MA-207 Differential Equations II

Ronnie Sebastian

Department of Mathematics
Indian Institute of Technology Bombay
Powai, Mumbai - 76

Now we will start the study of Partial differential equations.

A partial differential equation (PDE) is an equation for an unknown function u that involves independent variables x, y, \ldots, the function u and the partial derivatives of u. The order of the PDE is the order of the highest partial derivative of u in the equation.
Examples of some famous PDEs.
(1) $u_{t}-k\left(u_{x x}+u_{y y}\right)=0$ two dimensional Heat equation, order 2 .
(2) $u_{t t}-c^{2}\left(u_{x x}+u_{y y}\right)=0$ two dimensional wave equation, order 2.
(3) $u_{x x}+u_{y y}=0$ two dimensional Laplace equation, order 2 .
(9) $u_{t t}+u_{x x x x}$ Beam equation, order 4 .

Examples of non-famous PDE's (I made it up).
(1) $u_{x}+\sin \left(u_{y}\right)=0$, order 1 .
(2) $3 x^{2} \sin (x y) e^{-x y^{2}} u_{x x}+\log \left(x^{2}+y^{2}\right) u_{y}=0$, order 2 .

Examples of non-famous PDE's (I made it up).
(1) $u_{x}+\sin \left(u_{y}\right)=0$, order 1 .
(2) $3 x^{2} \sin (x y) e^{-x y^{2}} u_{x x}+\log \left(x^{2}+y^{2}\right) u_{y}=0$, order 2.
A PDE is said to be "linear" if it is linear in u and its partial derivatives i.e. it is a degree 1 polynomial in u and its partial derivatives. Heat equation, Wave equation, Laplace equation and Beam equation are linear PDEs.
In the above two non-famous examples, the first is non-linear while the second is linear.
The general form of first order linear PDE in two variables x, y is

$$
A(x, y) u_{x}+B(x, y) u_{y}+C(x, y) u=f(x, y)
$$

The general form of first order linear PDE in three variables x, y, z is

$$
A u_{x}+B u_{y}+C u_{z}+D u=f
$$

where coefficients A, B, C, D and f are functions of x, y and z. The general form of second order linear PDE in two variables x, y is

$$
A u_{x x}+2 B u_{x y}+C u_{y y}+D u_{x}+E u_{y}+F u=f
$$

where coefficients A, B, C, D, E, F and f are functions of x and y. When $A \ldots, F$ are all constants, then its a linear PDE with constant coefficients.

Linear Partial Differential Operator

Second order linear PDE in two variable can be written as $L u=f$, where

$$
L=A \frac{\partial^{2}}{\partial x^{2}}+2 B \frac{\partial^{2}}{\partial x \partial y}+C \frac{\partial^{2}}{\partial y^{2}}+D \frac{\partial}{\partial x}+E \frac{\partial}{\partial y}+F
$$

is the linear differential operator. It is called linear since the map $u \mapsto L u$ is a linear map.

Linear Partial Differential Operator

Second order linear PDE in two variable can be written as $L u=f$, where

$$
L=A \frac{\partial^{2}}{\partial x^{2}}+2 B \frac{\partial^{2}}{\partial x \partial y}+C \frac{\partial^{2}}{\partial y^{2}}+D \frac{\partial}{\partial x}+E \frac{\partial}{\partial y}+F
$$

is the linear differential operator. It is called linear since the map $u \mapsto L u$ is a linear map.
Examples. Laplace operator in \mathbb{R}^{2} is

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}
$$

Heat and Wave operator in one space variable are

$$
H=\frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}, \quad \square=\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}
$$

Classification of second order linear PDE Consider the linear differential operator L in \mathbb{R}^{2}.

$$
L=A \frac{\partial^{2}}{\partial x^{2}}+2 B \frac{\partial^{2}}{\partial x \partial y}+C \frac{\partial^{2}}{\partial y^{2}}+D \frac{\partial}{\partial x}+E \frac{\partial}{\partial y}+F
$$

where A, \ldots, F are functions of x and y.

Classification of second order linear PDE
Consider the linear differential operator L in \mathbb{R}^{2}.

$$
L=A \frac{\partial^{2}}{\partial x^{2}}+2 B \frac{\partial^{2}}{\partial x \partial y}+C \frac{\partial^{2}}{\partial y^{2}}+D \frac{\partial}{\partial x}+E \frac{\partial}{\partial y}+F
$$

where A, \ldots, F are functions of x and y.
To the operator L, we associate the discriminant $\mathbb{D}(x, y)$ given by

$$
\mathbb{D}(x, y)=A(x, y) C(x, y)-B^{2}(x, y)
$$

The operator L or the PDE $L u=f$ is said to be

- elliptic at $\left(x_{0}, y_{0}\right)$, if $\mathbb{D}\left(x_{0}, y_{0}\right)>0$,
- hyperbolic at $\left(x_{0}, y_{0}\right)$, if $\mathbb{D}\left(x_{0}, y_{0}\right)<0$,
- parabolic at $\left(x_{0}, y_{0}\right)$, if $\mathbb{D}\left(x_{0}, y_{0}\right)=0$.

If L is elliptic at each point (x, y) in a domain $\Omega \subset \mathbb{R}^{2}$, then L is called elliptic in Ω.

If L is elliptic at each point (x, y) in a domain $\Omega \subset \mathbb{R}^{2}$, then L is called elliptic in Ω.
Similarly for hyperbolic and parabolic. Recall

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}, H=\frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}, \square=\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}
$$

If L is elliptic at each point (x, y) in a domain $\Omega \subset \mathbb{R}^{2}$, then L is called elliptic in Ω.
Similarly for hyperbolic and parabolic. Recall

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}, H=\frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}, \square=\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}
$$

- Two dimensional Laplace operator Δ is elliptic in \mathbb{R}^{2}, since $\mathbb{D}=1$.
- One dimensional Heat operator H is parabolic in \mathbb{R}^{2}, since $\mathbb{D}=0$.
- One dimensional Wave operator \square is hyperbolic in \mathbb{R}^{2}, since $\mathbb{D}=-1$.

When the coefficients of an operator L are not constant, the type may vary from point to point.

Example. Consider the Tricomi operator (well known)

$$
T=\frac{\partial^{2}}{\partial x^{2}}+x \frac{\partial^{2}}{\partial y^{2}}
$$

The discriminant $\mathbb{D}=x$.
Hence T is elliptic in the half-plane $x>0$, hyperbolic in the half-plane $x<0$ and parabolic on the y-axis.

Remark about terminology
Consider

$$
L=A \frac{\partial^{2}}{\partial x^{2}}+2 B \frac{\partial^{2}}{\partial x \partial y}+C \frac{\partial^{2}}{\partial y^{2}}+D \frac{\partial}{\partial x}+E \frac{\partial}{\partial y}+F
$$

at the point $\left(x_{0}, y_{0}\right)$. If we replace $\partial / \partial x$ by ξ and $\partial / \partial y$ by η and evaluate A, \ldots, F at $\left(x_{0}, y_{0}\right)$, then L becomes a polynomial in 2 variables

$$
P(\xi, \eta)=A \xi^{2}+2 B \xi \eta+C \eta^{2}+D \xi+E \eta+F
$$

Consider the curves in (ξ, η)-plane given by

$$
P(\xi, \eta)=\text { constant }
$$

then these curves are elliptic if $\mathbb{D}\left(x_{0}, y_{0}\right)>0$, hyperbolic if $\mathbb{D}\left(x_{0}, y_{0}\right)<0$ and parabolic if $\mathbb{D}\left(x_{0}, y_{0}\right)=0$.

Second order linear operators in \mathbb{R}^{3}
The classification is done analogously by associating a polynomial of degree 2 in three variables to L and considering the surfaces defined by level sets of the polynomial.
These surfaces are either ellipsoids, hyperboloids, or paraboloids.
The operator L is accordingly labeled as elliptic, hyperbolic or parabolic.
We can also proceed as follows; Consider

$$
L=a \frac{\partial^{2}}{\partial x^{2}}+2 b \frac{\partial^{2}}{\partial x \partial y}+2 c \frac{\partial^{2}}{\partial x \partial z}+d \frac{\partial^{2}}{\partial y^{2}}+2 e \frac{\partial^{2}}{\partial y \partial z}+f \frac{\partial^{2}}{\partial z^{2}}
$$

+ lower order terms
where a, b, \ldots are functions of (x, y, z).

To L, we associate the symmetric matrix

$$
M(x, y, z)=\left(\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right)
$$

Here the (i, j)-th entry is the coefficient of $\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}$. Since M is symmetric, it has 3 real eigenvalues.

To L, we associate the symmetric matrix

$$
M(x, y, z)=\left(\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right)
$$

Here the (i, j)-th entry is the coefficient of $\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}$.
Since M is symmetric, it has 3 real eigenvalues.

- L is elliptic at $\left(x_{0}, y_{0}, z_{0}\right)$ if all three eigen values of $M\left(x_{0}, y_{0}, z_{0}\right)$ are of same sign.
- L is hyperbolic at $\left(x_{0}, y_{0}, z_{0}\right)$ if two eigen values are of same sign and one of different sign.
- L is parabolic at $\left(x_{0}, y_{0}, z_{0}\right)$ if one of the eigenvalue is zero.

Principle of superposition

Let L be a linear differential operator.
The PDE $L u=0$ is called homogeneous and the PDE $L u=f,(f \neq 0)$ is non-homogeneous.

Principle 1. If u_{1}, \ldots, u_{N} are solutions of $L u=0$ and c_{1}, \ldots, c_{N} are constants, then $\sum_{i=1}^{N} c_{i} u_{i}$ is also a solution of $L u=0$.
In general, space of solutions of $L u=0$ contains infinitely many independent solutions and we may need to use infinite linear combinations of them.

Principle 2.
Assume

- u_{1}, u_{2}, \ldots are infinitely many solutions of $L u=0$.
- the series $w=\sum_{i \geq 1} c_{i} u_{i}$ with c_{1}, c_{2}, \ldots constants, converges to a twice differentiable function;
- term by term partial differentiation is valid for the series, i.e. $D w=\sum_{i \geq 1} c_{i} D u_{i}, D$ is any partial differentiation of order 1 or 2 .
Then w is again a solution of $L u=0$.

Principle 3 for non-homogeneous PDE.
If u_{i} is a solution of $L u=f_{i}$, then

$$
w=\sum_{i=1}^{N} c_{i} u_{i}
$$

with constants c_{i}, is a solution of $L u=\sum_{i=1}^{N} c_{i} f_{i}$.

One-dimensional heat equation

The temperature evolution of a thin rod of length L is decribed by the PDE

$$
u_{t}=k^{2} u_{x x}, \quad 0<x<L, t>0
$$

called one-dimensional heat equation.
Here k is a positive constant.
x is the space variable and t is the time variable.
$u(x, t)$ is the temperature at point x and time t.

One-dimensional heat equation

The temperature evolution of a thin rod of length L is decribed by the PDE

$$
u_{t}=k^{2} u_{x x}, \quad 0<x<L, t>0
$$

called one-dimensional heat equation. Here k is a positive constant.
x is the space variable and t is the time variable.
$u(x, t)$ is the temperature at point x and time t.
At time $t=0$, we must specify temperature at every point. That is, specify $u(x, 0)$.

One-dimensional heat equation

The temperature evolution of a thin rod of length L is decribed by the PDE

$$
u_{t}=k^{2} u_{x x}, \quad 0<x<L, t>0
$$

called one-dimensional heat equation. Here k is a positive constant.
x is the space variable and t is the time variable.
$u(x, t)$ is the temperature at point x and time t.
At time $t=0$, we must specify temperature at every point. That is, specify $u(x, 0)$.
We must also specify boundary conditions that u must satisfy at the two endpoints of the rod for all $t>0$.
We call this problem an initial-boundary value problem IBVP.
We consider different kinds of boundary conditions.

In each case, we use method of separation of variables.
Suppose

$$
v(x, t)=X(x) T(t)
$$

Substituting this in the Heat equation $u_{t}=k^{2} u_{x x}$

$$
T^{\prime}(t) X(x)=k^{2} X^{\prime \prime}(x) T(t)
$$

In each case, we use method of separation of variables.
Suppose

$$
v(x, t)=X(x) T(t)
$$

Substituting this in the Heat equation

$$
u_{t}=k^{2} u_{x x}
$$

$$
T^{\prime}(t) X(x)=k^{2} X^{\prime \prime}(x) T(t)
$$

We can now separate the variables:

$$
\frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime}(t)}{k^{2} T(t)}
$$

The equality is between a function of x and a function of t, so both must be constant, say $-\lambda$.
We need to solve

$$
X^{\prime \prime}(x)+\lambda X(x)=0 \quad \text { and } \quad T^{\prime}(t)=-k^{2} \lambda T(t)
$$

Dirichlet boundary conditions $u(0, t)=u(L, t)=0$

Initial-boundary value problem is

$$
\begin{array}{ll}
u_{t}=k^{2} u_{x x} & 0<x<L, t>0 \\
u(0, t)=0 & t>0 \\
u(L, t)=0, & t>0 \\
u(x, 0)=f(x), & 0 \leq x \leq L
\end{array}
$$

The endpoints of the rod are maintained at temperature 0 at all time t.

Dirichlet boundary conditions $u(0, t)=u(L, t)=0$

Initial-boundary value problem is

$$
\begin{array}{ll}
u_{t}=k^{2} u_{x x} & 0<x<L, t>0 \\
u(0, t)=0 & t>0 \\
u(L, t)=0, & t>0 \\
u(x, 0)=f(x), & 0 \leq x \leq L
\end{array}
$$

The endpoints of the rod are maintained at temperature 0 at all time t.
(The rod is isolated from the surroundings except at the endpoints from where heat will be lost to the surrounding.)
Assuming the solution in the form $v(x, t)=X(x) T(t)$

$$
v(0, t)=X(0) T(t)=0 \quad \text { and } \quad v(L, t)=X(L) T(t)=0
$$

we don't want T to be identically zero, we get

$$
X(0)=0 \quad \text { and } \quad X(L)=0
$$

We need to solve eigenvalue problem

$$
\begin{equation*}
X^{\prime \prime}(x)+\lambda X(x)=0, \quad X(0)=0, \quad X(L)=0 \tag{*}
\end{equation*}
$$

and

$$
T^{\prime}(t)=-k^{2} \lambda T(t) \Longrightarrow T(t)=\exp \left(-k^{2} \lambda t\right)
$$

The eigenvalues of $(*)$ are

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}
$$

with associated eigenfunctions

$$
X_{n}=\sin \frac{n \pi x}{L}, \quad n \geq 1
$$

We need to solve eigenvalue problem

$$
\begin{equation*}
X^{\prime \prime}(x)+\lambda X(x)=0, \quad X(0)=0, \quad X(L)=0 \tag{*}
\end{equation*}
$$

and

$$
T^{\prime}(t)=-k^{2} \lambda T(t) \Longrightarrow T(t)=\exp \left(-k^{2} \lambda t\right)
$$

The eigenvalues of $(*)$ are

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}
$$

with associated eigenfunctions

$$
X_{n}=\sin \frac{n \pi x}{L}, \quad n \geq 1
$$

We get infinitely many solutions for IBVP, one for each $n \geq 1$

$$
\begin{aligned}
v_{n}(x, t) & =T_{n}(t) X_{n}(x) \\
& =\exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L}
\end{aligned}
$$

Note

$$
v_{n}(x, 0)=\sin \frac{n \pi x}{L}
$$

Therefore

$$
v_{n}(x, t)=\exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L}
$$

satisfies the IBVP

$$
\begin{array}{ll}
u_{t}=k^{2} u_{x x} & 0<x<L, t>0 \\
u(0, t)=0 & t>0 \\
u(L, t)=0 & t>0 \\
u(x, 0)=\sin \frac{n \pi x}{L} & 0 \leq x \leq L
\end{array}
$$

Therefore

$$
v_{n}(x, t)=\exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L}
$$

satisfies the IBVP

$$
\begin{array}{ll}
u_{t}=k^{2} u_{x x} & 0<x<L, t>0 \\
u(0, t)=0 & t>0 \\
u(L, t)=0 & t>0 \\
u(x, 0)=\sin \frac{n \pi x}{L} & 0 \leq x \leq L
\end{array}
$$

More generally, if $\alpha_{1}, \ldots, \alpha_{m}$ are constants and

$$
u_{m}(x, t)=\sum_{n=1}^{m} \alpha_{n} \exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L}
$$

then $u_{m}(x, t)$ satisfies the IBVP with initial condition

$$
u_{m}(x, 0)=\sum_{n=1}^{m} \alpha_{n} \sin \frac{n \pi x}{L}
$$

Let us consider the formal series

$$
u(x, t)=\sum_{n=1}^{\infty} \alpha_{n} \exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L}
$$

Let us consider the formal series

$$
u(x, t)=\sum_{n=1}^{\infty} \alpha_{n} \exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L}
$$

Setting $t=0$ we get

$$
u(x, 0)=\sum_{n=1}^{\infty} \alpha_{n} \sin \frac{n \pi x}{L}
$$

To solve our IBVP we would like to have

$$
f(x)=\sum_{n=1}^{\infty} \alpha_{n} \sin \frac{n \pi x}{L} \quad 0 \leq x \leq L
$$

Is it possible that f has such an expansion?

Let us consider the formal series

$$
u(x, t)=\sum_{n=1}^{\infty} \alpha_{n} \exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L}
$$

Setting $t=0$ we get

$$
u(x, 0)=\sum_{n=1}^{\infty} \alpha_{n} \sin \frac{n \pi x}{L}
$$

To solve our IBVP we would like to have

$$
f(x)=\sum_{n=1}^{\infty} \alpha_{n} \sin \frac{n \pi x}{L} \quad 0 \leq x \leq L
$$

Is it possible that f has such an expansion?
Given f on $[0, L]$, it has a Fourier sine series

$$
f(x)=\sum_{n \geq 1} b_{n} \sin \frac{n \pi x}{L}
$$

Definition

The formal solution of IBVP

$$
\begin{array}{ll}
u_{t}=k^{2} u_{x x} & 0<x<L, t>0 \\
u(0, t)=0 & t>0 \\
u(L, t)=0 & t>0 \\
u(x, 0)=f(x) & 0 \leq x \leq L
\end{array}
$$

is

$$
u(x, t)=\sum_{n=1}^{\infty} \alpha_{n} \exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L}
$$

where

$$
S(x)=\sum_{n=1}^{\infty} \alpha_{n} \sin \frac{n \pi x}{L}
$$

is the Fourier sine series of f on $[0, L]$ i.e.

$$
\alpha_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x .
$$

$$
u(x, t)=\sum_{n=1}^{\infty} \alpha_{n} \exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L}
$$

We say $u(x, t)$ is a formal solution, since the series for $u(x, t)$ may NOT satisfy all the requirements of IBVP.

When it does, we say it is an actual solution of IBVP.

$$
u(x, t)=\sum_{n=1}^{\infty} \alpha_{n} \exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L}
$$

We say $u(x, t)$ is a formal solution, since the series for $u(x, t)$ may NOT satisfy all the requirements of IBVP.
When it does, we say it is an actual solution of IBVP.
Because of negative exponential in $u(x, t)$, the series in $u(x, t)$ converges for all $t>0$.
Each term in $u(x, t)$ satisfies the heat equation and boundary condition.
If u_{t} and $u_{x x}$ can be obtained by differentiating the series term by term, once w.r.t. t and twice w.r.t. x for $t>0$, then u also satisfies these properties.
If $f(x)$ is continuous and piecewise smooth on $[0, L]$, then we can do it. Hence we get next result.

Theorem

$f(x)$: continuous and piecewise smooth on $[0, L]$
$f(0)=f(L)=0$
$S(x)=\sum_{n=1}^{\infty} \alpha_{n} \sin \frac{n \pi x}{L}$ with $\alpha_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x$
is Fourier sine series of f on $[0, L]$. Then the IBVP

$$
\begin{array}{ll}
u_{t}=k^{2} u_{x x} & 0<x<L, t>0 \\
u(0, t)=0 & t>0 \\
u(L, t)=0 & t>0 \\
u(x, 0)=f(x) & 0 \leq x \leq L
\end{array}
$$

has a solution

$$
u(x, t)=\sum_{n=1}^{\infty} \alpha_{n} \exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L}
$$

Here u_{t} and $u_{x x}$ can be obtained by term-wise differentiation for $t>0$.

Example
Let $f(x)=x\left(x^{2}-3 L x+2 L^{2}\right)$. Solve IBVP

$$
\begin{array}{lc}
u_{t}=k^{2} u_{x x} & 0<x<L \\
u(0, t)=0 & t>0 \\
u(L, t)=0 & t>0 \\
u(x, 0)=f(x) & 0 \leq x \leq L
\end{array}
$$

$$
0<x<L, \quad t>0
$$

Example
Let $f(x)=x\left(x^{2}-3 L x+2 L^{2}\right)$. Solve IBVP

$$
\begin{array}{ll}
u_{t}=k^{2} u_{x x} & 0<x<L, t>0 \\
u(0, t)=0 & t>0 \\
u(L, t)=0 & t>0 \\
u(x, 0)=f(x) & 0 \leq x \leq L
\end{array}
$$

The Fourier sine expansion of $f(x)$ is

$$
S(x)=\frac{12 L^{3}}{\pi^{3}} \sum_{n=1}^{\infty} \frac{1}{n^{3}} \sin \frac{n \pi x}{L}
$$

Example
Let $f(x)=x\left(x^{2}-3 L x+2 L^{2}\right)$. Solve IBVP

$$
\begin{array}{ll}
u_{t}=k^{2} u_{x x} & 0<x<L, t>0 \\
u(0, t)=0 & t>0 \\
u(L, t)=0 & t>0 \\
u(x, 0)=f(x) & 0 \leq x \leq L
\end{array}
$$

The Fourier sine expansion of $f(x)$ is

$$
S(x)=\frac{12 L^{3}}{\pi^{3}} \sum_{n=1}^{\infty} \frac{1}{n^{3}} \sin \frac{n \pi x}{L}
$$

Therefore, the solution of IBVP is

$$
u(x, t)=\frac{12 L^{3}}{\pi^{3}} \sum_{n=1}^{\infty} \frac{1}{n^{3}} \exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L} .
$$

Neumann boundary conditions

Initial-boundary value problem is

$$
\begin{array}{lc}
u_{t}=k^{2} u_{x x} & 0<x<L, \quad t>0 \\
u_{x}(0, t)=0 & t>0 \\
u_{x}(L, t)=0, & t>0 \\
u(x, 0)=f(x), & 0 \leq x \leq L
\end{array}
$$

Neumann boundary conditions

Initial-boundary value problem is

$$
\begin{array}{lc}
u_{t}=k^{2} u_{x x} & 0<x<L, \quad t>0 \\
u_{x}(0, t)=0 & t>0 \\
u_{x}(L, t)=0, & t>0 \\
u(x, 0)=f(x), & 0 \leq x \leq L
\end{array}
$$

Assuming the solution in the form $v(x, t)=X(x) T(t)$

$$
v_{x}(0, t)=X^{\prime}(0) T(t)=0 \quad \text { and } \quad v_{x}(L, t)=X^{\prime}(L) T(t)=0
$$

we don't want T to be identically zero, we get

$$
X^{\prime}(0)=0 \quad \text { and } \quad X^{\prime}(L)=0
$$

Neumann boundary conditions

Initial-boundary value problem is

$$
\begin{array}{lc}
u_{t}=k^{2} u_{x x} & 0<x<L, \quad t>0 \\
u_{x}(0, t)=0 & t>0 \\
u_{x}(L, t)=0, & t>0 \\
u(x, 0)=f(x), & 0 \leq x \leq L
\end{array}
$$

Assuming the solution in the form $v(x, t)=X(x) T(t)$

$$
v_{x}(0, t)=X^{\prime}(0) T(t)=0 \quad \text { and } \quad v_{x}(L, t)=X^{\prime}(L) T(t)=0
$$

we don't want T to be identically zero, we get

$$
X^{\prime}(0)=0 \quad \text { and } \quad X^{\prime}(L)=0
$$

We need to solve eigenvalue problem

$$
\begin{equation*}
X^{\prime \prime}(x)+\lambda X(x)=0, \quad X^{\prime}(0)=0, \quad X^{\prime}(L)=0 \tag{*}
\end{equation*}
$$

and

$$
T^{\prime}(t)=-k^{2} \lambda T(t) \Longrightarrow T(t)=\exp \left(-k^{2} \lambda t\right)
$$

The eigenvalues of $(*)$ are

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}
$$

with associated eigenfunctions

$$
X_{n}=\cos \frac{n \pi x}{L}, n \geq 0
$$

The eigenvalues of $(*)$ are

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}
$$

with associated eigenfunctions

$$
X_{n}=\cos \frac{n \pi x}{L}, \quad n \geq 0
$$

We get infinitely many solutions for IBVP, one for each $n \geq 0$

$$
\begin{aligned}
v_{n}(x, t) & =T_{n}(t) X_{n}(x) \\
& =\exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \cos \frac{n \pi x}{L}
\end{aligned}
$$

The eigenvalues of $(*)$ are

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}
$$

with associated eigenfunctions

$$
X_{n}=\cos \frac{n \pi x}{L}, \quad n \geq 0
$$

We get infinitely many solutions for IBVP, one for each $n \geq 0$

$$
\begin{aligned}
v_{n}(x, t) & =T_{n}(t) X_{n}(x) \\
& =\exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \cos \frac{n \pi x}{L}
\end{aligned}
$$

Note

$$
v_{n}(x, 0)=\cos \frac{n \pi x}{L}
$$

The eigenvalues of $(*)$ are

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}
$$

with associated eigenfunctions

$$
X_{n}=\cos \frac{n \pi x}{L}, n \geq 0
$$

We get infinitely many solutions for IBVP, one for each $n \geq 0$

$$
\begin{aligned}
v_{n}(x, t) & =T_{n}(t) X_{n}(x) \\
& =\exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \cos \frac{n \pi x}{L}
\end{aligned}
$$

Note

$$
v_{n}(x, 0)=\cos \frac{n \pi x}{L}
$$

Therefore

$$
v_{n}(x, t)=\exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \cos \frac{n \pi x}{L}
$$

satisfies the IBVP

$$
\begin{array}{lc}
u_{t}=k^{2} u_{x x} & 0<x<L, t>0 \\
u_{x}(0, t)=0 & t>0 \\
u_{x}(L, t)=0 & t>0 \\
u(x, 0)=\cos \frac{n \pi x}{L} & 0 \leq x \leq L
\end{array}
$$

satisfies the IBVP

$$
\begin{array}{lc}
u_{t}=k^{2} u_{x x} & 0<x<L, t>0 \\
u_{x}(0, t)=0 & t>0 \\
u_{x}(L, t)=0 & t>0 \\
u(x, 0)=\cos \frac{n \pi x}{L} & 0 \leq x \leq L
\end{array}
$$

More generally, if $\alpha_{0}, \ldots, \alpha_{m}$ are constants and

$$
u_{m}(x, t)=\sum_{n=0}^{m} \alpha_{n} \exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \cos \frac{n \pi x}{L}
$$

then $u_{m}(x, t)$ satisfies the IBVP with initial condition

$$
u_{m}(x, 0)=\sum_{n=0}^{m} \alpha_{n} \cos \frac{n \pi x}{L} .
$$

Let us consider the formal series

$$
u(x, t)=\sum_{n=0}^{\infty} \alpha_{n} \exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \cos \frac{n \pi x}{L}
$$

Let us consider the formal series

$$
u(x, t)=\sum_{n=0}^{\infty} \alpha_{n} \exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \cos \frac{n \pi x}{L}
$$

Setting $t=0$ we get

$$
u(x, 0)=\sum_{n=0}^{\infty} \alpha_{n} \cos \frac{n \pi x}{L}
$$

To solve our IBVP we would like to have

$$
f(x)=\sum_{n=0}^{\infty} \alpha_{n} \cos \frac{n \pi x}{L} \quad 0 \leq x \leq L
$$

Is it possible that f has such an expansion?

Let us consider the formal series

$$
u(x, t)=\sum_{n=0}^{\infty} \alpha_{n} \exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \cos \frac{n \pi x}{L}
$$

Setting $t=0$ we get

$$
u(x, 0)=\sum_{n=0}^{\infty} \alpha_{n} \cos \frac{n \pi x}{L}
$$

To solve our IBVP we would like to have

$$
f(x)=\sum_{n=0}^{\infty} \alpha_{n} \cos \frac{n \pi x}{L} \quad 0 \leq x \leq L
$$

Is it possible that f has such an expansion?
Given f on $[0, L]$, it has a Fourier cosine series

$$
f(x)=\sum_{n \geq 0} a_{n} \cos \frac{n \pi x}{L}
$$

Definition

The formal solution of IBVP

$$
\begin{array}{lc}
u_{t}=k^{2} u_{x x} & 0<x<L, t>0 \\
u_{x}(0, t)=0 & t>0 \\
u_{x}(L, t)=0 & t>0 \\
u(x, 0)=f(x) & 0 \leq x \leq L
\end{array}
$$

is

$$
u(x, t)=\sum_{n=0}^{\infty} \alpha_{n} \exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \cos \frac{n \pi x}{L}
$$

where

$$
S(x)=\sum_{n=0}^{\infty} \alpha_{n} \cos \frac{n \pi x}{L}
$$

is the Fourier sine series of f on $[0, L]$ i.e.

$$
\alpha_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x \quad \alpha_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
$$

$$
u(x, t)=\sum_{n=0}^{\infty} \alpha_{n} \exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \cos \frac{n \pi x}{L}
$$

We say $u(x, t)$ is a formal solution, since the series for $u(x, t)$ may NOT satisfy all the requirements of IBVP.

When it does, we say it is an actual solution of IBVP.

$$
u(x, t)=\sum_{n=0}^{\infty} \alpha_{n} \exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \cos \frac{n \pi x}{L}
$$

We say $u(x, t)$ is a formal solution, since the series for $u(x, t)$ may NOT satisfy all the requirements of IBVP.
When it does, we say it is an actual solution of IBVP.
Because of negative exponential in $u(x, t)$, the series in $u(x, t)$ converges for all $t>0$.
Each term in $u(x, t)$ satisfies the heat equation and boundary condition.
If u_{t} and $u_{x x}$ can be obtained by differentiating the series term by term, once w.r.t. t and twice w.r.t. x for $t>0$, then u also satisfies these properties.
If $f(x)$ is continuous and piecewise smooth on $[0, L]$, then we can do it. Hence we get next result.

Theorem
$f(x)$ is continuous, piecewise smooth on $[0, L] ; f^{\prime}(0)=f^{\prime}(L)=0$.
$S(x)=\sum_{n=1}^{\infty} \alpha_{n} \cos \frac{n \pi x}{L}$ with
$\alpha_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x$

$$
\alpha_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
$$

is Fourier sine series of f on $[0, L]$. Then the IBVP

$$
\begin{array}{lc}
u_{t}=k^{2} u_{x x} & 0<x<L, t>0 \\
u_{x}(0, t)=0 & t>0 \\
u_{x}(L, t)=0 & t>0 \\
u(x, 0)=f(x) & 0 \leq x \leq L
\end{array}
$$

has a solution

$$
u(x, t)=\sum_{n=0}^{\infty} \alpha_{n} \exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \cos \frac{n \pi x}{L}
$$

Here u_{t} and $u_{x x}$ can be obtained by term-wise differentiation for $t>0$.

Example

Let $f(x)=x$ on $[0, L]$. Solve IBVP

$$
\begin{array}{lc}
u_{t}=k^{2} u_{x x} & 0<x<L, t>0 \\
u_{x}(0, t)=0 & t>0 \\
u_{x}(L, t)=0 & t>0 \\
u(x, 0)=f(x) & 0 \leq x \leq L
\end{array}
$$

Example

Let $f(x)=x$ on $[0, L]$. Solve IBVP

$$
\begin{array}{lc}
u_{t}=k^{2} u_{x x} & 0<x<L, t>0 \\
u_{x}(0, t)=0 & t>0 \\
u_{x}(L, t)=0 & t>0 \\
u(x, 0)=f(x) & 0 \leq x \leq L
\end{array}
$$

The Fourier cosine expansion of $f(x)$ is

$$
C(x)=\frac{L}{2}-\frac{4 L}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos \frac{(2 n-1) \pi x}{L}
$$

Example

Let $f(x)=x$ on $[0, L]$. Solve IBVP

$$
\begin{array}{lc}
u_{t}=k^{2} u_{x x} & 0<x<L, t>0 \\
u_{x}(0, t)=0 & t>0 \\
u_{x}(L, t)=0 & t>0 \\
u(x, 0)=f(x) & 0 \leq x \leq L
\end{array}
$$

The Fourier cosine expansion of $f(x)$ is

$$
C(x)=\frac{L}{2}-\frac{4 L}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos \frac{(2 n-1) \pi x}{L}
$$

Therefore, the solution of IBVP is

$$
\begin{aligned}
& \quad u(x, t)= \\
& \frac{L}{2}-\frac{4 L}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \exp \left(\frac{-(2 n-1)^{2} \pi^{2} k^{2}}{L^{2}} t\right) \cos \frac{(2 n-1) n \pi x}{L} .
\end{aligned}
$$

Definition (Formal solution for Dirichlet boundary)

The formal solution of IBVP

$$
\begin{array}{ll}
u_{t}=k^{2} u_{x x} & 0<x<L, t>0 \\
u(0, t)=0 & t>0 \\
u(L, t)=0 & t>0 \\
u(x, 0)=f(x) & 0 \leq x \leq L
\end{array}
$$

is

$$
u(x, t)=\sum_{n=1}^{\infty} \alpha_{n} \exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \sin \frac{n \pi x}{L}
$$

where

$$
S(x)=\sum_{n=1}^{\infty} \alpha_{n} \sin \frac{n \pi x}{L}
$$

is the Fourier sine series of f on $[0, L]$ i.e.

$$
\alpha_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Definition (Formal solution for Neumann boundary condition)

The formal solution of IBVP

$$
\begin{array}{lc}
u_{t}=k^{2} u_{x x} & 0<x<L, t>0 \\
u_{x}(0, t)=0 & t>0 \\
u_{x}(L, t)=0 & t>0 \\
u(x, 0)=f(x) & 0 \leq x \leq L
\end{array}
$$

is

$$
u(x, t)=\sum_{n=0}^{\infty} \alpha_{n} \exp \left(\frac{-n^{2} \pi^{2} k^{2}}{L^{2}} t\right) \cos \frac{n \pi x}{L}
$$

where

$$
S(x)=\sum_{n=0}^{\infty} \alpha_{n} \cos \frac{n \pi x}{L}
$$

is the Fourier cosine series of f on $[0, L]$ i.e.

$$
\alpha_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x \quad \alpha_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
$$

Non homogeneous PDE: Dirichlet boundary condition

Let us now consider the following PDE

$$
\begin{array}{lc}
u_{t}-k^{2} u_{x x}=F(x, t) & 0<x<L, \quad t>0 \\
u(0, t)=f_{1}(t) & t>0 \\
u(L, t)=f_{2}(t) & t>0 \\
u(x, 0)=f(x) & 0 \leq x \leq L
\end{array}
$$

How do we solve this?

Non homogeneous PDE: Dirichlet boundary condition

Let us now consider the following PDE

$$
\begin{array}{lc}
u_{t}-k^{2} u_{x x}=F(x, t) & 0<x<L, \quad t>0 \\
u(0, t)=f_{1}(t) & t>0 \\
u(L, t)=f_{2}(t) & t>0 \\
u(x, 0)=f(x) & 0 \leq x \leq L
\end{array}
$$

How do we solve this?
Let us first make the substitution

$$
z(x, t)=u(x, t)-\left(1-\frac{x}{L}\right) f_{1}(t)-\frac{x}{L} f_{2}(t)
$$

Then clearly

- $z_{t}-k^{2} z_{x x}=G(x, t)$
- $z(0, t)=0$
- $z(L, t)=0$
- $z(x, 0)=g(x)$

Non homogeneous PDE: Dirichlet boundary condition

It is clear that we would have solved for u iff we have solved for z. In view of this observation, let us try and solve the problem for z.

Non homogeneous PDE: Dirichlet boundary condition

It is clear that we would have solved for u iff we have solved for z. In view of this observation, let us try and solve the problem for z.

By observing the boundary conditions, we guess that we should try and look for a solution of the type

$$
z(x, t)=\sum_{n \geq 1} Z_{n}(t) \sin \left(\frac{n \pi x}{L}\right)
$$

Non homogeneous PDE: Dirichlet boundary condition

It is clear that we would have solved for u iff we have solved for z. In view of this observation, let us try and solve the problem for z.

By observing the boundary conditions, we guess that we should try and look for a solution of the type

$$
z(x, t)=\sum_{n \geq 1} Z_{n}(t) \sin \left(\frac{n \pi x}{L}\right)
$$

Differentiating the above term by term we get that is satisfies the equation

$$
z_{t}-k^{2} z_{x x}=\sum_{n \geq 1}\left(Z_{n}^{\prime}(t)+\frac{k^{2} n^{2} \pi^{2}}{L^{2}} Z_{n}(t)\right) \sin \left(\frac{n \pi x}{L}\right)
$$

Non homogeneous PDE: Dirichlet boundary condition

It is clear that we would have solved for u iff we have solved for z. In view of this observation, let us try and solve the problem for z.

By observing the boundary conditions, we guess that we should try and look for a solution of the type

$$
z(x, t)=\sum_{n \geq 1} Z_{n}(t) \sin \left(\frac{n \pi x}{L}\right)
$$

Differentiating the above term by term we get that is satisfies the equation

$$
z_{t}-k^{2} z_{x x}=\sum_{n \geq 1}\left(Z_{n}^{\prime}(t)+\frac{k^{2} n^{2} \pi^{2}}{L^{2}} Z_{n}(t)\right) \sin \left(\frac{n \pi x}{L}\right)
$$

Let us write

$$
G(x, t)=\sum_{n \geq 1} G_{n}(t) \sin \left(\frac{n \pi x}{L}\right)
$$

Non homogeneous PDE: Dirichlet boundary condition

Thus, if we need $z_{t}-k^{2} z_{x x}=G(x, t)$ then we should have that

$$
\begin{equation*}
G_{n}(t)=Z_{n}^{\prime}(t)+\frac{k^{2} n^{2} \pi^{2}}{L^{2}} Z_{n}(t) \tag{*}
\end{equation*}
$$

Non homogeneous PDE: Dirichlet boundary condition

Thus, if we need $z_{t}-k^{2} z_{x x}=G(x, t)$ then we should have that

$$
\begin{equation*}
G_{n}(t)=Z_{n}^{\prime}(t)+\frac{k^{2} n^{2} \pi^{2}}{L^{2}} Z_{n}(t) \tag{*}
\end{equation*}
$$

We also need that $z(x, 0)=g(x)$.

Non homogeneous PDE: Dirichlet boundary condition

Thus, if we need $z_{t}-k^{2} z_{x x}=G(x, t)$ then we should have that

$$
\begin{equation*}
G_{n}(t)=Z_{n}^{\prime}(t)+\frac{k^{2} n^{2} \pi^{2}}{L^{2}} Z_{n}(t) \tag{*}
\end{equation*}
$$

We also need that $z(x, 0)=g(x)$.
If

$$
g(x)=\sum_{n \geq 1} b_{n} \sin \frac{n \pi x}{L}
$$

then we should have that

$$
\begin{equation*}
Z_{n}(0)=b_{n} \tag{!}
\end{equation*}
$$

Clearly, there is a unique solution to the differential equation $(*)$ with initial condition (!).

Non homogeneous PDE: Dirichlet boundary condition

The solution to the above equation is given by

$$
Z_{n}(t)=C e^{-\frac{k^{2} n^{2} \pi^{2}}{L^{2}} t}+e^{-\frac{k^{2} n^{2} \pi^{2}}{L^{2}} t} \int_{0}^{t} G_{n}(s) e^{\frac{k^{2} n^{2} \pi^{2}}{L^{2}} s} d s
$$

We can find the constant using the initial condition.

Non homogeneous PDE: Dirichlet boundary condition

The solution to the above equation is given by

$$
Z_{n}(t)=C e^{-\frac{k^{2} n^{2} \pi^{2}}{L^{2}} t}+e^{-\frac{k^{2} n^{2} \pi^{2}}{L^{2}} t} \int_{0}^{t} G_{n}(s) e^{\frac{k^{2} n^{2} \pi^{2}}{L^{2}} s} d s
$$

We can find the constant using the initial condition.
Thus, we let $Z_{n}(t)$ be this unique solution, then the series

$$
z(x, t)=\sum_{n \geq 1} Z_{n}(t) \sin \left(\frac{n \pi x}{L}\right)
$$

solves our non homogeneous PDE with Dirichlet boundary conditions for z.

Non homogeneous PDE: Dirichlet boundary condition

Example

Let us now consider the following PDE

$$
\begin{array}{lc}
u_{t}-u_{x x}=e^{t} & 0<x<1, \quad t>0 \\
u(0, t)=0 & t>0 \\
u(1, t)=0 & t>0 \\
u(x, 0)=x(x-1) & 0 \leq x \leq 1
\end{array}
$$

Non homogeneous PDE: Dirichlet boundary condition

Example

Let us now consider the following PDE

$$
\begin{array}{lc}
u_{t}-u_{x x}=e^{t} & 0<x<1, \quad t>0 \\
u(0, t)=0 & t>0 \\
u(1, t)=0 & t>0 \\
u(x, 0)=x(x-1) & 0 \leq x \leq 1
\end{array}
$$

From the boundary conditions $u(0, t)=u(1, t)=0$ it is clear that we should look for solution in terms of Fourier sine series.

Non homogeneous PDE: Dirichlet boundary condition

Example

Let us now consider the following PDE

$$
\begin{array}{lc}
u_{t}-u_{x x}=e^{t} & 0<x<1, \quad t>0 \\
u(0, t)=0 & t>0 \\
u(1, t)=0 & t>0 \\
u(x, 0)=x(x-1) & 0 \leq x \leq 1
\end{array}
$$

From the boundary conditions $u(0, t)=u(1, t)=0$ it is clear that we should look for solution in terms of Fourier sine series.

The Fourier sine series of $F(x, t)$ is given by (for $n \geq 1$)

$$
\begin{aligned}
F_{n}(t) & =2 \int_{0}^{1} F(x, t) \sin n \pi x d x \\
& =2 \int_{0}^{1} e^{t} \sin n \pi x d x \\
& =\frac{2\left(1-(-1)^{n}\right) e^{t}}{n \pi}
\end{aligned}
$$

Non homogeneous PDE: Dirichlet boundary condition

Example (continued ...)

Thus, the Fourier series for e^{t} is given by

$$
e^{t}=\sum_{n \geq 1} \frac{2\left(1-(-1)^{n}\right)}{n \pi} e^{t} \sin n \pi x
$$

Non homogeneous PDE: Dirichlet boundary condition

Example (continued ...)

Thus, the Fourier series for e^{t} is given by

$$
e^{t}=\sum_{n \geq 1} \frac{2\left(1-(-1)^{n}\right)}{n \pi} e^{t} \sin n \pi x
$$

The Fourier sine series for $f(x)=x(x-1)$ is given by

$$
x(x-1)=\sum_{n \geq 1} \frac{4\left((-1)^{n}-1\right)}{(n \pi)^{3}} \sin n \pi x
$$

Non homogeneous PDE: Dirichlet boundary condition

Example (continued ...)

Thus, the Fourier series for e^{t} is given by

$$
e^{t}=\sum_{n \geq 1} \frac{2\left(1-(-1)^{n}\right)}{n \pi} e^{t} \sin n \pi x
$$

The Fourier sine series for $f(x)=x(x-1)$ is given by

$$
x(x-1)=\sum_{n \geq 1} \frac{4\left((-1)^{n}-1\right)}{(n \pi)^{3}} \sin n \pi x
$$

Substitute $u(x, t)=\sum_{n \geq 1} u_{n}(t) \sin n \pi x$ into the equation $u_{t}-u_{x x}=e^{t}$

$$
\sum_{n \geq 1}\left(u_{n}^{\prime}(t)+n^{2} \pi^{2} u_{n}(t)\right) \sin n \pi x=\sum_{n \geq 1} \frac{2\left(1-(-1)^{n}\right)}{n \pi} e^{t} \sin n \pi x
$$

Non homogeneous PDE: Dirichlet boundary condition

Example (continued ...)

Thus, for $n \geq 1$ and even we get

$$
u_{n}^{\prime}(t)+n^{2} \pi^{2} u_{n}(t)=0
$$

that is,

$$
u_{n}(t)=C_{n} e^{-n^{2} \pi^{2} t}
$$

Non homogeneous PDE: Dirichlet boundary condition

Example (continued ...)

Thus, for $n \geq 1$ and even we get

$$
u_{n}^{\prime}(t)+n^{2} \pi^{2} u_{n}(t)=0
$$

that is,

$$
u_{n}(t)=C_{n} e^{-n^{2} \pi^{2} t}
$$

If $n \geq 1$ and even, we have that the Fourier coefficient of $x(x-1)$ is 0 . Thus, when we put $u_{n}(0)=0$ we get $C_{n}=0$.

For $n \geq 1$ odd we get

$$
u_{n}^{\prime}(t)+n^{2} \pi^{2} u_{n}(t)=\frac{4}{n \pi} e^{t}
$$

that is,

$$
u_{n}(t)=e^{-n^{2} \pi^{2} t} \int_{0}^{t} \frac{4}{n \pi} e^{s} e^{n^{2} \pi^{2} s} d s+C_{n} e^{-n^{2} \pi^{2} t}
$$

Non homogeneous PDE: Dirichlet boundary condition

Example (continued ...)

If $n \geq 1$ and odd, we have the Fourier coefficient of $x(x-1)$ is
$\frac{-8}{(n \pi)^{3}}$. Thus, we get

$$
u_{n}(0)=C_{n}=\frac{-8}{(n \pi)^{3}}
$$

Thus, the solution we are looking for is

$$
\begin{aligned}
u(x, t)= & \sum_{n \geq 0}\left(e^{-(2 n+1)^{2} \pi^{2} t} \int_{0}^{t} \frac{4}{(2 n+1) \pi} e^{s} e^{(2 n+1)^{2} \pi^{2} s} d s+\right. \\
& \left.\frac{-8}{((2 n+1) \pi)^{3}} e^{-n^{2} \pi^{2} t}\right) \sin (2 n+1) \pi x
\end{aligned}
$$

Non homogeneous PDE: Neumann boundary condition

Let us now consider the following PDE

$$
\begin{array}{lc}
u_{t}-k^{2} u_{x x}=F(x, t) & 0<x<L, \quad t>0 \\
u_{x}(0, t)=f_{1}(t) & t>0 \\
u_{x}(L, t)=f_{2}(t) & t>0 \\
u(x, 0)=f(x) & 0 \leq x \leq L
\end{array}
$$

How do we solve this?

Non homogeneous PDE: Neumann boundary condition

Let us now consider the following PDE

$$
\begin{array}{lc}
u_{t}-k^{2} u_{x x}=F(x, t) & 0<x<L, \quad t>0 \\
u_{x}(0, t)=f_{1}(t) & t>0 \\
u_{x}(L, t)=f_{2}(t) & t>0 \\
u(x, 0)=f(x) & 0 \leq x \leq L
\end{array}
$$

How do we solve this? Let us first make the substitution

$$
z(x, t)=u(x, t)-\left(x-\frac{x^{2}}{2 L}\right) f_{1}(t)-\frac{x^{2}}{2 L} f_{2}(t)
$$

Then clearly

- $z_{t}-k^{2} z_{x x}=G(x, t)$
- $z_{x}(0, t)=0$
- $z_{x}(L, t)=0$
- $z(x, 0)=g(x)$

Non homogeneous PDE: Neumann boundary condition

It is clear that we would have solved for u iff we have solved for z. In view of this observation, let us try and solve the problem for z.

Non homogeneous PDE: Neumann boundary condition

It is clear that we would have solved for u iff we have solved for z. In view of this observation, let us try and solve the problem for z.

By observing the boundary conditions, we guess that we should try and look for a solution of the type

$$
z(x, t)=\sum_{n \geq 0} Z_{n}(t) \cos \left(\frac{n \pi x}{L}\right)
$$

Non homogeneous PDE: Neumann boundary condition

It is clear that we would have solved for u iff we have solved for z. In view of this observation, let us try and solve the problem for z.

By observing the boundary conditions, we guess that we should try and look for a solution of the type

$$
z(x, t)=\sum_{n \geq 0} Z_{n}(t) \cos \left(\frac{n \pi x}{L}\right)
$$

Differentiating the above term by term we get that is satisfies the equation

$$
z_{t}-k^{2} z_{x x}=\sum_{n \geq 0}\left(Z_{n}^{\prime}(t)+\frac{k^{2} n^{2} \pi^{2}}{L^{2}} Z_{n}(t)\right) \cos \left(\frac{n \pi x}{L}\right)
$$

Non homogeneous PDE: Neumann boundary condition

It is clear that we would have solved for u iff we have solved for z. In view of this observation, let us try and solve the problem for z.

By observing the boundary conditions, we guess that we should try and look for a solution of the type

$$
z(x, t)=\sum_{n \geq 0} Z_{n}(t) \cos \left(\frac{n \pi x}{L}\right)
$$

Differentiating the above term by term we get that is satisfies the equation

$$
z_{t}-k^{2} z_{x x}=\sum_{n \geq 0}\left(Z_{n}^{\prime}(t)+\frac{k^{2} n^{2} \pi^{2}}{L^{2}} Z_{n}(t)\right) \cos \left(\frac{n \pi x}{L}\right)
$$

Let us write

$$
G(x, t)=\sum_{n \geq 0} G_{n}(t) \cos \left(\frac{n \pi x}{L}\right)
$$

Non homogeneous PDE: Neumann boundary condition

Thus, if we need $z_{t}-k^{2} z_{x x}=G(x, t)$ then we should have that

$$
\begin{equation*}
G_{n}(t)=Z_{n}^{\prime}(t)+\frac{k^{2} n^{2} \pi^{2}}{L^{2}} Z_{n}(t) \tag{*}
\end{equation*}
$$

Non homogeneous PDE: Neumann boundary condition

Thus, if we need $z_{t}-k^{2} z_{x x}=G(x, t)$ then we should have that

$$
\begin{equation*}
G_{n}(t)=Z_{n}^{\prime}(t)+\frac{k^{2} n^{2} \pi^{2}}{L^{2}} Z_{n}(t) \tag{*}
\end{equation*}
$$

We also need that $z(x, 0)=g(x)$.

Non homogeneous PDE: Neumann boundary condition

Thus, if we need $z_{t}-k^{2} z_{x x}=G(x, t)$ then we should have that

$$
\begin{equation*}
G_{n}(t)=Z_{n}^{\prime}(t)+\frac{k^{2} n^{2} \pi^{2}}{L^{2}} Z_{n}(t) \tag{*}
\end{equation*}
$$

We also need that $z(x, 0)=g(x)$.
If

$$
g(x)=\sum_{n \geq 0} b_{n} \cos \frac{n \pi x}{L}
$$

then we should have that

$$
\begin{equation*}
Z_{n}(0)=b_{n} \tag{!}
\end{equation*}
$$

Clearly, there is a unique solution to the differential equation $(*)$ with initial condition (!).

Non homogeneous PDE: Neumann boundary condition

The solution to the above equation is given by

$$
Z_{n}(t)=C e^{-\frac{k^{2} n^{2} \pi^{2}}{L^{2}} t}+e^{-\frac{k^{2} n^{2} \pi^{2}}{L^{2}} t} \int_{0}^{t} G_{n}(s) e^{\frac{k^{2} n^{2} \pi^{2}}{L^{2}} s} d s
$$

We can find the constant using the initial condition.

Non homogeneous PDE: Neumann boundary condition

The solution to the above equation is given by

$$
Z_{n}(t)=C e^{-\frac{k^{2} n^{2} \pi^{2}}{L^{2}} t}+e^{-\frac{k^{2} n^{2} \pi^{2}}{L^{2}} t} \int_{0}^{t} G_{n}(s) e^{\frac{k^{2} n^{2} \pi^{2}}{L^{2}} s} d s
$$

We can find the constant using the initial condition.
Thus, we let $Z_{n}(t)$ be this unique solution, then the series

$$
z(x, t)=\sum_{n \geq 0} Z_{n}(t) \cos \left(\frac{n \pi x}{L}\right)
$$

solves our non homogeneous PDE with Dirichlet boundary conditions for z.

Example

Let us now consider the following PDE

$$
\begin{array}{ll}
u_{t}-u_{x x}=e^{t} & 0<x<1, \quad t>0 \\
u_{x}(0, t)=0 & t>0 \\
u_{x}(1, t)=0 & t>0 \\
u(x, 0)=x(x-1) & 0 \leq x \leq 1
\end{array}
$$

Non homogeneous PDE: Neumann boundary condition

Example

Let us now consider the following PDE

$$
\begin{array}{ll}
u_{t}-u_{x x}=e^{t} & 0<x<1, \quad t>0 \\
u_{x}(0, t)=0 & t>0 \\
u_{x}(1, t)=0 & t>0 \\
u(x, 0)=x(x-1) & 0 \leq x \leq 1
\end{array}
$$

From the boundary conditions $u_{x}(0, t)=u_{x}(1, t)=0$ it is clear that we should look for solution in terms of Fourier cosine series.

Non homogeneous PDE: Neumann boundary condition

Example

Let us now consider the following PDE

$$
\begin{array}{ll}
u_{t}-u_{x x}=e^{t} & 0<x<1, \quad t>0 \\
u_{x}(0, t)=0 & t>0 \\
u_{x}(1, t)=0 & t>0 \\
u(x, 0)=x(x-1) & 0 \leq x \leq 1
\end{array}
$$

From the boundary conditions $u_{x}(0, t)=u_{x}(1, t)=0$ it is clear that we should look for solution in terms of Fourier cosine series.

The Fourier cosine series of $F(x, t)$ is given by (for $n \geq 0$)

$$
\begin{aligned}
& F_{0}(t)=\int_{0}^{1} F(x, t) d x=\int_{0}^{1} e^{t} d x=e^{t} \\
& F_{n}(t)=2 \int_{0}^{1} F(x, t) \cos n \pi x d x=2 \int_{0}^{1} e^{t} \cos n \pi x d x=0 \quad n>0
\end{aligned}
$$

Example (continued ...)

Thus, the Fourier series for e^{t} is simply e^{t}.

Example (continued ...)

Thus, the Fourier series for e^{t} is simply e^{t}.
The Fourier cosine series for $f(x)=x(x-1)$ is given by

$$
x(x-1)=-\frac{1}{6}+\sum_{n \geq 1} \frac{2\left((-1)^{n}+1\right)}{(n \pi)^{2}} \cos n \pi x
$$

Non homogeneous PDE: Neumann boundary condition

Example (continued ...)

Thus, the Fourier series for e^{t} is simply e^{t}.
The Fourier cosine series for $f(x)=x(x-1)$ is given by

$$
x(x-1)=-\frac{1}{6}+\sum_{n \geq 1} \frac{2\left((-1)^{n}+1\right)}{(n \pi)^{2}} \cos n \pi x
$$

Substitute $u(x, t)=\sum_{n \geq 0} u_{n}(t) \cos n \pi x$ into the equation $u_{t}-u_{x x}=e^{t}$

$$
\sum_{n \geq 0}\left(u_{n}^{\prime}(t)+n^{2} \pi^{2} u_{n}(t)\right) \cos n \pi x=e^{t}
$$

Non homogeneous PDE: Neumann boundary condition

Example (continued ...)
Thus, for $n=0$ we get

$$
u_{0}^{\prime}(t)=e^{t}
$$

that is,

$$
u_{0}(t)=e^{t}+C_{0}
$$

Non homogeneous PDE: Neumann boundary condition

Example (continued ...)

Thus, for $n=0$ we get

$$
u_{0}^{\prime}(t)=e^{t}
$$

that is,

$$
u_{0}(t)=e^{t}+C_{0}
$$

In the case $n=0$, we have that the Fourier coefficient of $x(x-1)$ is $\frac{-1}{6}$. Thus, when we put $u_{0}(0)=-\frac{1}{6}$ we get $C=-\frac{7}{6}$.
For $n \geq 1$

$$
u_{n}^{\prime}(t)+n^{2} \pi^{2} u_{n}(t)=0
$$

that is,

$$
u_{n}(t)=C_{n} e^{-n^{2} \pi^{2} t}
$$

Let us now use the initial condition to determine the constants.

Non homogeneous PDE: Neumann boundary condition

Example (continued ...)

Thus, for $n=0$ we get

$$
u_{0}^{\prime}(t)=e^{t}
$$

that is,

$$
u_{0}(t)=e^{t}+C_{0}
$$

In the case $n=0$, we have that the Fourier coefficient of $x(x-1)$ is $\frac{-1}{6}$. Thus, when we put $u_{0}(0)=-\frac{1}{6}$ we get $C=-\frac{7}{6}$.
For $n \geq 1$

$$
u_{n}^{\prime}(t)+n^{2} \pi^{2} u_{n}(t)=0
$$

that is,

$$
u_{n}(t)=C_{n} e^{-n^{2} \pi^{2} t}
$$

Let us now use the initial condition to determine the constants.

Non homogeneous PDE: Neumann boundary condition

Example (continued ...)

In the case $n \geq 1$ and odd, we have that the Fourier coefficient of
$x(x-1)$ is 0 . Thus, when we put $u_{n}(0)=0$ we get $C_{n}=0$.

Non homogeneous PDE: Neumann boundary condition

Example (continued ...)

In the case $n \geq 1$ and odd, we have that the Fourier coefficient of
$x(x-1)$ is 0 . Thus, when we put $u_{n}(0)=0$ we get $C_{n}=0$.
In the case $n \geq 1$ even, we have the Fourier coefficient of $x(x-1)$ is $\frac{4}{(n \pi)^{2}}$. Thus, we get

$$
C_{n}=\frac{4}{(n \pi)^{2}}
$$

Non homogeneous PDE: Neumann boundary condition

Example (continued ...)

In the case $n \geq 1$ and odd, we have that the Fourier coefficient of
$x(x-1)$ is 0 . Thus, when we put $u_{n}(0)=0$ we get $C_{n}=0$.
In the case $n \geq 1$ even, we have the Fourier coefficient of $x(x-1)$ is $\frac{4}{(n \pi)^{2}}$. Thus, we get

$$
C_{n}=\frac{4}{(n \pi)^{2}}
$$

Thus, the solution we are looking for is

$$
u(x, t)=e^{t}-\frac{7}{6}+\sum_{n \geq 1}\left(\frac{1}{(n \pi)^{2}} e^{-4 n^{2} \pi^{2} t}\right) \cos (2 n \pi x)
$$

