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Eigen Value problems y′′ + λy = 0

We will develop Fourier series representations of functions that will
be used to solve PDE considered later.

Consider the following Boundary Value Problems (BVP), where
λ ∈ R and L > 0.

1 Problem 1. y′′ + λy = 0 y(0) = 0, y(L) = 0.

2 Problem 2. y′′ + λy = 0 y′(0) = 0, y′(L) = 0.

3 Problem 3. y′′ + λy = 0 y(0) = 0, y′(L) = 0.

4 Problem 4. y′′ + λy = 0 y′(0) = 0, y(L) = 0.

5 Problem 5. y′′ + λy = 0 y(−L) = y(L), y′(−L) = y′(L).

The boundary condition in problem 5 is called periodic.
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Eigenvalue problem y′′ + λy = 0

Question. For what values of λ does the problem have a non-trivial
solutions and what are the solutions?

Any λ for which the problem (1-5) has a non-trivial solution is
called an eigenvalue of that problem

Non-trivial solutions for an eigenvalue λ are called λ-eigenfunction,
or eigenfunction associated with λ.

A non-zero constant multiple of a λ-eigenfunction is again a
λ-eigenfunction.

Problems 1− 5 are called eigenvalue problems. Solving an
eigenvalue problem means finding all its eigenvalues and associated
eigenfunctions.
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Theorem

1 Problems 1− 5 have no negative eigenvalues.

2 λ = 0 is an eigenvalue of Problems 2 and 5 with associated
eigenfunctions y0 = 1.

3 λ = 0 is not an eigenvalue of Problems 1, 3 and 4.

Proof.

Let us prove first two; third is left as an exercise.

Suppose λ < 0. Let us write λ = −a2.

Rewrite the differential equation as y′′ = a2y. The general solution
to this is y(x) = Ceax +De−ax. In problem 1 we have the
condition y(0) = y(L) = 0. This forces that C +D = 0 and
CeaL+De−aL = 0. One checks easily that this forces C = D = 0.

In problem 2 we have the condition that y′(0) = y′(L) = 0. This
gives aC − aD = 0 and aCeaL − aDe−aL = 0. Since a 6= 0, this
forces C = D = 0.
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Proof.

In problem 3 we have the conditions y(0) = y′(L) = 0. This gives
C +D = 0 and aCeaL − aDe−aL = 0. Again this forces
C = D = 0.

Similarly, do the other problems.

Now consider the second statement in the theorem. If λ = 0, the
clearly, the solution has to be of the form y(x) = ax+ b.

In problem 2 we have y′(0) = y′(L) = 0, and so a = 0. Thus,
y(x) = constant is the solution in this case.

In problem 5, we have y(−L) = y(L), that is, −aL+ b = aL+ b.
This forces that a = 0. Thus, in this case too
y(x) = constant.
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Eigenvalue Problem 1

Theorem

The eigenvalue problem

y′′ + λy = 0 y(0) = 0, y(L) = 0

has infinitely many positive eigenvalues

λn =
n2π2

L2

with associated eigenfunctions

yn = sin
nπx

L
, n = 1, 2, . . . .

There are no other eigenvalues.
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y′′ + λy = 0 y(0) = 0, y(L) = 0

Proof.

Any eigen value must be positive (by previous theorem).

If y is a solution of y′′ + λy = 0 with λ > 0, then

y(x) = c1 cos
√
λx+ c2 sin

√
λx

y(0) = 0 =⇒ c1 = 0

=⇒ y(x) = c2 sin
√
λx with c2 6= 0

y(L) = 0 =⇒ sin
√
λL = 0 =⇒

√
λL = nπ

=⇒ λn =
n2π2

L2

is an eigenvalue with an associated eigenfunction

yn = sin
nπx

L
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Eigenvalue Problem 2

Theorem

The eigenvalue problem

y′′ + λy = 0 y′(0) = 0, y′(L) = 0

has an eigenvalue λ0 = 0 with eigenfunction y0 = 1

and infinitely many positive eigenvalues

λn =
n2π2

L2

with associated eigenfunctions

yn = cos
nπx

L
n = 1, 2, . . . .

There are no other eigenvalues.

Proof. Similar to the proof of Problem 1, hence is left as an
exercise.
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Eigenvalue Problem 3

Theorem

The eigenvalue problem

y′′ + λy = 0 y(0) = 0, y′(L) = 0

has infinitely many positive eigenvalues

λn =
(2n+ 1)2π2

4L2

with associated eigenfunctions

yn = sin
(2n+ 1)πx

2L
, n = 0, 1, 2, . . . .

There are no other eigenvalues.
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y′′ + λy = 0 y(0) = 0, y′(L) = 0

Proof.

Any eigen value must be positive (by previous theorem).

If y is a solution of y′′ + λy = 0 with λ > 0, then

y(x) = c1 cos
√
λx+ c2 sin

√
λx

y(0) = 0 =⇒ c1 = 0

=⇒ y(x) = c2 sin
√
λx with c2 6= 0

y′(L) = 0 =⇒
√
λ cos

√
λL = 0 =⇒

√
λL = 2n+1

2 π

=⇒ λn =
(2n+ 1)2π2

4L2

is an eigenvalue with an associated eigenfunction
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(2n+ 1)πx

2L
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Orthogonality

Definition

We say two integrable functions f and g are orthogonal on an
interval [a, b] if ∫ b

a
f(x)g(x) dx = 0

More generally, we say functions φ1, φ2, . . . , φn, . . . (finite or
infinitely many) are orthogonal on [a, b] if∫ b

a
φi(x)φj(x) dx = 0 whenever i 6= j

We have already seen orthogonality of Legendre function.
We will study Fourier series w.r.t. different orthogonal systems.
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Exercise

Consider the eigenfunctions

1 sin
πx

L
, sin

2πx

L
, . . . , sin

nπx

L
, . . .

2 1, cos
πx

L
, cos

2πx

L
, . . . , cos

nπx

L
, . . .

3 sin
πx

2L
, sin

3πx

2L
, . . . , sin

(2n− 1)πx

2L
, . . .

4 cos
πx

2L
, cos

3πx

2L
, . . . , cos

(2n− 1)πx

2L
, . . .

5 1, cos
πx

L
, sin

πx

L
, cos

2πx

L
, sin

2πx

L
, . . . , cos

nπx

L
, sin

nπx

L
, . . .

Show directly that eigenfunctions of (1-4) are orthogonal on [0, L]
and of (5) is orthogonal on [−L,L].
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We will study series expansions in terms of eigenfunctions. It is
used to solve PDEs.

For this we consider the vector space of functions on [a, b] and
define an inner product on it

〈f, g〉 :=
∫ b

a
f(x)g(x)dx

Denote by L2[a, b] the subspace of those functions satisfying
〈f, f〉 <∞.

To say this is a subspace, one needs to check that if f, g ∈ L2[a, b]
then f + g ∈ L2[a, b]. We shall assume this fact.

From now on, we will always be working with functions in some
inner product space of the type L2[a, b]. In such a space, the norm
of a function is defined to be ‖f‖ := 〈f, f〉1/2.
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From now on, we will always be working with functions in some
inner product space of the type L2[a, b]. In such a space, the norm
of a function is defined to be ‖f‖ := 〈f, f〉1/2.
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Fourier Series

Theorem

Let f ∈ L2[−L,L]. Then f can be written as a series

f(x) = a0 +

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
which is called the Fourier series of f on [−L,L]. Here

a0 =
1

2L

∫ L

−L
f(x)dx and for n > 0

an =
1

L

∫ L

−L
f(x) cos

nπx

L
dx bn =

1

L

∫ L

−L
f(x) sin

nπx

L
dx

The above series converges to f in norm, that is,

lim
N−→∞

∣∣∣∣∣∣f − a0 − N∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

) ∣∣∣∣∣∣ = 0
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We remark that the formula for the coefficients am’s can be
obtained by integrating f(x) with cos mπxL on [−L,L], and using
the facts that (1) we can exchange the integral and the sum, and
(2) orthogonality of the different eigenfunctions.

∫ L

−L
f(x) cos

mπx

L
dx =

∫ L

−L
cos

mπx

L
a0+

+

∫ L

−L
cos

mπx

L

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
=

∫ L

−L
cos

mπx

L
a0 +

∞∑
n=1

an

∫ L

−L
cos

mπx

L
cos

nπx

L
+

bn

∫ L

−L
cos

mπx

L
sin

nπx

L

= am

∫ L

−L
cos2

mπx

L
dx
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Convergence of Fourier series

Qn. What about the convergence of series to f(x)?

Definition

A function f is said to be piecewise smooth if

1 f has atmost finitely many points of discontinuity.

2 f ′ exists and is continuous except at finitely many points.

3 f(x0+) = limx→x+0
f(x) and f ′(x0+) = limx→x+0

f ′(x)

exists if a ≤ x0 < b.

4 f(x0−) = limx→x−0
f(x) and f ′(x0−) = limx→x−0

f ′(x)

exists if a < x0 ≤ b.

Hence f is piecewise smooth if and only if
f, f ′ have atmost finitely many jump discontinuity.
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Theorem

Let f(x) be a piecewise smooth on [−L,L].

Extend it to all of R by defining it periodically, that is,
f(x+ 2L) = f(x).
Then the Fourier series

f(x) = a0 +

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
of f converges to

1

2
[f(x+) + f(x−)]

at every point x ∈ R.
Therefore, at every point x of continuity of f , the Fourier series
converges to f(x).

If we re-define f(x) at every point of discontinuity x as
1

2
[f(x+) + f(x−)]

then the Fourier series represents the function everywhere.
Thus two functions can have same Fourier series.
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Let us now consider a function f such that f has only jump
discontinuities, and if x is a such a point of jump discontinuity

then f(x) = f(x+)+f(x−)
2 .

The previous theorem tells us that the Fourier series converges to
f(x) for all x ∈ [−L,L],
we may be tempted to infer that the error

EN (x) =

∣∣∣∣∣F (x)− a0 −
N∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)∣∣∣∣∣
can be made as small as we want, for all x ∈ [−L,L] by choosing
N sufficiently large.

However this is NOT true if
• f is discontinuous at some point α ∈ (−L,L) or
• f(−L+) 6= f(L−)
The next result explains this.
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Gibbs phenomenon

• If f has a jump discontinuity at α ∈ (−L,L), then there exists
sequence of points uN ∈ (−L,α) and vN ∈ (α,L) s.t.

lim
N→∞

uN = α, EN (uN ) ' .09 |f(α−)− f(α+)|

lim
N→∞

vN = α, EN (vN ) ' .09 |f(α−)− f(α+)|

Maximum of error EN (x) 6→ 0 near α as N →∞.

• If f(−L+) 6= f(L−), there exists uN and vN in (−L,L) s.t.

lim
N→∞

uN = −L, EN (uN ) ' .09 |f(−L+)− f(L−)|

lim
N→∞

vN = α = L, EN (vN ) ' .09 |f(−L+)− f(L−)|

This is called Gibbs phenomenon.
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Example

Let us find the Fourier series of the piecewise smooth function

f(x) =

{
−x, −2 < x < 0

1/2, 0 < x < 2

on [−2, 2].

a0 =
1

4

∫ 2

−2
f(x) dx =

1

4

[∫ 0

−2
(−x) dx+

∫ 2

0

1

2
dx

]
=

3

4

If n ≥ 1, then

an =
1

2

∫ 2

−2
f(x) cos

nπx

2
dx

=
1

2

[∫ 0

−2
(−x) cos nπx

2
dx+

∫ 2

0

1

2
cos

nπx

2
dx

]
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Example (continued . . .)

=
1

2

[
−x 2

nπ
sin

nπx

2

∣∣∣0
−2

+

∫ 0

−2

2

nπ
sin

nπx

2
dx+ 0

]

=
1

2

4

n2π2

(
− cos

nπx

2

) ∣∣∣0
−2

=
2

n2π2
(cosnπ − 1)

bn =
1

2

∫ 2
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f(x) sin

nπx

2
dx

=
1

2

[∫ 0

−2
(−x) sin nπx

2
dx+

∫ 2

0

1

2
sin

nπx

2
dx

]
=

1

2nπ
(1 + 3 cosnπ)
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Example (continued ...)

Thus, the Fourier series of f(x) is

F (x) =
3

4
+

2

π2

∞∑
n=1

cosnπ − 1

n2
cos

nπx

2
+

1

2π

∞∑
n=1

1 + 3 cosnπ

n
sin

nπx

2

�
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Let us compute F (x) at discontinuous points.

Example (continued . . .)

F (−2) = F (2) =
1

2
(f(−2+) + f(2−)) = 1

2

(
2 +

1

2

)
=

5

4

F (0) =
1

2
(f(0−) + f(0+)) =

1

2

(
0 +

1

2

)
=

1

4

To summarize,

F (x) =


5/4, x = ±2
−x, −2 < x < 0

1/4, x = 0

1/2, 0 < x < 2
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• EVP 1. y′′ + λy = 0, y(0) = 0, y(L) = 0

has infinitely many positive eigenvalues λn =
n2π2

L2
for n ≥ 1 with

associated eigenfunctions

yn = sin
nπx

L
.

• EVP 2. y′′ + λy = 0, y′(0) = 0, y′(L) = 0

has eigenvalue λ0 = 0 with eigenfunction y0 = 1.

has infinitely many positive eigenvalues λn =
n2π2

L2
for n ≥ 1 with

associated eigenfunctions

yn = cos
nπx

L
.
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• EVP 2. y′′ + λy = 0, y′(0) = 0, y′(L) = 0

has eigenvalue λ0 = 0 with eigenfunction y0 = 1.

has infinitely many positive eigenvalues λn =
n2π2

L2
for n ≥ 1 with

associated eigenfunctions

yn = cos
nπx

L
.
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• EVP 3. y′′ + λy = 0, y(0) = 0, y′(L) = 0
has infinitely many positive eigenvalues

λn =
(2n− 1)2π2

4L2
, n = 1, 2, . . .

with associated eigenfunctions

yn = sin
(2n− 1)πx

2L
.

• EVP 4. y′′ + λy = 0, y′(0) = 0, y(L) = 0
has infinitely many positive eigenvalues

λn =
(2n− 1)2π2

4L2
, n = 1, 2, . . .

with associated eigenfunctions

yn = cos
(2n− 1)πx

2L
.
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(2n− 1)2π2
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yn = cos
(2n− 1)πx

2L
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• EVP 5. y′′ + λy = 0, y(−L) = y(L), y′(−L) = y′(L)
has an eigenvalue λ0 = 0 with eigenfunction y0 = 1

and infinitely many positive eigenvalues λn =
n2π2

L2
, n = 1, 2, . . .

with associated eigenfunctions

y1n = cos
nπx

L
and y2n = sin

nπx

L
.

• Eigenfunctions of EVP (1-4) are orthogonal on [0, L] w.r.t. inner

product 〈f, g〉 =
∫ L

0
f(x)g(x)dx

• Eigenfunctions of EVP 5 is orthogonal on [−L,L] w.r.t. inner

product 〈f, g〉 =
∫ L

−L
f(x)g(x)dx.
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Fourier Series

Fourier Series.
Let f ∈ L2([−L,L]) be piecewise smooth. Extend f to R as a
periodic function of period 2L.

The Fourier series of f is

F (x) = a0 +
∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)

a0 =
1

2L

∫ L

−L
f(x) dx, an =

1

L

∫ L

−L
f(x) cos

nπx

L
dx

bn =
1

L

∫ L

−L
f(x) sin

nπx

L
dx, n > 0

• F (x) = 1

2
[f(x+) + f(x−)] for all x ∈ R.
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Fourier sine series

Let f be a function on [0, L]. Then we claim that f can be written
as a series

f(x) =
∑
n≥1

bn sin
nπx

L

To see this, let us first extend f to [−L,L] by defining
f(x) = −f(−x) for x ∈ [−L, 0). Denote the extension by f̃ .

Then we know that f̃ has a Fourier expansion

f̃(x) = a0 +
∑
n≥1

an cos
nπx

L
+ bn sin

nπx

L

where

a0 =
1

2L

∫ L

−L
f̃(x)dx an =

1

L

∫ L

−L
f̃(x) cos

nπx

L
dx n > 0

bn =
1

L

∫ L

−L
f̃(x) sin

nπx

L
dx
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Now note that by the way f̃ has been defined, it is an odd
function. Thus, a0 = 0.

Since cos nπxL is an even function and f̃ is odd, it follows

f̃(x) cos nπxL is an odd function. Thus, an = 0.

This proves that

f̃(x) =
∑
n≥1

an sin
nπx

L

Restricting this expansion to [0, L] we get the required expansion
of f .
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Fourier cosine series

Let f be a function on [0, L]. Then we claim that f can be written
as a series

f(x) = a0 +
∑
n≥1

an cos
nπx

L

To see this, let us first extend f to [−L,L] by defining
f(x) = f(−x) for x ∈ [−L, 0). Denote the extension by f̃ .

Then we know that f̃ has a Fourier expansion

f̃(x) = a0 +
∑
n≥1
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nπx

L
+ bn sin
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Now note that by the way f̃ has been defined, it is an even
function.

Since sin nπx
L is an odd function and f̃ is even, it follows

f̃(x) sin nπx
L is an odd function. Thus, bn = 0.

This proves that

f̃(x) = a0 +
∑
n≥1

an cos
nπx

L

Restricting this expansion to [0, L] we get the required expansion
of f .
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Expansion in terms of eigenfunctions of EVP3

Let f be a function on [0, L]. Then we claim that f can be written
as a series

f(x) =
∑
n≥1

an sin
(2n− 1)πx

2L

Let f ∈ L2([0, L]). Extend f to f1 on [0, 2L] as
f1(x) = f(2L− x) for x ∈ (L, 2L).

Fourier sine series of f1 on [0, 2L] is

F (x) =
∑
n≥1

bn sin
nπx

2L

bn =
2

2L

∫ 2L

0
f1(x) sin

nπx

2L
dx

=
1

L

∫ L

0
f(x) sin

nπx

2L
dx+

1

L

∫ 2L

L
f(2L− x) sin nπx

2L
dx
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Expansion in terms of eigenfunctions of EVP3

∫ 2L

L
f(2L− x) sin nπx

2L
dx

(x′ = 2L− x), =

∫ 0

L
f(x′) sin(nπ − nπx′

2L
)(−dx′)∫ L

0
(−1)n+1f(x) sin

nπx

2L
dx

bn =
1

L

∫ L

0
f(x) sin

nπx

2L
dx+

1

L

∫ L

0
(−1)n+1f(x) sin

nπx

2L
dx

So b2n = 0, b2n−1 =
2

L

∫ L

0
f(x) sin

(2n− 1)πx

2L
dx.

Thus F (x) =
∑
n≥1

b2n−1 sin
(2n− 1)πx

2L
.
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Expansion in terms of eigenfunctions of EVP3

The Mixed Fourier sine series of f ∈ L2([0, L]) is the restriction of
Fourier sine series of f1 to [0, L], i.e.

F (x) =
∑
n≥1

cn sin
(2n− 1)πx

2L

cn =
2

L

∫ L

0
f(x) sin

(2n− 1)πx

2L
dx

This is the Fourier series of f on [0, L] w.r.t. orthogonal system of
eigenfunctions

B = {sin πx
2L
, sin

3πx

2L
, . . . , sin

(2n− 1)πx

2L
, . . .}

of EVP 3 : y′′ + λy = 0, y(0) = 0 = y′(L) .
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Expansion in terms of eigenfunctions of EVP4

Mixed Fourier cosine series

Let f ∈ L2([0, L]). Extend f to f1 on [0, 2L] as
f1(x) = −f(2L− x) for x ∈ (L, 2L).

Fourier cosine series of f1 on [0, 2L] is

F (x) =
∞∑
n=1

dn cos
(2n− 1)πx

2L
, dn =

2

L

∫ L

0

f(x) cos
(2n− 1)πx

2L
dx

This is the Fourier series of f on [0, L] w.r.t. orthogonal system of
eigenfunctions

B = {cos πx
2L
, cos

3πx

2L
, . . . , cos

(2n− 1)πx

2L
, . . .}

of EVP 4 : y′′ + λy = 0, y′(0) = 0 = y(L) .
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A useful observation

Often we need to find Fourier expansion of polynomial functions in
terms of the eigenfunctions of Problems 1-4 satisfying the
boundary conditions.

We can use “derivative transfer principle” to find Fourier
coefficients.
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In EVP 1 with f(0) = 0 = f(L), we get Fourier sine series on
[0, L].

F (x) =
∑
n≥1

bn sin
nπx

L
dx

bn =
2

L

∫ L

0
f(x) sin

nπx

L
dx

=
2

nπ

∫ L

0
f ′(x) cos

nπx

L
dx

=
−2
L

(
L

nπ

)2 ∫ L

0
f ′′(x) sin

nπx

L
dx
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In EVP (2) with f ′(0) = 0 = f ′(L), we get Fourier cosine series on
[0, L], where for n ≥ 1,

f(x) = a0 +

∞∑
n=1

an cos
nπx

L
, 0 ≤ x ≤ L

an =
2

L

∫ L

0
f(x) cos

nπx

L
dx =

−2
nπ

∫ L

0
f ′(x) sin

nπx

L
dx

=
−2L
n2π2

∫ L

0
f ′′(x) cos

nπx

L

an =
2

L

(
L

nπ

)3 ∫ L

0
f ′′′(x) sin

nπx

L

a0 =
1

L

∫ L

0
f(x) dx
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In EVP 3 with f(0) = 0 = f ′(L), we get Mixed Fourier sine series
on [0, L].

F (x) =
∑
n≥1

cn sin
(2n− 1)πx

2L
dx

cn =
2

L

∫ L

0
f(x) sin

(2n− 1)πx

2L
dx

=
4

(2n− 1)π

∫ L

0
f ′(x) cos

(2n− 1)πx

2L
dx

=
−2
L

(
2L

(2n− 1)π

)2 ∫ L

0
f ′′(x) sin

(2n− 1)πx

2L
dx
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In EVP 4 with f ′(0) = 0 = f(L), we get Mixed Fourier cosine
series on [0, L].

F (x) =
∑
n≥1

dn cos
(2n− 1)πx

2L
dx

dn =
2

L

∫ L

0
f(x) cos

(2n− 1)πx

2L
dx

=
−4

(2n− 1)π

∫ L

0
f ′(x) sin

(2n− 1)πx

2L
dx

=
−2
L

(
2L

(2n− 1)π

)2 ∫ L

0
f ′′(x) cos

(2n− 1)πx

2L
dx
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Example. Find the Fourier sine expansion of

f(x) = x(x2 − 3Lx+ 2L2) on [0, L]

Note f(0) = 0 = f(L), f ′′(x) = 6(x− L), Fourier sine coefficient

bn =
−2
L

(
L

nπ

)2 ∫ L

0
f ′′(x) sin

nπx

L
dx

=
−12L
n2π2

∫ L

0
(x− L) sin nπx

L
dx

=
12L2

n3π3

[
(x− L) cos nπx

L

∣∣∣L
0
−
∫ L

0
cos

nπx

L
dx

]

=
12L2

n3π3

[
L− L

nπ
sin

nπx

L

∣∣∣L
0

]
=

12L3

n3π3
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Therefore, the Fourier sine expansion of f(x) on [0, L] is

12L3

π3

∞∑
n=1

1

n3
sin

nπx

L
�
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Example. Find the Fourier cosine expansion of

f(x) = x2(3L− 2x) on [0, L]

a0 =
1

L

∫ L

0
(3Lx2 − 2x3) dx

=
1

L

(
Lx3 − x4

2

)L
0

=
L3

2

f ′(x) = 6Lx− 6x2 =⇒ f ′(0) = f ′(L) = 0

Note f ′′′(x) = −12. We get
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an =
2

L

(
L

nπ

)3 ∫ L

0
f ′′′(x) sin

nπx

L
dx

=
−24
L

(
L

nπ

)3 ∫ L

0
sin

nπx

L
dx

=
24

L

(
L

nπ

)4

cos
nπx

L

∣∣L
0
=

24L3

n4π4
[(−1)n − 1]

Thus a2n = 0 and a2n−1 =
−48L3

(2n− 1)4π4
.

Thus Fourier cosine expansion of f(x) on [0, L] is

L3

2
− 48L3

π4

∞∑
n=1

1

(2n− 1)4
cos

(2n− 1)πx

L
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Example Find the mixed Fourier sine expansion of

f(x) = x(2x2 − 9Lx+ 12L2) on [0, L]

Since f(0) = 0 = f ′(L) and f ′′(x) = 6(2x− 3L), we get

cn =
−2
L

(
2L

(2n− 1)π

)2 ∫ L

0
f ′′(x) sin

(2n− 1)πx

2L
dx

=
−48L

(2n− 1)2π2

∫ L

0
(2x− 3L) sin

(2n− 1)πx

2L
dx

=
96L2

(2n− 1)3π3

[
(2x− 3L) cos

(2n− 1)πx

2L

∣∣L
0

−2
∫ L

0
cos

(2n− 1)πx

2L
dx
]
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=
96L2

(2n− 1)3π3

[
3L− 4L

(2n− 1)π
sin

(2n− 1)πx

2L

∣∣L
0

]

=
96L3

(2n− 1)3π3

[
3 + (−1)n 4

(2n− 1)π

]
Therefore, the mixed Fourier sine expansion of f(x) on [0, L] is

c
∞∑
n=1

1

(2n− 1)3

[
3 + (−1)n 4

(2n− 1)π

]
sin

(2n− 1)πx

2L

with c =
96L3

π3
.
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Example. Find the mixed Fourier cosine expansion of
f(x) = 3x3 − 4Lx2 + L3 on [0, L]

Soln. f ′(0) = 0 = f(L) f ′′(x) = 2(9x− 4L), we get

dn =
−2
L

(
2L

(2n− 1)π

)2 ∫ L

0
f ′′(x) cos

(2n− 1)πx

2L
dx

=
−16L

(2n− 1)2π2

∫ L

0
(9x− 4L) cos

(2n− 1)πx

2L
dx

=
−32L2

(2n− 1)3π3
[
(9x− 4L) sin

(2n− 1)πx

2L

∣∣L
0

−9
∫ L

0
sin

(2n− 1)πx

2L
dx
]

47 / 48



Example. Find the mixed Fourier cosine expansion of
f(x) = 3x3 − 4Lx2 + L3 on [0, L]

Soln. f ′(0) = 0 = f(L)

f ′′(x) = 2(9x− 4L), we get

dn =
−2
L

(
2L

(2n− 1)π

)2 ∫ L

0
f ′′(x) cos

(2n− 1)πx

2L
dx

=
−16L

(2n− 1)2π2

∫ L

0
(9x− 4L) cos

(2n− 1)πx

2L
dx

=
−32L2

(2n− 1)3π3
[
(9x− 4L) sin

(2n− 1)πx

2L

∣∣L
0

−9
∫ L

0
sin

(2n− 1)πx

2L
dx
]

47 / 48



Example. Find the mixed Fourier cosine expansion of
f(x) = 3x3 − 4Lx2 + L3 on [0, L]

Soln. f ′(0) = 0 = f(L) f ′′(x) = 2(9x− 4L), we get

dn =
−2
L

(
2L

(2n− 1)π

)2 ∫ L

0
f ′′(x) cos

(2n− 1)πx

2L
dx

=
−16L

(2n− 1)2π2

∫ L

0
(9x− 4L) cos

(2n− 1)πx

2L
dx

=
−32L2

(2n− 1)3π3
[
(9x− 4L) sin

(2n− 1)πx

2L

∣∣L
0

−9
∫ L

0
sin

(2n− 1)πx

2L
dx
]

47 / 48



Example. Find the mixed Fourier cosine expansion of
f(x) = 3x3 − 4Lx2 + L3 on [0, L]

Soln. f ′(0) = 0 = f(L) f ′′(x) = 2(9x− 4L), we get

dn =
−2
L

(
2L

(2n− 1)π

)2 ∫ L

0
f ′′(x) cos

(2n− 1)πx

2L
dx

=
−16L

(2n− 1)2π2

∫ L

0
(9x− 4L) cos

(2n− 1)πx

2L
dx

=
−32L2

(2n− 1)3π3
[
(9x− 4L) sin

(2n− 1)πx

2L

∣∣L
0

−9
∫ L

0
sin

(2n− 1)πx

2L
dx
]

47 / 48



Example. Find the mixed Fourier cosine expansion of
f(x) = 3x3 − 4Lx2 + L3 on [0, L]

Soln. f ′(0) = 0 = f(L) f ′′(x) = 2(9x− 4L), we get

dn =
−2
L

(
2L

(2n− 1)π

)2 ∫ L

0
f ′′(x) cos

(2n− 1)πx

2L
dx

=
−16L

(2n− 1)2π2

∫ L

0
(9x− 4L) cos

(2n− 1)πx

2L
dx

=
−32L2

(2n− 1)3π3
[
(9x− 4L) sin

(2n− 1)πx

2L

∣∣L
0

−9
∫ L

0
sin

(2n− 1)πx

2L
dx
]

47 / 48



Example. Find the mixed Fourier cosine expansion of
f(x) = 3x3 − 4Lx2 + L3 on [0, L]

Soln. f ′(0) = 0 = f(L) f ′′(x) = 2(9x− 4L), we get

dn =
−2
L

(
2L

(2n− 1)π

)2 ∫ L

0
f ′′(x) cos

(2n− 1)πx

2L
dx

=
−16L

(2n− 1)2π2

∫ L

0
(9x− 4L) cos

(2n− 1)πx

2L
dx

=
−32L2

(2n− 1)3π3
[
(9x− 4L) sin

(2n− 1)πx

2L

∣∣L
0

−9
∫ L

0
sin

(2n− 1)πx

2L
dx
]

47 / 48



=
−32L2

(2n− 1)3π3

[
(−1)n+15L+

18L

(2n− 1)π
cos

(2n− 1)πx

2L

∣∣L
0

]

=
32L3

(2n− 1)3π3

[
(−1)n5 + 18

(2n− 1)π

]
Therefore, the Mixed Fourier cosine expansion of f(x) on [0, L] is

32L3

π3

∞∑
n=1

1

(2n− 1)3

[
(−1)n5 + 18
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