′p(x) +
p

x
Jp(x) = Jp−1(x)

4 J ′p(x)− p

x
Jp(x) = −Jp+1(x)

These follow from (1) and (2). Expand LHS and divide by
x±p;

5 Jp−1(x)− Jp+1(x) = 2J ′p(x)

6 Jp−1(x) + Jp+1(x) =
2p

x
Jp(x)

Add and subtract (3) and (4) to get (5) and (6).
22 / 56



Consequences of Bessel identities

Problem: Let p > 0. Show that between any two consecutive
zeros of Jp(x), there exists precisely one zero of Jp−1(x) and
precisely one zero of Jp+1(x)

Solution: Let 0 < c < d be two consecutive zeros of Jp(x).

So xpJp(x) vanishes at c and d. By Rolle’s theorem,

[xpJp(x)]′(b) = 0 for some b ∈ (c, d)

As
[xpJp(x)]′ = xpJp−1(x)

we get Jp−1(b) = 0.

Repeating the above argument with the identity
[x−pJp(x)]′ = −x−pJp+1(x), we get that Jp+1(x) has a root in
(c, d).
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Thus, we have proved that both Jp−1(x) and Jp+1(x) have at
least one root in (c, d).

If Jp−1(x) had two roots in (c, d), then from above, we conclude
that Jp(x) would have a root in (c, d). However, this contradicts
the assumption that c and d are consecutive roots. Thus, Jp−1 has
exactly one root in (c, d).

Similarly, Jp+1(x) has exactly one root in (c, d).

Problem: Find a and c so that J2(x)− J0(x) = aJ ′′c (x).

Solution: Using Jp−1(x)− Jp+1(x) = 2J ′p(x) for p = 1, we get

J0(x)− J2(x) = 2J ′1(x)

Now using [x−pJp(x)]′ = −x−pJp+1 for p = 0, we get

J ′0(x) = −J1(x).

Therefore,
J2(x)− J0(x) = −2J ′1(x) = 2J ′′0 (x).

Hence a = 2 and c = 0. �
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We can use

Jp−1(x) + Jp+1(x) =
2p

x
Jp(x)

J1/2(x) =

√
2

πx
sinx J−1/2(x) =

√
2

πx
cosx

to see that Jp(x) are elementary functions for p ∈ Z + 1
2 .

For example,

• J3/2(x) =
1

x
J1/2(x)− J−1/2(x)

=

√
2

πx

(
sinx

x
− cosx

)

• J−3/2(x) = −1

x
J−1/2(x)− J1/2(x)

= −
√

2

πx

(cosx

x
+ sinx

)
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• J 5
2
(x) =

3

x
J 3

2
(x)− J 1

2
(x)

=

√
2

πx

(
3 sinx

x2
− 3 cosx

x
− sinx

)

These functions are called spherical Bessel functions as they arise
in solving wave equations in spherical coordinates.
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Remark. Integrating some of the Bessel identities we get

d

dx
[xpJp(x)] = xpJp−1(x)

=⇒
∫ x

0
tpJp−1(t) dt = xpJp(x) + c

d

dx

[
x−pJp(x)

]
= −x−pJp+1(x)

=⇒
∫ x

0
t−pJp+1(t) dt = −x−pJp(x) + c

For example, ∫ x

0
tJ0(t) dt = xJ1(x) + c
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Qualitative properties of solutions

It is rarely possible to solve 2nd order linear ODE

y′′ + P (x)y′ +Q(x)y = 0

in terms of familiar elementary functions.

Then how do we understand the nature and properties of solutions.

It is surprising that we can obtain quite a bit of information about
the solution from the ODE itself.
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Theorem (Sturm separation theorem)

If y1(x) and y2(x) are linearly independent solns of

y′′ + P (x)y′ +Q(x)y = 0

P,Q continuous on (a, b). Then
(1) y1(x) and y2(x) have no common zero in (a, b).
(2) Between any two successive zeros of y1(x), there is exactly one
zero of y2(x) and vice versa.

Proof of (1). Consider the Wronskian

W (x) := W (y1, y2) = y1(x)y′2(x)− y′1(x)y2(x)

It satisfies the differential equation W ′ = −P (x)W and so is given
by

W (x) = Cexp
(∫ x

a0

−P (t)dt
)

a0 ∈ (a, b)

In particular, since y1 and y2 are linearly independent, the
Wronskian is nonzero and so it never vanishes. This proves (1).
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Proof of (2). Let x1 and x2 be successive zeros of y1(x).

First let us show y2 has a zero in (x1, x2).
The Wronskian W (x) has the same sign in the interval (a, b) as it
never vanishes. Thus, W (x1) and W (x2) have the same sign.

0 6= W (x1) = −y′1(x1)y2(x1) 0 6= W (x2) = −y′1(x2)y2(x2)

We conclude that y′1(x1) and y′1(x2) are nonzero.

It follows that y′1(x1) and y′1(x2) have opposite signs since x1 and
x2 are consecutive zeros of y1.

It follows that y2(x1) and y2(x2) have opposite signs. Thus, y2(x)
has a zero in (x1, x2).

If y2(x) had two zeros in the interval x1 < α < β < x2, then by
the same reasoning, y1 will have a zero in (α, β), which contradicts
the assumption that x1 and x2 are successive zeros of y1.
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As a consequence, if y1 and y2 are linearly independent solution of
y′′ + P (x)y′ +Q(x)y = 0, P,Q continuous on (a, b) then the
number of zeros of y1 and y2 on (a, b) differ by at most 1.

In particular, either both have finite number of zeros or both have
infinite number of zeros in (a, b).

• For further discussion, we need that any ODE in the “standard”
form y′′ + P (x)y′ +Q(x)y = 0 can be written in the “normal”
form u′′ + q(x)u = 0.

Define v(x) := exp
( ∫ x

a0
−1

2P (t)dt
)

and set u(x) = y(x)
v(x) .

One easily checks that u(x) satisfies the differential equation

u′′ + q(x)u = 0 q(x) := Q(x)− 1

4
P (x)2 − 1

2
P ′(x)

It is clear that the zeros of u are the same as those of y.
Also note that we need P (x) to be once differentiable.
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Theorem

Let u(x) be a non-trivial solution of u′′ + q(x)u = 0 on the interval
(α, β), with q(x) continuous. Let [a, b] ⊂ (α, β) be a finite
interval. Then u(x) has at most finite number of zeros in [a, b].
Hence if u(x) has infinitely many zeros on (0,∞), then the set of
zeros of u(x) are not bounded.

Proof. Assume u(x) has infinitely many zeros in [a, b]. Then
∃x0 ∈ [a, b] and a sequence of zeros xn 6= x0 such that xn → x0
as n→∞.
u(x0) = limxn→x0 u(xn) = 0 (u is continuous) and

u′(x0) = lim
xn→x0

u(xn)− u(x0)

xn − x0
= 0

This contradicts the fact that the Wronskian at x0 is nonzero. �
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Theorem

Let u(x) be a non-trivial solution of u′′ + q(x)u = 0. If q(x) < 0 in
(a, b) and continuous then u(x) has atmost one zero in (a, b).

Proof. Assume u(x0) = 0. Then u′(x0) 6= 0, since Wronskian
W (x0) 6= 0.

Assume x1 is next zero of u(x) after x0.

If necessary, multiply by −1 and assume that u′(x0) > 0.

Then u(x) > 0 on (x0, x1).

Since u′′(x) = −q(x)u(x) > 0 on (x0, x1), u′(x) is an increasing
function on (x0, x1).

By Rolle’s theorem u′ has a zero in (x0, x1).

But this is not possible as u′ is increasing on (x0, x1). �
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Theorem

Let u(x) be a non-trivial solution of u′′ + q(x)u = 0 Let q(x) be
continuous and q(x) > 0 for all x > x0 > 0.

If

∫ ∞
x0

q(x) dx =∞,

then u(x) has infinitely many zeros on (0,∞).

Proof. Assume u(x) has only finitely many zeros on (0,∞).

Then there is x1 > x0 such that u(x) 6= 0 for x ≥ x1. Assume
u(x) > 0 for x ≥ x1.

Then u′′(x) = −q(x)u(x) < 0 for x ≥ x1. Hence u′(x) is
decreasing for x ≥ x1.

If we show that u′(x2) < 0 for some x2 > x1, then we get for
x > x2

u(x) =

∫ x

x2

u′(t)dt+ u(x2) ≤
∫ x

x2

u′(x2)dt+ u(x2)

≤ u′(x2)(x− x2) + u(x2)
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Thus if x is sufficiently large, then u(x) < 0, a contradiction.

To show that u′(x) < 0 for some x > x1. Put

v(x) = −u
′(x)

u(x)
, for x ≥ x1

v′ =
−u′′u+ u′2

u2
=
q(x)u2 + u′2

u2
= q(x) + v(x)2

Integrating we get

v(x)− v(x1) =

∫ x

x1

q(x) dx+

∫ x

x1

v(x)2 dx

∫∞
x0
q(x) dx =∞ =⇒ v(x) > 0 for large x.

Thus, u′(x) = −u(x)v(x) and this shows that u′(x) < 0 for x
large.
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Theorem

In Bessel equation x2y′′ + xy′ + (x2 − p2)y = 0 Substituting
u(x) =

√
xy(x), we get

u′′ +

[
1 +

1− 4p2

4x2

]
u = 0

q(x) = 1 +
1− 4p2

4x2
is continuous and q(x) > 0 for x > x0 > 0.

Further, ∫ ∞
x0

(
1 +

1− 4p2

4x2

)
dx =∞

By previous theorem, u(x), hence any Bessel function has infinitely
many zeros on (0,∞).
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Corollary

Let Z(p) be the set of zeros of Bessel function Jp(x) on (0,∞).

Since Z(p) is an infinite set, it is not bounded.

We will conside the following question.

Write Z(p) = {x1, x2, . . .} as increasing sequence xn < xn+1.

Question. What is the limit of xn+1 − xn as n→∞?

We will need the Sturm comparison theorem.
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Theorem (Sturm Comparison theorem)

Let y(x) be a non-trivial solutions of

y′′ + q(x)y = 0

and z(x) be a non-trivial solutions of

z′′ + r(x)z = 0

where q(x) > r(x) > 0 are continuous.
Then y(x) vanishes at least once between any two consecutive
zeros of z(x).

Compare y′′ + 4y = 0 and z′′ + z = 0.

Here (q(x) =) 4 > (r(x) =) 1 > 0

Zeros of y(x) are π/2 apart and that of z(x) are π apart.
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Proof of Sturm Comparison theorem.

Let x1 < x2 be consecutive zeros of z(x).

Assume y(x) has no zero in (x1, x2).

We may assume z(x) > 0 and y(x) > 0 on (x1, x2). Hence
z′(x1) > 0 and z′(x2) < 0.

Consider the function W (x) = y(x)z′(x)− y′(x)z(x)

W ′(x) = yz′′ − y′′z = y(−rz)− (−qy)z = (q − r)yz > 0

on (x1, x2).

Integrating from x1 to x2, we get

W (x2)−W (x1) > 0 =⇒ W (x2) > W (x1)

But W (x1) = y(x1)z
′(x1) > 0 and W (x2) = y(x2)z

′(x2) < 0, a
contradiction. �
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Theorem

Substituting u(x) =
√
xy(x) in Bessel equation, we get Bessel

equation in normal form (p ≥ 0)

u′′ + q(x)u = 0, q(x) = 1 +
1− 4p2

4x2

p < 1/2 =⇒ q(x) > 1

p = 1/2 =⇒ q(x) = 1 (Well known, hence, uninteresting)

p > 1/2 =⇒ q(x) < 1

Use z′′ + z = 0 and Sturm comparison theorem.

Let yp(x) be a non-trivial solution of Bessel equation. Then we get
...
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Theorem

p < 1/2 =⇒ Between any two roots of α cosx+ β sinx

there is a root of yp(x).

p = 1/2 =⇒ x2 − x1 = π

p > 1/2 =⇒ Between any two roots of yp(x) there is a

root of α cosx+ β sinx.

We can say more than the above. Suppose p < 1/2 and a < b < c
are consecutive roots of u(x). Then b− a < c− b. That is, the
difference between the successive roots keeps increasing.

To see this, consider the function f := u(x− b+ a) defined on the
interval (b,∞).

It is a trivial check that f satisfies the differential equation

f ′′ + r(x)f = 0 r(x) := q(x− b+ a)

41 / 56



Theorem

p < 1/2 =⇒ Between any two roots of α cosx+ β sinx

there is a root of yp(x).

p = 1/2 =⇒ x2 − x1 = π

p > 1/2 =⇒ Between any two roots of yp(x) there is a

root of α cosx+ β sinx.

We can say more than the above. Suppose p < 1/2 and a < b < c
are consecutive roots of u(x). Then b− a < c− b. That is, the
difference between the successive roots keeps increasing.

To see this, consider the function f := u(x− b+ a) defined on the
interval (b,∞).

It is a trivial check that f satisfies the differential equation

f ′′ + r(x)f = 0 r(x) := q(x− b+ a)

41 / 56



Theorem

p < 1/2 =⇒ Between any two roots of α cosx+ β sinx

there is a root of yp(x).

p = 1/2 =⇒ x2 − x1 = π

p > 1/2 =⇒ Between any two roots of yp(x) there is a

root of α cosx+ β sinx.

We can say more than the above. Suppose p < 1/2 and a < b < c
are consecutive roots of u(x). Then b− a < c− b. That is, the
difference between the successive roots keeps increasing.

To see this, consider the function f := u(x− b+ a) defined on the
interval (b,∞).

It is a trivial check that f satisfies the differential equation

f ′′ + r(x)f = 0 r(x) := q(x− b+ a)

41 / 56



Theorem

p < 1/2 =⇒ Between any two roots of α cosx+ β sinx

there is a root of yp(x).

p = 1/2 =⇒ x2 − x1 = π

p > 1/2 =⇒ Between any two roots of yp(x) there is a

root of α cosx+ β sinx.

We can say more than the above. Suppose p < 1/2 and a < b < c
are consecutive roots of u(x). Then b− a < c− b. That is, the
difference between the successive roots keeps increasing.

To see this, consider the function f := u(x− b+ a) defined on the
interval (b,∞).

It is a trivial check that f satisfies the differential equation

f ′′ + r(x)f = 0 r(x) := q(x− b+ a)

41 / 56



Since p < 1/2 the function q is strictly decreasing. Thus, on
(b,∞) we have r(x) > q(x) > 0.

Applying Sturm’s comparison theorem we get that there is a
b < x0 < c such that f(x0) = u(x0 − b+ a) = 0.

Clearly,

b < x0 =⇒ a < x0 − b+ a

a < b =⇒ x0 − b+ a < x0

Thus,
a < x0 − b+ a < x0 < c

However, a < b < c are successive roots of u(x). This forces that

x0 − b+ a = b that is x0 = 2b− a

As x0 < c we get that 2b− a < c, that is, b− a < c− b.

Next we claim that the difference between any two successive roots
of u is strictly less than π.
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If not, then let a < b be successive roots such that b− a ≥ π

Since u has infinitely many roots, and their difference is strictly
increasing, we may assume that b− a > π.

But now we can choose α, β ∈ R such that α cosx+ β sinx has
two roots in (a, b), which contradicts Sturm’s comparison theorem.

Thus, we have proved that if {xn} are the roots of u in increasing
order, then the difference xn+1 − xn is strictly increasing and
bounded above by π.

Next let us show that these differences converge to π. If not, then
(xn+1 − xn)→ γ < π. Choose 1 < δ, sufficiently close to 1 such
that γ < π

δ < π.
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The function q(x) is decreasing to 1. Therefore, there is a x0 ∈ R,
sufficiently large, such that q(x0) < δ2. Apply Sturm’s comparison
on the interval (x0,∞) to the differential equations
u′′ + q(x)u = 0 and z′′ + δ2z = 0.

Thus, between any two roots of u there is a root of z. Let a and b
be two consecutive roots of u such that x0 < a < b. Since
b− a < γ < π

δ , find a′ and b′ such that x0 < a′ < a < b < b′ and
b′ − a′ = π

δ .

Find α and β such that the function α cos δ x+ β sin δ x vanishes
at a′. This function is a solution to the ODE z′′ + δ2z = 0. The
next root of this function is at a′ + π

δ = b′. Thus, we get a
contradiction to Sturm’s theorem which says that there is a root of
this function in the interval (a, b).
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Thus, we have proved

Theorem

If p < 1/2 then the sequence of differences of roots of u,
xn+1 − xn is increasing and tends to π.

Similarly, we can prove that if p > 1/2 then the sequence of
difference of roots of u is decreasing and tends to π.
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The first few zeroes of Bessel functions are tabulated below.

J0(x) J1(x) J2(x) J3(x) J4(x) J5(x)

1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715

2 5.5201 7.0156 8.4172 9.7610 11.0647 12.3386

3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002

4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801

5 14.9309 16.4706 17.9598 19.4094 20.8269 22.2178

Question. Why are we concerned with zeros of Bessel function
Jp(x)?

It is often required in mathematical physics to expand a given
function in terms of Bessel functions.
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Simplest and most useful expansions are of the form

f(x) =

∞∑
n=1

anJp(λp,nx) = a1Jp(λp,1x) + a2Jp(λp,2x) + . . .

where f(x) is defined on, (say) [0, 1], and λp,n’s are zeros of Bessel
function Jp(x), p ≥ 0.

Qn. How to compute the coefficients an?

Remark: For a scalar a, the scaled Bessel functions Jp(ax) are
solutions of

x2y′′ + xy′ + (a2x2 − p2)y = 0

known as scaled Bessel equation.
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Orthogonality

Define an inner product on functions on [0, 1] by

〈f, g〉 :=

∫ 1

0
xf(x)g(x) dx

This is similar to the previous inner product except that f(x)g(x) is
now multiplied by x and the interval of integration is from 0 to 1.

We call a function on [0, 1] square integrable with respect to this
inner product if ∫ 1

0
xf(x)2dx <∞

The multiplying factor x is called a weight function.
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Fix p ≥ 0. Let Z(p) = {λp,1, λp,2, . . .} denote the set of zeros of
Jp(x) on (0,∞).

Theorem

The set of scaled Bessel functions

{Jp(λp,1x), Jp(λp,2x), . . .}

form an orthogonal family w.r.t. above inner product, i.e.
〈Jp(λp,kx), Jp(λp,lx)〉 :=∫ 1

0
xJp(λp,kx)Jp(λp,lx) dx =

{
1
2 [Jp+1(λp,k)]

2 if k = l

0 if k 6= l
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Theorem

Fix p ≥ 0 and Z(p) = {λp,1, λp,2, . . .} : zeros of Jp(x) on (0,∞).
Any square-integrable function f(x) on [0, 1] can be expanded in a
series of scaled Bessel functions Jp(λp,nx) as

f(x) =
∑
n≥1

cnJp(λp,nx)

where

cn =
2

[Jp+1(λp,n)]2

∫ 1

0
x f(x) Jp(λp,nx) dx

This is Fourier-Bessel series of f(x) for parameter p.
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Example. Let us compute the Fourier-Bessel series (for p = 0) of
f(x) = 1 in the interval 0 ≤ x ≤ 1.

Use d
dx

(
xpJp(x)

)
= xpJp−1(x) for p = 1.∫ 1

0
xJ0(λ0,nx) dx =

1

λ0,n
xJ1(λ0,nx)

∣∣1
0

=
J1(λ0,n)

λ0,n

cn =
2

[J1(λ0,n)]2

∫ 1

0
x f(x) J0(λ0,nx) dx =

2

λ0,nJ1(λ0,n)

Thus, the Fourier-Bessel series of f(x) is∑
n≥1

2

λ0,nJ1(λ0,n)
J0(λ0,nx)

By next theorem, this converges to 1 for 0 < x < 1.

52 / 56



Example. Let us compute the Fourier-Bessel series (for p = 0) of
f(x) = 1 in the interval 0 ≤ x ≤ 1.

Use d
dx

(
xpJp(x)

)
= xpJp−1(x) for p = 1.∫ 1

0
xJ0(λ0,nx) dx =

1

λ0,n
xJ1(λ0,nx)

∣∣1
0

=
J1(λ0,n)

λ0,n

cn =
2

[J1(λ0,n)]2

∫ 1

0
x f(x) J0(λ0,nx) dx =

2

λ0,nJ1(λ0,n)

Thus, the Fourier-Bessel series of f(x) is∑
n≥1

2

λ0,nJ1(λ0,n)
J0(λ0,nx)

By next theorem, this converges to 1 for 0 < x < 1.

52 / 56



Example. Let us compute the Fourier-Bessel series (for p = 0) of
f(x) = 1 in the interval 0 ≤ x ≤ 1.

Use d
dx

(
xpJp(x)

)
= xpJp−1(x) for p = 1.∫ 1

0
xJ0(λ0,nx) dx =

1

λ0,n
xJ1(λ0,nx)

∣∣1
0

=
J1(λ0,n)

λ0,n

cn =
2

[J1(λ0,n)]2

∫ 1

0
x f(x) J0(λ0,nx) dx =

2

λ0,nJ1(λ0,n)

Thus, the Fourier-Bessel series of f(x) is∑
n≥1

2

λ0,nJ1(λ0,n)
J0(λ0,nx)

By next theorem, this converges to 1 for 0 < x < 1.

52 / 56



Example. Let us compute the Fourier-Bessel series (for p = 0) of
f(x) = 1 in the interval 0 ≤ x ≤ 1.

Use d
dx

(
xpJp(x)

)
= xpJp−1(x) for p = 1.∫ 1

0
xJ0(λ0,nx) dx =

1

λ0,n
xJ1(λ0,nx)

∣∣1
0

=
J1(λ0,n)

λ0,n

cn =
2

[J1(λ0,n)]2

∫ 1

0
x f(x) J0(λ0,nx) dx =

2

λ0,nJ1(λ0,n)

Thus, the Fourier-Bessel series of f(x) is∑
n≥1

2

λ0,nJ1(λ0,n)
J0(λ0,nx)

By next theorem, this converges to 1 for 0 < x < 1.

52 / 56



Example. Let us compute the Fourier-Bessel series (for p = 0) of
f(x) = 1 in the interval 0 ≤ x ≤ 1.

Use d
dx

(
xpJp(x)

)
= xpJp−1(x) for p = 1.∫ 1

0
xJ0(λ0,nx) dx =

1

λ0,n
xJ1(λ0,nx)

∣∣1
0

=
J1(λ0,n)

λ0,n

cn =
2

[J1(λ0,n)]2

∫ 1

0
x f(x) J0(λ0,nx) dx =

2

λ0,nJ1(λ0,n)

Thus, the Fourier-Bessel series of f(x) is∑
n≥1

2

λ0,nJ1(λ0,n)
J0(λ0,nx)

By next theorem, this converges to 1 for 0 < x < 1.

52 / 56



Convergence in norm
Fourier-Bessel series converges to f(x) in norm, i.e.

‖f(x)−
m∑
n=1

cnJp(λp,nx)‖ converges to 0 as m→∞

For pointwise convergence, we have

Bessel expansion theorem
Assume f and f ′ have at most a finite number of jump
discontinuities in [0, 1], then the Bessel series converges for
0 < x < 1 to

f(x−) + f(x+)

2

At x = 1, the series always converges to 0 for all f ,
at x = 0, if p = 0 then it converges to f(0+).
at x = 0, if p > 0 then it converges to 0.
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Proof of orthogonality of scaled Bessel functions

If a, b are positive scalars, then u(x) = Jp(ax) and v(x) = Jp(bx)
satisfies

u′′ +
1

x
u′ +

(
a2 − p2

x2

)
u = 0

v′′ +
1

x
v′ +

(
b2 − p2

x2

)
v = 0

Multiply by v and u resp. and subtract, we get

(vu′′ − uv′′) +
1

x
(vu′ − uv′) + (a2 − b2)uv = 0

(u′v − v′u)′ +
1

x
(u′v − v′u) = (b2 − a2)uv

(x(u′v − v′u))′ = (b2 − a2)xuv
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(b2 − a2)
∫ 1

0
xuv dx = [x(u′v − v′u)]

∣∣∣1
0

= (u′v − v′u)(1)

(b2 − a2)
∫ 1

0
xJp(ax)Jp(bx) dx = J ′p(a)Jp(b)− J ′p(b)Jp(a)

So if a = λp,k and b = λp,l are distinct, then∫ 1

0
xJp(λp,kx)Jp(λp,lx) dx = 0

To compute the norm of Jp(λp,kx), consider

2x2u′
[
u′′ +

1

x
u′ + (a2 − p2

x2
)u

]
= 0

= [x2u′2 + (a2x2 − p2)u2]′ − 2a2xu2
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So if a = λp,k and b = λp,l are distinct, then∫ 1

0
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Integrate on [0, 1],

2a2
∫ 1

0
xu2 dx = [x2u′2 + (a2x2 − p2)u2]

∣∣∣1
0

Since p ≥ 0, (pu(0))2 = (pJp(0))2 = 0.

Thus,
(
x2u′2 + (a2x2 − p2)u2

)
(0) = 0.

Further, u′(1) = aJ ′p(a), so we get(
x2u′2 + (a2x2 − p2)u2

)
(1) = a2J ′p(a)2 + (a2 − p2)Jp(a)2

Put a = λp,k to get

2λ2p,k

∫ 1

0
xJp(λp,kx)2 dx = λ2p,kJ

′
p(λp,k)

2

Thus, ∫ 1

0
xJp(λp,kx)2 dx =

1

2
J ′p(λp,k)

2 =
1

2
Jp+1(λp,k)

2

for last equality, use x = λp,k in J ′p(x)− p

x
Jp(x) = Jp+1(x)
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