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@ Problem 2. ¢"+Xy=0  ¢(0)=0, ¥'(L)=0.
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Q Problem 4. ¢ + Xy =0 y'(0)=0, y(L)
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The boundary condition in problem 5 is called periodic.
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Eigenvalue problem 3" + Ay = 0

Question. For what values of \ does the problem have a non-trivial
solutions and what are the solutions?

Any X for which the problem (1-5) has a non-trivial solution is
called an eigenvalue of that problem

Non-trivial solutions for an eigenvalue A are called \-eigenfunction,
or eigenfunction associated with .

A non-zero constant multiple of a A-eigenfunction is again a
A-eigenfunction.

Problems 1 — 5 are called eigenvalue problems. Solving an
eigenvalue problem means finding all its eigenvalues and associated
eigenfunctions.
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eigenfunctions yog = 1.
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Let us prove first two; third is left as an exercise.

Suppose A < 0. Let us write A = —a?.

Rewrite the differential equation as y” = ay. The general solution
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condition y(0) = y(L) = 0. This forces that C' + D =0 and
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Rewrite the differential equation as y” = ay. The general solution
to this is y(z) = Ce™ + De™ . In problem 1 we have the
condition y(0) = y(L) = 0. This forces that C' + D =0 and

Ce*™ + De=*L = 0. One checks easily that this forces C' = D = 0.

In problem 2 we have the condition that 3/(0) = /(L) = 0. This
gives aC' — aD = 0 and aCe* — aDe= % = 0. Since a # 0, this

forces C = D = 0. )
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Proof.

In problem 3 we have the conditions y(0) = y/(L) = 0. This gives
C + D =0 and aCe® — aDe~** = 0. Again this forces
C=D=0.
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Proof.

In problem 3 we have the conditions y(0) = y/(L) = 0. This gives
C + D =0 and aCe®** — aDe=*" = 0. Again this forces
C=D=0.

Similarly, do the other problems.

Now consider the second statement in the theorem. If A = 0, the
clearly, the solution has to be of the form y(x) = ax + b.

In problem 2 we have y/(0) = /(L) = 0, and so a = 0. Thus,

y(z) = constant is the solution in this case.

In problem 5, we have y(—L) = y(L), that is, —aL + b = aL + .
This forces that ¢ = 0. Thus, in this case too
y(x) = constant. O

v
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Eigenvalue Problem 1

The eigenvalue problem
v +Xy=0 y(0)=0, y(L)=0

has infinitely many positive eigenvalues

\ 22
n L2
with associated eigenfunctions
. nmx
Un :SIDT’ n=12,....

There are no other eigenvalues.
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y'+ Ay =0 y(0)=0, y(L)

Any eigen value must be positive (by previous theorem).
If y is a solution of 3" + Ay = 0 with X\ > 0, then
y(x) = c1 cos VAz + cosin vz
y(0)=0 = 1 =0
— y(z) =coysinvAz  with ¢ #0
y(L) =0 = sinvV/AL =0 = VAL=nnx
’1’11271'2
72
is an eigenvalue with an associated eigenfunction

:>>\TL:

. nTT
Yn, = SIN T []
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Eigenvalue Problem 2

Theorem

The eigenvalue problem
y'+y=0 y'(0)=0, y'(L)=0
has an eigenvalue Ao = 0 with eigenfunction yy = 1
and infinitely many positive eigenvalues
n2n?
L2
with associated eigenfunctions

Ap =

nwT
yn:cosT n=12,....

There are no other eigenvalues.

Proof. Similar to the proof of Problem 1, hence is left as an
exercise.
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The eigenvalue problem

y'+xy=0 y(0)=0, y'(L)=0

has infinitely many positive eigenvalues

(2n +1)272
M=
with associated eigenfunctions
2 1
yn:sin( n+t lrz n=20,1,2,....

2L ’
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Eigenvalue Problem 3

The eigenvalue problem

y'+ly=0 y(0)=0, y(L)=0
has infinitely many positive eigenvalues

(2n +1)272

An =73

with associated eigenfunctions

(2n + )7z

—_— =0,1,2,....
2L y N 0777

Yn = Sin

There are no other eigenvalues.
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Any eigen value must be positive (by previous theorem).
If y is a solution of ¥ + Ay = 0 with A > 0, then

y(r) =1 cos V Az + ¢o sin vV x

y(0)=0 = 1 =0

= y(x) = casinvV Iz with ¢y #0

y'(L) =0 = VAcosVAL=0 = VAL =2ty
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y' +2y=0 y(0)=0, (L)

Any eigen value must be positive (by previous theorem).
If y is a solution of ¥ + Ay = 0 with A > 0, then

y(r) =1 cos V Az + ¢o sin vV x

y(0)=0 = 1 =0

= y(x) = casinvV Iz with ¢y #0
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If y is a solution of ¥ + Ay = 0 with A > 0, then

y(x) = ¢1 cos VAT + o sin vV

y(0)=0 = 1 =0
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is an eigenvalue with an associated eigenfunction

(2n + )7z
2L

e An:

Yp = Sin
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Orthogonality

Definition

We say two integrable functions f and g are orthogonal on an
interval [a, b] if

b
/ f(z)g(z) dz = 0

More generally, we say functions ¢1, @2, ..., by, ... (finite or
infinitely many) are orthogonal on [a, b] if

b
/ ¢i(x)pj(x)dr =0 whenever i#j

We have already seen orthogonality of Legendre function.
We will study Fourier series w.r.t. different orthogonal systems.
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in—,sin—,...,sin——,...
La L ) ) L Y
2
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x 3rx 2n — mx
Qsin;rL,sin;I/,...,sin<2I/>7r,-..
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Exercise

Consider the eigenfunctions

o si T i 2nx i nmwT
in—,sin —,...,sin —, ...
L’ L7 M L )
2
(2] 1,605%,005%:6,...&08?,
. Tx . 37z . (2n—1Drmzx
QSIHﬁ,Slni,...,SlnT,...
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Exercise

Consider the eigenfunctions

o si T i 2nx i nmwT
in—,sin —,...,sin —, ...

L, L7 M L )

2

Q 1,cos%,cos—zx,...,Cos—nzx,

. Tx . 37z . (2n—1Drmzx
Qsmﬁ,smTL,...,smizL e

T 3nx (2n — D)z
oCOSﬁ,COSi,...,COST,...
o1 T . TX 2rx . 2mx nmTxr . NI
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) L7 L7 L7 L7 M L ) L )

Show directly that eigenfunctions of (1-4) are orthogonal on [0, ]
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Exercise

Consider the eigenfunctions

o si T i 2nx i nmwT
in—,sin —,...,sin —, ...

L, L7 M L )

2

Q 1,cos%,cos—zx,...,Cos—nzx,

. Tx . 37z . (2n—1Drmzx
Qsmﬁ,smTL,...,smizL e

T 3nx (2n — D)z
oCOSﬁ,COSi,...,COST,...
o1 T . TX 2rx . 2mx nmTxr . NI
cos —, sin —, cos —, sin —, ..., C0S —, sin —, . ..
) L7 L7 L’ L7 M L ) L )

Show directly that eigenfunctions of (1-4) are orthogonal on [0, ]
and of (5) is orthogonal on [—L, L].
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We will study series expansions in terms of eigenfunctions. It is
used to solve PDEs.
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We will study series expansions in terms of eigenfunctions. It is
used to solve PDEs.

For this we consider the vector space of functions on [a, b] and
define an inner product on it

b
(f.g) = / F(@)g(a)de

Denote by L?[a,b] the subspace of those functions satisfying

{f; ) < oo

To say this is a subspace, one needs to check that if f, g € L?[a, b]
then f + g € L?[a,b]. We shall assume this fact.

From now on, we will always be working with functions in some
inner product space of the type L?[a,b]. In such a space, the norm
of a function is defined to be ||f| := (f, f)1/2.
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Fourier Series

Let f € L?)[—L,L). Then f can be written as a series

—ao+Z(ancos + by, sin?)

which is called the Fourier series of f on [—L, L]. Here

1 L
L/ f(z)dx and forn >0

/ f(z cos@dx / f(z sm@dx

The above series converges to f in norm, that is,

N
hm Hf—ao—z<ancosnL + by, mEL‘T) H:O

n—=
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We remark that the formula for the coefficients a,,’'s can be
obtained by integrating f(x) with cos ™% on [~L, L], and using
the facts that (1) we can exchange the integral and the sum, and

(2) orthogonality of the different eigenfunctions.
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We remark that the formula for the coefficients a,,’'s can be
obtained by integrating f(x) with cos ™% on [~L, L], and using
the facts that (1) we can exchange the integral and the sum, and
(2) orthogonality of the different eigenfunctions.
L mnx
dm = / cos i3 ap+

[t .

L oo
+/ cos m;mc Z (an cos? + by, sin n—zx)

—L

L 0 L
mmax 4 mmnTx mm:+
= COS aq a COS COS ——
L Zl n] L TL L
n=

—L

b L mmTxr . NTIT
COS S1n —
" L L

L o MTT
=am cos dx
7 L
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@ [’ exists and is continuous except at finitely many points.

© f(wo+) =lim, . f(x) and f/(zo+) =lim, 1 f'(2)
exists if a < xg < b.
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exists if a < xg < b.
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Qn. What about the convergence of series to f(x)?

A function f is said to be piecewise smooth if

@ f has atmost finitely many points of discontinuity.

@ [’ exists and is continuous except at finitely many points.

© f(wo+) =lim, . f(x) and f/(zo+) =lim, 1 f'(2)
exists if a < xg < b.

Q f(zo—) = limx_ma f(z) and f'(xo—) = limx_m,a f(z)
exists if a < xg < b.

Hence f is piecewise smooth if and only if
f, f' have atmost finitely many jump discontinuity.
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Let f(x) be a piecewise smooth on [—L, L].
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Theorem

Let f(x) be a piecewise smooth on [—L, L].
Extend it to all of R by defining it periodically, that is,
f(a +2L) = f(a).

17/48



Theorem

Let f(x) be a piecewise smooth on [—L, L].

Extend it to all of R by defining it periodically, that is,

f(z+2L) = f(x).

Then the Fourier series

—ao—i-Z(ancos + by, m%)

of f converges to

17/48



Theorem

Let f(x) be a piecewise smooth on [—L, L].

Extend it to all of R by defining it periodically, that is,

f(z+2L) = f(x).

Then the Fourier series

—ao—i-Z(ancos + by, m%)

of f converges to

[f(=) + f(z7)]

N =

at every point x € R.

17/48



Theorem

Let f(x) be a piecewise smooth on [—L, L].
Extend it to all of R by defining it periodically, that is,
flz+2L) = f(z).

Then the Fourier series

—ao—i-Z(ancos + by, m%)

of f converges to

S+ f@)

at every point z € R.

Therefore, at every point x of continuity of f, the Fourier series
converges to f(z).

17/48



Theorem

Let f(x) be a piecewise smooth on [—L, L].
Extend it to all of R by defining it periodically, that is,
flz+2L) = f(z).

Then the Fourier series

—ao—i-Z(ancos + by, m%)

of f converges to

S+ f@)
at every point z € R.
Therefore, at every point x of continuity of f, the Fourier series
converges to f(z).

If we re-define f(x) at every point of discontinuity x as

17/48



Theorem

Let f(x) be a piecewise smooth on [—L, L].
Extend it to all of R by defining it periodically, that is,

f(e +2L) = f(2).

Then the Fourier series

—ao—i-Z(ancos + by, m%)

of f converges to

S+ f@)

at every point z € R.

Therefore, at every point x of continuity of f, the Fourier series
converges to f(z).

If we re-define f(x) at every point of discontinuity x as

1 _
S + £)]

then the Fourier series represents the function everywhere.
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Theorem

Let f(x) be a piecewise smooth on [—L, L].
Extend it to all of R by defining it periodically, that is,

f(e +2L) = f(2).

Then the Fourier series

—ao—i-Z(ancos + by, m%)

of f converges to

S+ f@)
at every point z € R.
Therefore, at every point x of continuity of f, the Fourier series
converges to f(z).

If we re-define f(x) at every point of discontinuity x as

1 _
S + £)]
then the Fourier series represents the function everywhere.

Thus two functions can have same Fourier series.
17/48



Let us now consider a function f such that f has only jump
discontinuities, and if x is a such a point of jump discontinuity
then f(x) = 7f(m+);rf(z_).
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Let us now consider a function f such that f has only jump
discontinuities, and if x is a such a point of jump discontinuity

_ fEH)+fT)
then f(z) = &—5—"—.
The previous theorem tells us that the Fourier series converges to

f(z) for all z € [-L, L],
we may be tempted to infer that the error

nrx . nmx
F(z)—ap — Z <an cos —— + b, sin L)’

n=1
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then f(x) = 7f(m+);rf(m_).

The previous theorem tells us that the Fourier series converges to
f(z) for all z € [-L, L],
we may be tempted to infer that the error

En(w) = L L

n=1

N
F(z)—ap — Z <an cos 1L + b, sin m)’

can be made as small as we want, for all x € [—L, L] by choosing
N sufficiently large.
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Let us now consider a function f such that f has only jump
discontinuities, and if x is a such a point of jump discontinuity

then f(x) = 7f(m+);rf(m_).

The previous theorem tells us that the Fourier series converges to
f(z) for all z € [-L, L],
we may be tempted to infer that the error

En(z) = L L

N
F(z)—ap — Z <an cos 1L + b, sin m)’

n=1

can be made as small as we want, for all x € [—L, L] by choosing
N sufficiently large.

However this is NOT true if

e f is discontinuous at some point o € (—L, L) or

o f(=L+) # f(L-)

The next result explains this.
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Gibbs phenomenon

e If f has a jump discontinuity at a € (—L, L), then there exists
sequence of points uy € (—L,«) and vy € (o, L) s.t.

]\}i_rgouN =a, Ey(uy)~.09|f(a=)— fla+)]
— flat)]

Maximum of error Ex(x) # 0 near o as N — oo.
o If f(—L+) # f(L—), there exists uy and vy in (—L, L) s.t.
lim uUN = —L, EN(’U,N) ~ .09 |f(—L+) - f(L—)|

N—oo

lim vy =a=1L, Enx(vy)=~.09|f(—L+)— f(L-)|

N—oo

lim vy =a, En(vy)>~.09]|f(a—)

N—oo

This is called Gibbs phenomenon.
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Let us find the Fourier series of the piecewise smooth function

—r, —2<x<0
fz) =
1/2, 0<x<2

on [—2,2].
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Example

Let us find the Fourier series of the piecewise smooth function

—x, —2<x<0
f(x)_{1/2, 0<z<?2
on [—2,2].
1 [? 1[0 2 3
a0—1/2f(x)dx—z[/2(—x)dx+/0 —d:c]—z
If n > 1, then
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Example

Let us find the Fourier series of the piecewise smooth function

—x, —2<x<0
f(x)_{1/2, 0<z<?2
on [—2,2].
1 [? 1[0 2 3
a0—1/2f(x)dx—z[/2(—x)dx+/0 —d:c]—z
If n > 1, then

1 [? nmwT
anp = 5/_2 f(.’L') COSTd,I
1 0

2
1
S [/_2(—:1:) cos _n72mc dx + /0 5 cos _n72rx dw}
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Example (continued ...)

1 2 . nmx|0 0 92  nrx
=—|—2z—sin——| + —sin——dz 40
o NI 2

21/48



Example (continued ...)

1 2 . nmx|0 0 92  nrx
=—|—2z—sin——| + —sdeaz—i—O

o NI

1 4 nmx\ |0
=5 (Ces ) [
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Example (continued ...)

1 2 . nmx|0 0 92  nrx
=—|—2z—sin——| + —sdeaz—i—O

2 nmw 2 1-2 _9 nT
1 4 ( nmv) ‘0

= ——— |—cos—
2 n272 2 —2

= ——(cosnm — 1)

n2m?2
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= ——— |—cos—
2 n272 2 —2

= — 5 (cosnm — 1)
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Example (continued ...)

0

1 2 . nmx|0 2 . nwx
=—|—2z—sin——| + —sin——dz 40
2 nmw 2 1-2 _9 nT 2

1 4 nmx\ |0
- bt (o)

2n2m2 2 2
= — 5 (cosnm — 1)

n2m

2
. nwx
bn:i/ f(.Q?)Slan.’L'

—2

1] [° 21
:5[/_2(—x)sin$dx+/0 §sin?dm]
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Example (continued ...)

1 2 . nmx|0 0 92  nrx
=—|—2z—sin——| + —sdeaz—i—O

2 nmw 2 1-2 _9 nT
1 4 ( nmv) ‘0

= _——— [ —cos —
2n2m2 2 2

2
= —2(cos nm — 1)

/ f(z sm—dx

2

1
=§[/_2( x)sman —i—/o §sin?dm]

——(1 + 3cosnm)

2n
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Example (continued ...)

Thus, the Fourier series of f(z) is

F(z) =

=~

2 2 2

n=1

oo oo
2 cosnm — 1 nmwT 1 1+3cosnm . nrx
+ = g 5 cos + — E ———————sin ——
T n n
n=1
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Let us compute F'(z) at discontinuous points.

23/48



Let us compute F'(z) at discontinuous points.

Example (continued ...)

23/48



Let us compute F'(z) at discontinuous points.

Example (continued ...)

23/48



Let us compute F'(z) at discontinuous points.

Example (continued ...)

5/4, = =42

— —2 0
F(x)z x, <z <

1/4, z=

1/2, 0<z<2
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eEVP 1. ¢/ +Ay=0, y(0)=0, y(L)=0
2,2

has infinitely many positive eigenvalues A\, = for n > 1 with

L2
associated eigenfunctions

. nrmx
Yp = Sin —.
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eEVP 1 4" +Xy=0, y(0)=0, y(L)=0
2.2
has infinitely many positive eigenvalues \,, = % for n > 1 with

associated eigenfunctions

. nTx
Yp = Sin —.

eEVP2. y/+Ay=0, y/(0)=0,4(L)=0

has eigenvalue Ag = 0 with eigenfunction yg = 1.

2,2
has infinitely many positive eigenvalues \,, = 72 for n > 1 with
associated eigenfunctions
nmx
Yn = COS T
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e EVP 3. ¢/+Xy=0, y(0)=0,y(L)=0
has infinitely many positive eigenvalues

m—1 2,2
An:%, n=1,2,...
with associated eigenfunctions
. 2n—-1)rmx
=sin ——>—.
Yn oL
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e EVP 3. ¢/+Xy=0, y(0)=0,y(L)=0
has infinitely many positive eigenvalues

on — 1)272
M:(42),n:LZ“.
with associated eigenfunctions
2n — 1
= sin 2=

2L

e EVP 4. '+ Ay=0, ¥/ (0)=0, y(L)=0
has infinitely many positive eigenvalues

2n — 1)%r?
Anzgﬁ—gli,n:LZ“.
with associated eigenfunctions
(2n — 1)z
=cos ———"—.
Yn Y7
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e EVP5. " +Xy =0, y(-L) =y(L), y'(-L) = ¢'(L)
has an eigenvalue A\g = 0 with eigenfunction yp = 1

2.2
o e nem
and infinitely many positive eigenvalues \,, = T2 "= 1,2,...
with associated eigenfunctions
nwx

NI .
Y1n = COS - and yo, = sin <
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e EVP5. " +Xy =0, y(-L) =y(L), y'(-L) = ¢'(L)
has an eigenvalue A\g = 0 with eigenfunction yp = 1

2.2
o e nem
and infinitely many positive eigenvalues \,, = T2 "= 1,2,...
with associated eigenfunctions
nwx

nmxr
Y1n = COS < and 2, = sin -

e Eigenfunctions of EVP (1-4) are orthogonal on [0, L] w.r.t. inner

L
product (f, g) = /0 F(@)g(a)de

e Eigenfunctions of EVP 5 is orthogonal on [—L, L] w.r.t. inner

product (f, g) / flx
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Fourier Series

Fourier Series.
Let f € L*([-L, L]) be piecewise smooth. Extend f to R as a
periodic function of period 2L.
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Fourier Series

Fourier Series.

Let f € L*([-L, L]) be piecewise smooth. Extend f to R as a
periodic function of period 2L.

The Fourier series of f is

[o¢]
nmT . nwT
F(x)=ao+ Z <an cos - + by, sin T)

n=1

1 [F 1 [t nwT
ag—QL/Lf(x)da:, an—L/Lf(a:)cosLda:

1 L
bn—L/_Lf(x)sinnde:r, n >0
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Fourier Series

Fourier Series.

Let f € L*([-L, L]) be piecewise smooth. Extend f to R as a
periodic function of period 2L.

The Fourier series of f is

[o¢]
nmT . nwT
F(x)=ao+ Z <an cos - + by, sin T)

n=1

I 1 [k
/ flx)dx, a, = L/Lf(a:)cosnzxda:
/ f(x sm de, n>0

. .CE)—*[f( Y+ f(z7)] for all z € R,
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Fourier sine series

Let f be a function on [0, L]. Then we claim that f can be written
as a series

28/48



Fourier sine series

Let f be a function on [0, L]. Then we claim that f can be written
as a series
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f(x) = —f(—=z) for x € [-L,0). Denote the extension by f.

28 /48



Fourier sine series

Let f be a function on [0, L]. Then we claim that f can be written
as a series

To see this, let us first extend f to [—L, L] by defining )
f(x) = —f(—=z) for x € [-L,0). Denote the extension by f.

Then we know that f has a Fourier expansion

nmwx
) =ap+ E ancos —i—bn mT
n>1
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Fourier sine series

Let f be a function on [0, L]. Then we claim that f can be written
as a series

To see this, let us first extend f to [—L, L] by defining )
f(x) = —f(—=z) for x € [-L,0). Denote the extension by f.

Then we know that f has a Fourier expansion

nmwx
) =ap+ E ancos —i—bn mT
n>1

L
a0:1/ f(z)dz /f cos@d:c n>0

/ f ) sin @d:p

28 /48



Now note that by the way f has been defined, it is an odd
function. Thus, ag = 0.
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Now note that by the way f has been defined, it is an odd
function. Thus, ag = 0.

Since cos”—j{x is an even function and f is odd, it follows

f(z) cos "7% is an odd function. Thus, a, = 0.
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Now note that by the way f has been defined, it is an odd
function. Thus, ag = 0.

Since cos ”zx is an even function and f is odd, it follows
f(z) cos "7% is an odd function. Thus, a, = 0.

nmwx
E ap Sin ——

n>1

This proves that

Restricting this expansion to [0, L] we get the required expansion

of f.
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Fourier cosine series

Let f be a function on [0, L]. Then we claim that f can be written

as a series
nwx
= ap + g Ay, COS ——

n>1
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Fourier cosine series

Let f be a function on [0, L]. Then we claim that f can be written

as a series
nwx
= ap + g Ay, COS ——

n>1

To see this, let us first extend f to [—L, L] by defining
f(z) = f(—=z) for x € [-L,0). Denote the extension by f.

Then we know that f has a Fourier expansion

nwx
) =ap+ E ancos —i—bn mT
n>1

aozlfo(x)d /f cos@d:c n>0

/ f ) sin @d:p
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Now note that by the way f has been defined, it is an even
function.
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Now note that by the way f has been defined, it is an even
function.

Since sin *7* is an odd function and f is even, it follows

f(z) sin “7* is an odd function. Thus, b, = 0.
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Now note that by the way f has been defined, it is an even
function.

Since sin *7* is an odd function and f is even, it follows

f(x) sin “7* is an odd function. Thus, b, = 0.

This proves that

nwT
=ag + E Q,, COS ——
n>1

Restricting this expansion to [0, L] we get the required expansion

of f.
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Expansion in terms of eigenfunctions of EVP3

Let f be a function on [0, L]. Then we claim that f can be written

as a series 2 0
. n— 1wz
flz) = ZansmT

n>1
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Expansion in terms of eigenfunctions of EVP3

Let f be a function on [0, L]. Then we claim that f can be written

as a series 2 0
. n— 1wz
f(z) = ZansmT

n>1

Let f € L%([0,L]). Extend f to f; on [0,2L] as
fi(z) = f(2L — x) for x € (L, 2L).
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Expansion in terms of eigenfunctions of EVP3

Let f be a function on [0, L]. Then we claim that f can be written

as a series
= ap S1Il ——mMm——
" 2L
n>1

Let f € L%([0,L]). Extend f to f; on [0,2L] as
fi(z) = f(2L — x) for x € (L, 2L).

Fourier sine series of f; on [0,2L] is

nwT
g by, sin ——

n>1

2 [ nww
bn ﬁ f]_( ) sin Z dx

1 L 1 2L
= /Of(a:)sanLdaH—L g f(2L—x)sin%dm
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Expansion in terms of eigenfunctions of EVP3

2L
/ f(2L — z)sin de

(z' = 2L — ), / f( nm)(—dw)

/0( )"Hf( )smnzLde
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Expansion in terms of eigenfunctions of EVP3

2L
/ f(2L — z)sin de

(z' = 2L — ), / f( nm)(—dw)

/0( )"Hf( )smnzLde

1 [F 1 [F
b, = L/o flx )smﬁd +L/0 (71)"+1f(x)sin%dx
2 (L . 2n—1)mx
So by, =0, bop_1 = L/o f(x)sin - dx.

2n — mx
Thus F(x Zan 15111(2L)
n>1
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Expansion in terms of eigenfunctions of EVP3

The Mixed Fourier sine series of f € L?([0, L]) is the restriction of
Fourier sine series of f; to [0, L], i.e.

2n —1
F(x) :chsin(nﬂ;)mj

n>1

)X

2 (L . (2n—1
cn—L/O f(ac)sdex
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Expansion in terms of eigenfunctions of EVP3

The Mixed Fourier sine series of f € L?([0, L]) is the restriction of
Fourier sine series of f; to [0, L], i.e.

2n —1
F(x) :chsin(nﬂ;)mj

n>1

)X

2 (L . (2n—1
cn—L/O f(x)sdex

This is the Fourier series of f on [0, L] w.r.t. orthogonal system of
eigenfunctions

2n —1
B:{sinﬂ,sin ST ,sin(nQL)mg,.

2L i,... ..}

of EVP 3: |y + Ay =0, y(0)=0=y/(L)]
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Expansion in terms of eigenfunctions of EVP4

Mixed Fourier cosine series
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Expansion in terms of eigenfunctions of EVP4

Mixed Fourier cosine series
Let f € L%([0,L]). Extend f to f1 on [0,2L] as
fi(x) = —f(2L — x) for x € (L,2L).
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Expansion in terms of eigenfunctions of EVP4

Mixed Fourier cosine series
Let f € L%([0,L]). Extend f to f1 on [0,2L] as
fi(x) = —f(2L — x) for x € (L,2L).

Fourier cosine series of f1 on [0,2L] is

(2n — 1)z

00 L
F(z) :Zdncos—,dn: /0 f(x)coswdx
n=1

2
2L L 2L
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Expansion in terms of eigenfunctions of EVP4

Mixed Fourier cosine series
Let f € L%([0,L]). Extend f to f1 on [0,2L] as
fi(x) = —f(2L — x) for x € (L,2L).

Fourier cosine series of f1 on [0,2L] is
(2n — 1)m (2n —1
Zd cos " / f(z cos " ) L dx

This is the Fourier series of f on [0, L] w.r.t. orthogonal system of
eigenfunctions

T 3rx (2n — 1)z
B = {cosﬁ,cosﬁ,...,cosT,..
of EVP 4 : ‘y”%—/\y =0, y'(0)=0=y(L) ‘

3
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A useful observation
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A useful observation

Often we need to find Fourier expansion of polynomial functions in
terms of the eigenfunctions of Problems 1-4 satisfying the
boundary conditions.
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A useful observation

Often we need to find Fourier expansion of polynomial functions in
terms of the eigenfunctions of Problems 1-4 satisfying the
boundary conditions.

We can use “derivative transfer principle” to find Fourier
coefficients.
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In EVP 1 with f(0) =0 = f(L), we get Fourier sine series on
[0, L].
F(x) = Z by, sin ? dx

n>1

2 L
by, = E/o f(x)sinn%dx
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In EVP 1 with f(0) =0 = f(L), we get Fourier sine series on
[0, L].
F(x) = Z by, sin ? dx

n>1
2 L
bn:f/o f(x)sinn%dx

2 (b nwT
= — —d
— f'(x) cos 7 dz
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In EVP 1 with f(0) =0 = f(L), we get Fourier sine series on
[0, L].
nmwx
F(x) = by, sin — dz
(z) ; 7

2 L
by, = L/o f(x)sin?dw

2 L
= ; f’(w)cosﬂLxdm

—2 / L\? [t " . nmrx
_L<n77> /0 f(ac)sdex
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In EVP (2) with f/(0) =0 = f’(L), we get Fourier cosine series on
[0, L], where for n > 1,

oo
nmw
= — 0< <L
f(zx) ao+n§1ancos 7 x
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n=1
2) L
ap = — f(z)cos —dz =

38/48



In EVP (2) with f/(0) =0 = f’(L), we get Fourier cosine series on
[0, L], where for n > 1,

f(x)—ao+nz:1ancosnz, 0<z<L
2 [t -2 [k
an = — f(x)cos Ll — f'(z) sin —— dx
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In EVP (2) with f/(0) =0 = f’(L), we get Fourier cosine series on
[0, L], where for n > 1,
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n=1
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In EVP 3 with f(0) =0 = f'(L), we get Mixed Fourier sine series
on [0, L].

2n—1
F(x) = Z Cp Sin % dz

n>1

2 (f . (2n— Dz
cn—z/o f(x)sdex
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In EVP 3 with f(0) =0 = f'(L), we get Mixed Fourier sine series
n [0, L].
B . (2n—1)mz
F(x) —chsm 5T dz

n>1
2 (E omn—1
= L/O f(a;)sin(nQL)mcdaj

~ e ), e e
L

—2 " ,2n—1)
:L(2n—1 )/f sin T g
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In EVP 4 with f/(0) =0 = f(L), we get Mixed Fourier cosine
series on [0, L].

2n—1
F(x) = Zdncos%dm

2 [k (2n — 1)z
= — —d
d /0 (x) cos 5T x

40/48



In EVP 4 with f/(0) =0 = f(L), we get Mixed Fourier cosine
series on [0, L].

F(x) = Z dy, cos (@2n = re dx

2L
n>1
2 [t 2n — 1
dn:L/O (:c)cos(n2L)7T$d:c
—4 L (2n — )7z
- in 2~ — 2 g
Gn 1) ), S @S
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In EVP 4 with f/(0) =0 = f(L), we get Mixed Fourier cosine
series on [0, L].

F(x) = Z dy, cos (@2n = re dx
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n>1
2 [t 2n — 1
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Example. Find the Fourier sine expansion of
f(z) = z(2® — 3Lz + 2L?) on [0, L]
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Example. Find the Fourier sine expansion of
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Example. Find the Fourier sine expansion of
f(z) = z(2® — 3Lz + 2L?) on [0, L]
Note f(0) =0 = f(L), f"(x) = 6(x — L), Fourier sine coefficient
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Example. Find the Fourier sine expansion of
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Note f(0) =0 = f(L), f"(x) = 6(x — L), Fourier sine coefficient
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Therefore, the Fourier sine expansion of f(x) on [0, L] is
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Therefore, the Fourier sine expansion of f(x) on [0, L] is
123 &K 1 . nnx
— — 1 —
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Example. Find the Fourier cosine expansion of

f(z) = 2%(3L —2z) on [0, L]
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Example. Find the Fourier cosine expansion of
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Example. Find the Fourier cosine expansion of

f(z) = 2%(3L —2z) on [0, L]

1 L
ao—/ (3La? — 22%) dx

L 0

1 2\ "
= (L3 -2
£,
I3
T2

f'(z) =6Lr — 622 = f'(0)=f'(L)=0
Note f"'(x) = —12. We get
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—48L3

Thus a9, = 0 and a9,,—1 = m'
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L \nr 0 nir
—48L3
Thus a9, = 0 and a9,,—1 = m'

Thus Fourier cosine expansion of f(x) on [0, L] is
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L \ nm 0 nir
—48L3
Thus a9p = 0 and ao2p—1 = m
Thus Fourier cosine expansion of f(x) on [0, L] is
L3 4813 & 1 (2n — 1)z
o cos
2 4 (2n —1)4 L

n=1
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Example Find the mixed Fourier sine expansion of

f(z) = 2(22® — 9Lz + 12L%) on [0, L]
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9612 4L . (2n—Drx,L
= 5 3 L — Sin ‘
(2n —1)373 (2n— 17 2L 0
96L3 4
= |13+ ()"
(2n —1)373 { +(=1) (2n — 1)77}

Therefore, the mixed Fourier sine expansion of f(z) on [0, L] is
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9612 4L . (2n—Drx,L
= 5 3 L — Sin ‘
(2n —1)373 (2n— 17 2L 0
96L3 4
= |13+ ()"
(2n —1)373 { +(=1) (2n — 1)77}

Therefore, the mixed Fourier sine expansion of f(z) on [0, L] is

> 1 n 4 . 2n—1)rmx
c;(zn—l)?»[g“_l) (2n—1)7r] EY)

9613

with ¢ =
3
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Example. Find the mixed Fourier cosine expansion of
f(z) =323 —4Lx® + L3 on [0, L]
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Example. Find the mixed Fourier cosine expansion of
f(z) =323 —4Lx? + L3 on [0, L]

Soln. f/(0) =0 = f(L) f"(z) = 2(9x — 4L), we get

—2 " (2n — 1)z
dn =T <(2n_1> / Fiz) cos = p——dx

—16L (2n — 1)z

L
- —4L)cos g
(2n — 1)272 /0 (9 = 4L) cos g da

R

L (2n — 1)z
— in—~__~/""4
9/0 sin 5 a:}

—32L2 on —1
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Therefore, the Mixed Fourier cosine expansion of f(z) on [0, L] is

48/48



—321? "
= 1 [H) Tl

3213 n 18
- (2n —1)373 [(_1) ot (2n — 1)7T:|

18L (2n — )mx L
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Therefore, the Mixed Fourier cosine expansion of f(z) on [0, L] is
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