
MA-207 Differential Equations II

Ronnie Sebastian

Department of Mathematics
Indian Institute of Technology Bombay

Powai, Mumbai - 76

1 / 51



Now we will start the study of Partial differential equations.
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A partial differential equation (PDE) is an equation for an
unknown function u that involves independent variables x, y, . . .,
the function u and the partial derivatives of u.
The order of the PDE is the order of the highest partial derivative
of u in the equation.
Examples of some famous PDEs.

1 ut−k(uxx +uyy) = 0 two dimensional Heat equation, order 2.

2 utt − c2(uxx + uyy) = 0 two dimensional wave equation, order
2.

3 uxx + uyy = 0 two dimensional Laplace equation, order 2.

4 utt + uxxxx Beam equation, order 4.
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Examples of non-famous PDE’s (I made it up).

1 ux + sin(uy) = 0, order 1.

2 3x2 sin(xy)e−xy
2
uxx + log(x2 + y2)uy = 0,

order 2.

A PDE is said to be “linear” if it is linear in u and its partial
derivatives i.e. it is a degree 1 polynomial in u and its partial
derivatives.
Heat equation, Wave equation, Laplace equation and Beam
equation are linear PDEs.
In the above two non-famous examples, the first is non-linear while
the second is linear.
The general form of first order linear PDE in two variables x, y is

A(x, y)ux +B(x, y)uy + C(x, y)u = f(x, y)
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The general form of first order linear PDE in three variables x, y, z
is

Aux +Buy + Cuz +Du = f

where coefficients A,B,C,D and f are functions of x, y and z.
The general form of second order linear PDE in two variables x, y is

Auxx + 2Buxy + Cuyy +Dux + Euy + Fu = f

where coefficients A,B,C,D,E, F and f are functions of x and y.
When A . . . , F are all constants, then its a linear PDE with
constant coefficients.
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Linear Partial Differential Operator
Second order linear PDE in two variable can be written as Lu = f ,
where

L = A
∂2

∂x2
+ 2B

∂2

∂x∂y
+ C

∂2

∂y2
+D

∂

∂x
+ E

∂

∂y
+ F

is the linear differential operator. It is called linear since the map
u 7→ Lu is a linear map.
Examples. Laplace operator in R2 is

∆ =
∂2

∂x2
+

∂2

∂y2

Heat and Wave operator in one space variable are

H =
∂

∂t
− ∂2

∂x2
, � =

∂2

∂t2
− ∂2

∂x2
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Classification of second order linear PDE
Consider the linear differential operator L in R2.

L = A
∂2

∂x2
+ 2B

∂2

∂x∂y
+ C

∂2

∂y2
+D

∂

∂x
+ E

∂

∂y
+ F

where A, . . . , F are functions of x and y.
To the operator L, we associate the discriminant D(x, y) given by

D(x, y) = A(x, y)C(x, y)−B2(x, y)

The operator L or the PDE Lu = f is said to be

elliptic at (x0, y0), if D(x0, y0) > 0,

hyperbolic at (x0, y0), if D(x0, y0) < 0,

parabolic at (x0, y0), if D(x0, y0) = 0.
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If L is elliptic at each point (x, y) in a domain Ω ⊂ R2, then L is
called elliptic in Ω.

Similarly for hyperbolic and parabolic. Recall

∆ =
∂2

∂x2
+

∂2

∂y2
, H =

∂

∂t
− ∂2

∂x2
, � =

∂2

∂t2
− ∂2

∂x2

Two dimensional Laplace operator ∆ is elliptic in R2, since
D = 1.

One dimensional Heat operator H is parabolic in R2, since
D = 0.

One dimensional Wave operator � is hyperbolic in R2, since
D = −1.

8 / 51



When the coefficients of an operator L are not constant, the type
may vary from point to point.

Example. Consider the Tricomi operator (well known)

T =
∂2

∂x2
+ x

∂2

∂y2

The discriminant D = x.
Hence T is elliptic in the half-plane x > 0,
hyperbolic in the half-plane x < 0 and
parabolic on the y-axis.
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Remark about terminology
Consider

L = A
∂2

∂x2
+ 2B

∂2

∂x∂y
+ C

∂2

∂y2
+D

∂

∂x
+ E

∂

∂y
+ F

at the point (x0, y0). If we replace ∂/∂x by ξ and ∂/∂y by η and
evaluate A, . . . , F at (x0, y0), then L becomes a polynomial in 2
variables

P (ξ, η) = Aξ2 + 2Bξη + Cη2 +Dξ + Eη + F

Consider the curves in (ξ, η)-plane given by

P (ξ, η) = constant

then these curves are elliptic if D(x0, y0) > 0, hyperbolic if
D(x0, y0) < 0 and parabolic if D(x0, y0) = 0.
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Second order linear operators in R3

The classification is done analogously by associating a polynomial
of degree 2 in three variables to L and considering the surfaces
defined by level sets of the polynomial.
These surfaces are either ellipsoids, hyperboloids, or paraboloids.
The operator L is accordingly labeled as elliptic, hyperbolic or
parabolic.
We can also proceed as follows; Consider

L = a
∂2

∂x2
+ 2b

∂2

∂x∂y
+ 2c

∂2

∂x∂z
+ d

∂2

∂y2
+ 2e

∂2

∂y∂z
+ f

∂2

∂z2

+ lower order terms

where a, b, . . . are functions of (x, y, z).
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To L, we associate the symmetric matrix

M(x, y, z) =

a b c
b d e
c e f


Here the (i, j)-th entry is the coefficient of

∂2

∂xi∂xj
.

Since M is symmetric, it has 3 real eigenvalues.

L is elliptic at (x0, y0, z0) if all three eigen values of
M(x0, y0, z0) are of same sign.

L is hyperbolic at (x0, y0, z0) if two eigen values are of same
sign and one of different sign.

L is parabolic at (x0, y0, z0) if one of the eigenvalue is zero.
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Principle of superposition
Let L be a linear differential operator.
The PDE Lu = 0 is called homogeneous and
the PDE Lu = f , (f 6= 0) is non-homogeneous.

Principle 1. If u1, . . . , uN are solutions of Lu = 0 and c1, . . . , cN

are constants, then
N∑
i=1

ciui is also a solution of Lu = 0.

In general, space of solutions of Lu = 0 contains infinitely many
independent solutions and we may need to use infinite linear
combinations of them.
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Principle 2.
Assume
• u1, u2, . . . are infinitely many solutions of Lu = 0.

• the series w =
∑
i≥1

ciui with c1, c2, . . . constants, converges to a

twice differentiable function;
• term by term partial differentiation is valid for the series, i.e.

Dw =
∑
i≥1

ciDui, D is any partial differentiation of order 1 or 2.

Then w is again a solution of Lu = 0.
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Principle 3 for non-homogeneous PDE.

If ui is a solution of Lu = fi, then

w =

N∑
i=1

ciui

with constants ci, is a solution of Lu =

N∑
i=1

cifi.
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One-dimensional heat equation

The temperature evolution of a thin rod of length L is decribed by
the PDE

ut = k2uxx, 0 < x < L, t > 0,

called one-dimensional heat equation.
Here k is a positive constant.

x is the space variable and t is the time variable.

u(x, t) is the temperature at point x and time t.

At time t = 0, we must specify temperature at every point. That
is, specify u(x, 0).

We must also specify boundary conditions that u must satisfy at
the two endpoints of the rod for all t > 0.

We call this problem an initial-boundary value problem IBVP.

We consider different kinds of boundary conditions.
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In each case, we use method of separation of variables.
Suppose

v(x, t) = X(x)T (t)

Substituting this in the Heat equation ut = k2uxx

T ′(t)X(x) = k2X ′′(x)T (t).

We can now separate the variables:

X ′′(x)

X(x)
=

T ′(t)

k2T (t)

The equality is between a function of x and a function of t,
so both must be constant, say −λ.
We need to solve

X ′′(x) + λX(x) = 0 and T ′(t) = −k2λT (t).
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Dirichlet boundary conditions u(0, t) = u(L, t) = 0

Initial-boundary value problem is

ut = k2uxx 0 < x < L, t > 0

u(0, t) = 0 t > 0

u(L, t) = 0, t > 0

u(x, 0) = f(x), 0 ≤ x ≤ L
The endpoints of the rod are maintained at temperature 0 at all
time t.

(The rod is isolated from the surroundings except at the endpoints
from where heat will be lost to the surrounding.)

Assuming the solution in the form v(x, t) = X(x)T (t)

v(0, t) = X(0)T (t) = 0 and v(L, t) = X(L)T (t) = 0

we don’t want T to be identically zero, we get

X(0) = 0 and X(L) = 0.
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We need to solve eigenvalue problem

X ′′(x) + λX(x) = 0, X(0) = 0, X(L) = 0, (∗)

and T ′(t) = −k2λT (t) =⇒ T (t) = exp(−k2λt)

The eigenvalues of (∗) are

λn =
n2π2

L2

with associated eigenfunctions

Xn = sin
nπx

L
, n ≥ 1.

We get infinitely many solutions for IBVP, one for each n ≥ 1

vn(x, t) = Tn(t)Xn(x)

= exp

(
−n2π2k2

L2
t

)
sin

nπx

L

Note vn(x, 0) = sin
nπx

L
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Therefore

vn(x, t) = exp

(
−n2π2k2

L2
t

)
sin

nπx

L
satisfies the IBVP

ut = k2uxx 0 < x < L, t > 0

u(0, t) = 0 t > 0

u(L, t) = 0 t > 0

u(x, 0) = sin
nπx

L
0 ≤ x ≤ L

More generally, if α1, . . . , αm are constants and

um(x, t) =

m∑
n=1

αn exp

(
−n2π2k2

L2
t

)
sin

nπx

L

then um(x, t) satisfies the IBVP with initial condition

um(x, 0) =

m∑
n=1

αn sin
nπx

L
.
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Let us consider the formal series

u(x, t) =

∞∑
n=1

αn exp

(
−n2π2k2

L2
t

)
sin

nπx

L

Setting t = 0 we get

u(x, 0) =

∞∑
n=1

αn sin
nπx

L

To solve our IBVP we would like to have

f(x) =

∞∑
n=1

αn sin
nπx

L
0 ≤ x ≤ L

Is it possible that f has such an expansion?

Given f on [0, L], it has a Fourier sine series

f(x) =
∑
n≥1

bn sin
nπx

L
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Definition

The formal solution of IBVP

ut = k2uxx 0 < x < L, t > 0

u(0, t) = 0 t > 0

u(L, t) = 0 t > 0

u(x, 0) = f(x) 0 ≤ x ≤ L
is

u(x, t) =

∞∑
n=1

αn exp

(
−n2π2k2

L2
t

)
sin

nπx

L

where

S(x) =

∞∑
n=1

αn sin
nπx

L

is the Fourier sine series of f on [0, L] i.e.

αn =
2

L

∫ L

0
f(x) sin

nπx

L
dx.
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u(x, t) =

∞∑
n=1

αn exp

(
−n2π2k2

L2
t

)
sin

nπx

L

We say u(x, t) is a formal solution, since the series for u(x, t) may
NOT satisfy all the requirements of IBVP.

When it does, we say it is an actual solution of IBVP.

Because of negative exponential in u(x, t), the series in u(x, t)
converges for all t > 0.

Each term in u(x, t) satisfies the heat equation and boundary
condition.
If ut and uxx can be obtained by differentiating the series term by
term, once w.r.t. t and twice w.r.t. x for t > 0, then u also
satisfies these properties.

If f(x) is continuous and piecewise smooth on [0, L], then we can
do it. Hence we get next result.
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Theorem

f(x) : continuous and piecewise smooth on [0, L]
f(0) = f(L) = 0

S(x) =

∞∑
n=1

αn sin
nπx

L
with αn =

2

L

∫ L

0
f(x) sin

nπx

L
dx

is Fourier sine series of f on [0, L]. Then the IBVP

ut = k2uxx 0 < x < L, t > 0

u(0, t) = 0 t > 0

u(L, t) = 0 t > 0

u(x, 0) = f(x) 0 ≤ x ≤ L

has a solution

u(x, t) =
∞∑
n=1

αnexp

(
−n2π2k2

L2
t

)
sin

nπx

L

Here ut and uxx can be obtained by term-wise differentiation for
t > 0.
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Example

Let f(x) = x(x2 − 3Lx+ 2L2). Solve IBVP

ut = k2uxx 0 < x < L, t > 0

u(0, t) = 0 t > 0

u(L, t) = 0 t > 0

u(x, 0) = f(x) 0 ≤ x ≤ L

The Fourier sine expansion of f(x) is

S(x) =
12L3

π3

∞∑
n=1

1

n3
sin

nπx

L
.

Therefore, the solution of IBVP is

u(x, t) =
12L3

π3

∞∑
n=1

1

n3
exp

(
−n2π2k2

L2
t

)
sin

nπx

L
.

�
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Neumann boundary conditions

Initial-boundary value problem is

ut = k2uxx 0 < x < L, t > 0

ux(0, t) = 0 t > 0

ux(L, t) = 0, t > 0

u(x, 0) = f(x), 0 ≤ x ≤ L

Assuming the solution in the form v(x, t) = X(x)T (t)

vx(0, t) = X ′(0)T (t) = 0 and vx(L, t) = X ′(L)T (t) = 0

we don’t want T to be identically zero, we get

X ′(0) = 0 and X ′(L) = 0.

We need to solve eigenvalue problem

X ′′(x) + λX(x) = 0, X ′(0) = 0, X ′(L) = 0, (∗)

and T ′(t) = −k2λT (t) =⇒ T (t) = exp(−k2λt)
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The eigenvalues of (∗) are

λn =
n2π2

L2

with associated eigenfunctions

Xn = cos
nπx

L
, n ≥ 0.

We get infinitely many solutions for IBVP, one for each n ≥ 0

vn(x, t) = Tn(t)Xn(x)

= exp

(
−n2π2k2

L2
t

)
cos

nπx

L

Note vn(x, 0) = cos
nπx

L
Therefore

vn(x, t) = exp

(
−n2π2k2

L2
t

)
cos

nπx

L
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satisfies the IBVP

ut = k2uxx 0 < x < L, t > 0

ux(0, t) = 0 t > 0

ux(L, t) = 0 t > 0

u(x, 0) = cos
nπx

L
0 ≤ x ≤ L

More generally, if α0, . . . , αm are constants and

um(x, t) =

m∑
n=0

αn exp

(
−n2π2k2

L2
t

)
cos

nπx

L

then um(x, t) satisfies the IBVP with initial condition

um(x, 0) =

m∑
n=0

αn cos
nπx

L
.
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Let us consider the formal series

u(x, t) =

∞∑
n=0

αn exp

(
−n2π2k2

L2
t

)
cos

nπx

L

Setting t = 0 we get

u(x, 0) =

∞∑
n=0

αn cos
nπx

L

To solve our IBVP we would like to have

f(x) =

∞∑
n=0

αn cos
nπx

L
0 ≤ x ≤ L

Is it possible that f has such an expansion?

Given f on [0, L], it has a Fourier cosine series

f(x) =
∑
n≥0

an cos
nπx

L
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Definition

The formal solution of IBVP

ut = k2uxx 0 < x < L, t > 0

ux(0, t) = 0 t > 0

ux(L, t) = 0 t > 0

u(x, 0) = f(x) 0 ≤ x ≤ L
is

u(x, t) =

∞∑
n=0

αn exp

(
−n2π2k2

L2
t

)
cos

nπx

L

where

S(x) =

∞∑
n=0

αn cos
nπx

L

is the Fourier sine series of f on [0, L] i.e.

α0 =
1

L

∫ L

0
f(x) dx αn =

2

L

∫ L

0
f(x) cos

nπx

L
dx.
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u(x, t) =

∞∑
n=0

αn exp

(
−n2π2k2

L2
t

)
cos

nπx

L

We say u(x, t) is a formal solution, since the series for u(x, t) may
NOT satisfy all the requirements of IBVP.

When it does, we say it is an actual solution of IBVP.

Because of negative exponential in u(x, t), the series in u(x, t)
converges for all t > 0.

Each term in u(x, t) satisfies the heat equation and boundary
condition.
If ut and uxx can be obtained by differentiating the series term by
term, once w.r.t. t and twice w.r.t. x for t > 0, then u also
satisfies these properties.

If f(x) is continuous and piecewise smooth on [0, L], then we can
do it. Hence we get next result.
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Theorem

f(x) is continuous, piecewise smooth on [0, L]; f ′(0) = f ′(L) = 0.

S(x) =

∞∑
n=1

αn cos
nπx

L
with

α0 =
1

L

∫ L

0
f(x) dx αn =

2

L

∫ L

0
f(x) cos

nπx

L
dx

is Fourier sine series of f on [0, L]. Then the IBVP

ut = k2uxx 0 < x < L, t > 0

ux(0, t) = 0 t > 0

ux(L, t) = 0 t > 0

u(x, 0) = f(x) 0 ≤ x ≤ L

has a solution

u(x, t) =

∞∑
n=0

αnexp

(
−n2π2k2

L2
t

)
cos

nπx

L

Here ut and uxx can be obtained by term-wise differentiation for
t > 0.
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Example

Let f(x) = x on [0, L]. Solve IBVP

ut = k2uxx 0 < x < L, t > 0

ux(0, t) = 0 t > 0

ux(L, t) = 0 t > 0

u(x, 0) = f(x) 0 ≤ x ≤ L

The Fourier cosine expansion of f(x) is

C(x) =
L

2
− 4L

π2

∞∑
n=1

1

(2n− 1)2
cos

(2n− 1)πx

L
.

Therefore, the solution of IBVP is
u(x, t) =

L

2
− 4L

π2

∞∑
n=1

1

(2n− 1)2
exp

(
−(2n− 1)2π2k2

L2
t

)
cos

(2n− 1)nπx

L
.
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Definition (Formal solution for Dirichlet boundary )

The formal solution of IBVP

ut = k2uxx 0 < x < L, t > 0

u(0, t) = 0 t > 0

u(L, t) = 0 t > 0

u(x, 0) = f(x) 0 ≤ x ≤ L
is

u(x, t) =

∞∑
n=1

αn exp

(
−n2π2k2

L2
t

)
sin

nπx

L

where

S(x) =

∞∑
n=1

αn sin
nπx

L

is the Fourier sine series of f on [0, L] i.e.

αn =
2

L

∫ L

0
f(x) sin

nπx

L
dx.
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Definition (Formal solution for Neumann boundary condition)

The formal solution of IBVP

ut = k2uxx 0 < x < L, t > 0

ux(0, t) = 0 t > 0

ux(L, t) = 0 t > 0

u(x, 0) = f(x) 0 ≤ x ≤ L
is

u(x, t) =

∞∑
n=0

αn exp

(
−n2π2k2

L2
t

)
cos

nπx

L

where

S(x) =

∞∑
n=0

αn cos
nπx

L

is the Fourier cosine series of f on [0, L] i.e.

α0 =
1

L

∫ L

0
f(x) dx αn =

2

L

∫ L

0
f(x) cos

nπx

L
dx.
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Non homogeneous PDE: Dirichlet boundary condition

Let us now consider the following PDE
ut − k2uxx = F (x, t) 0 < x < L, t > 0

u(0, t) = f1(t) t > 0

u(L, t) = f2(t) t > 0

u(x, 0) = f(x) 0 ≤ x ≤ L

How do we solve this?

Let us first make the substitution

z(x, t) = u(x, t)− (1− x

L
)f1(t)−

x

L
f2(t)

Then clearly

zt − k2zxx = G(x, t)

z(0, t) = 0

z(L, t) = 0

z(x, 0) = g(x)

36 / 51



Non homogeneous PDE: Dirichlet boundary condition

It is clear that we would have solved for u iff we have solved for z.
In view of this observation, let us try and solve the problem for z.

By observing the boundary conditions, we guess that we should try
and look for a solution of the type

z(x, t) =
∑
n≥1

Zn(t) sin(
nπx

L
)

Differentiating the above term by term we get that is satisfies the
equation

zt − k2zxx =
∑
n≥1

(
Z ′n(t) +

k2n2π2

L2
Zn(t)

)
sin(

nπx

L
)

Let us write
G(x, t) =

∑
n≥1

Gn(t) sin(
nπx

L
)
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Non homogeneous PDE: Dirichlet boundary condition

Thus, if we need zt − k2zxx = G(x, t) then we should have that

Gn(t) = Z ′n(t) +
k2n2π2

L2
Zn(t) (∗)

We also need that z(x, 0) = g(x).
If

g(x) =
∑
n≥1

bn sin
nπx

L

then we should have that

Zn(0) = bn (!)

Clearly, there is a unique solution to the differential equation (∗)
with initial condition (!).
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Non homogeneous PDE: Dirichlet boundary condition

The solution to the above equation is given by

Zn(t) = Ce−
k2n2π2

L2 t + e−
k2n2π2

L2 t
∫ t

0
Gn(s)e

k2n2π2

L2 sds

We can find the constant using the initial condition.

Thus, we let Zn(t) be this unique solution, then the series

z(x, t) =
∑
n≥1

Zn(t) sin(
nπx

L
)

solves our non homogeneous PDE with Dirichlet boundary
conditions for z.
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Non homogeneous PDE: Dirichlet boundary condition

Example

Let us now consider the following PDE
ut − uxx = et 0 < x < 1, t > 0

u(0, t) = 0 t > 0

u(1, t) = 0 t > 0

u(x, 0) = x(x− 1) 0 ≤ x ≤ 1

From the boundary conditions u(0, t) = u(1, t) = 0 it is clear that
we should look for solution in terms of Fourier sine series.

The Fourier sine series of F (x, t) is given by (for n ≥ 1)

Fn(t) = 2

∫ 1

0
F (x, t) sinnπx dx

= 2

∫ 1

0
et sinnπx dx

=
2(1− (−1)n)et

nπ
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Non homogeneous PDE: Dirichlet boundary condition

Example (continued ...)

Thus, the Fourier series for et is given by

et =
∑
n≥1

2(1− (−1)n)

nπ
et sinnπx

The Fourier sine series for f(x) = x(x− 1) is given by

x(x− 1) =
∑
n≥1

4((−1)n − 1)

(nπ)3
sinnπx

Substitute u(x, t) =
∑

n≥1 un(t) sinnπx into the equation
ut − uxx = et∑
n≥1

(
u′n(t) + n2π2un(t)

)
sinnπx =

∑
n≥1

2(1− (−1)n)

nπ
et sinnπx

41 / 51



Non homogeneous PDE: Dirichlet boundary condition

Example (continued ...)

Thus, for n ≥ 1 and even we get

u′n(t) + n2π2un(t) = 0

that is,
un(t) = Cne

−n2π2t

If n ≥ 1 and even, we have that the Fourier coefficient of x(x− 1)
is 0. Thus, when we put un(0) = 0 we get Cn = 0.

For n ≥ 1 odd we get

u′n(t) + n2π2un(t) =
4

nπ
et

that is,

un(t) = e−n
2π2t

∫ t

0

4

nπ
esen

2π2sds+ Cne
−n2π2t
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Non homogeneous PDE: Dirichlet boundary condition

Example (continued ...)

If n ≥ 1 and odd, we have the Fourier coefficient of x(x− 1) is
−8

(nπ)3
. Thus, we get

un(0) = Cn =
−8

(nπ)3

Thus, the solution we are looking for is

u(x, t) =
∑
n≥0

(
e−(2n+1)2π2t

∫ t

0

4

(2n+ 1)π
ese(2n+1)2π2sds+

−8

((2n+ 1)π)3
e−n

2π2t
)

sin(2n+ 1)πx
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Non homogeneous PDE: Neumann boundary condition

Let us now consider the following PDE
ut − k2uxx = F (x, t) 0 < x < L, t > 0

ux(0, t) = f1(t) t > 0

ux(L, t) = f2(t) t > 0

u(x, 0) = f(x) 0 ≤ x ≤ L

How do we solve this?Let us first make the substitution

z(x, t) = u(x, t)− (x− x2

2L
)f1(t)−

x2

2L
f2(t)

Then clearly

zt − k2zxx = G(x, t)

zx(0, t) = 0

zx(L, t) = 0

z(x, 0) = g(x)
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Non homogeneous PDE: Neumann boundary condition

It is clear that we would have solved for u iff we have solved for z.
In view of this observation, let us try and solve the problem for z.

By observing the boundary conditions, we guess that we should try
and look for a solution of the type

z(x, t) =
∑
n≥0

Zn(t) cos(
nπx

L
)

Differentiating the above term by term we get that is satisfies the
equation

zt − k2zxx =
∑
n≥0

(
Z ′n(t) +

k2n2π2

L2
Zn(t)

)
cos(

nπx

L
)

Let us write
G(x, t) =

∑
n≥0

Gn(t) cos(
nπx

L
)
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Non homogeneous PDE: Neumann boundary condition

Thus, if we need zt − k2zxx = G(x, t) then we should have that

Gn(t) = Z ′n(t) +
k2n2π2

L2
Zn(t) (∗)

We also need that z(x, 0) = g(x).
If

g(x) =
∑
n≥0

bn cos
nπx

L

then we should have that

Zn(0) = bn (!)

Clearly, there is a unique solution to the differential equation (∗)
with initial condition (!).
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Non homogeneous PDE: Neumann boundary condition

The solution to the above equation is given by

Zn(t) = Ce−
k2n2π2

L2 t + e−
k2n2π2

L2 t
∫ t

0
Gn(s)e

k2n2π2

L2 sds

We can find the constant using the initial condition.

Thus, we let Zn(t) be this unique solution, then the series

z(x, t) =
∑
n≥0

Zn(t) cos(
nπx

L
)

solves our non homogeneous PDE with Dirichlet boundary
conditions for z.
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Non homogeneous PDE: Neumann boundary condition

Example

Let us now consider the following PDE
ut − uxx = et 0 < x < 1, t > 0

ux(0, t) = 0 t > 0

ux(1, t) = 0 t > 0

u(x, 0) = x(x− 1) 0 ≤ x ≤ 1

From the boundary conditions ux(0, t) = ux(1, t) = 0 it is clear
that we should look for solution in terms of Fourier cosine series.

The Fourier cosine series of F (x, t) is given by (for n ≥ 0)

F0(t) =

∫ 1

0
F (x, t) dx =

∫ 1

0
etdx = et

Fn(t) = 2

∫ 1

0
F (x, t) cosnπx dx = 2

∫ 1

0
et cosnπx dx = 0 n > 0
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Non homogeneous PDE: Neumann boundary condition

Example (continued ...)

Thus, the Fourier series for et is simply et.

The Fourier cosine series for f(x) = x(x− 1) is given by

x(x− 1) = −1

6
+
∑
n≥1

2((−1)n + 1)

(nπ)2
cosnπx

Substitute u(x, t) =
∑

n≥0 un(t) cosnπx into the equation
ut − uxx = et ∑

n≥0

(
u′n(t) + n2π2un(t)

)
cosnπx = et
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Non homogeneous PDE: Neumann boundary condition

Example (continued ...)

Thus, for n = 0 we get
u′0(t) = et

that is,
u0(t) = et + C0

In the case n = 0, we have that the Fourier coefficient of x(x− 1)
is −16 . Thus, when we put u0(0) = −1

6 we get C = −7
6 .

For n ≥ 1
u′n(t) + n2π2un(t) = 0

that is,
un(t) = Cne

−n2π2t

Let us now use the initial condition to determine the constants.
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Non homogeneous PDE: Neumann boundary condition

Example (continued ...)

In the case n ≥ 1 and odd, we have that the Fourier coefficient of
x(x− 1) is 0. Thus, when we put un(0) = 0 we get Cn = 0.

In the case n ≥ 1 even, we have the Fourier coefficient of x(x− 1)
is 4

(nπ)2
. Thus, we get

Cn =
4

(nπ)2

Thus, the solution we are looking for is

u(x, t) =et − 7

6
+
∑
n≥1

( 1

(nπ)2
e−4n

2π2t
)

cos(2nπx)
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