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One-dimensional wave equation

Consider the following differential equation

utt = k2uxx, 0 < x < L, t > 0,

called one-dimensional wave equation.

Here k2 is a positive constant, x is the space variable and t is the
time variable.

We wish to find solutions of the above PDE which satisfy the
following initial and boundary conditions
The initial conditions are

u(x, 0) = f(x) and ut(x, 0) = g(x).

The (Dirichlet) boundary conditions are

u(0, t) = u(L, t) = 0.
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Dirichlet boundary conditions: Getting some solutions

We will use the method of separation of variables to first find some
solutions to the wave equation with boundary conditions. That is,
we forget about the initial conditions for now.

Suppose
u(x, t) = X(x)T (t)

Substituting this in wave equation utt = k2uxx

X(x)T ′′(t) = k2X ′′(x)T (t).

We can now separate the variables:

X ′′(x)

X(x)
=

T ′′(t)

k2T (t)

The equality is between a function of x and a function of t, so
both must be constant, say −λ.
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Dirichlet boundary conditions: Getting some solutions

Thus, we get the conditions

X ′′(x) + λX(x) = 0

and T ′′(t) + k2λT (t) = 0.

We also have the boundary conditions

u(0, t) = X(0)T (t) = 0 and u(L, t) = X(L)T (t) = 0.

Since we don’t want T to be identically zero, we get

X(0) = 0 and X(L) = 0.

First let us solve the eigenvalue problem

X ′′(x) + λX(x) = 0

X(0) = X(L) = 0,

The eigenvalues and eigenfunctions are

λn =
n2π2

L2
Xn = sin

nπx

L
, n ≥ 1.
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Dirichlet boundary conditions: Getting some solutions

For each λn we consider the equation in the t variable

T ′′(t) + k2λT (t) = 0

Thus, for each λn we get a solution for T given by

Tn(t) = αn cos
(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
)
,

where αn and βn are real numbers.

Thus, we get a solution for each n ≥ 1

un(x, t) = Tn(t)Xn(x) =
(
αn cos

(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
))

sin
nπx

L

5 / 40



Dirichlet boundary conditions: Getting some solutions

For each λn we consider the equation in the t variable

T ′′(t) + k2λT (t) = 0

Thus, for each λn we get a solution for T given by

Tn(t) = αn cos
(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
)
,

where αn and βn are real numbers.

Thus, we get a solution for each n ≥ 1

un(x, t) = Tn(t)Xn(x) =
(
αn cos

(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
))

sin
nπx

L

5 / 40



Dirichlet boundary conditions: Getting some solutions

For each λn we consider the equation in the t variable

T ′′(t) + k2λT (t) = 0

Thus, for each λn we get a solution for T given by

Tn(t) = αn cos
(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
)
,

where αn and βn are real numbers.

Thus, we get a solution for each n ≥ 1

un(x, t) = Tn(t)Xn(x) =
(
αn cos

(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
))

sin
nπx

L

5 / 40



Dirichlet boundary conditions: Getting some solutions

For each λn we consider the equation in the t variable

T ′′(t) + k2λT (t) = 0

Thus, for each λn we get a solution for T given by

Tn(t) = αn cos
(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
)
,

where αn and βn are real numbers.

Thus, we get a solution for each n ≥ 1

un(x, t) = Tn(t)Xn(x) =
(
αn cos

(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
))

sin
nπx

L

5 / 40



Dirichlet boundary conditions: Getting some solutions

For each λn we consider the equation in the t variable

T ′′(t) + k2λT (t) = 0

Thus, for each λn we get a solution for T given by

Tn(t) = αn cos
(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
)
,

where αn and βn are real numbers.

Thus, we get a solution for each n ≥ 1

un(x, t) = Tn(t)Xn(x) =
(
αn cos

(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
))

sin
nπx

L

5 / 40



Dirichlet boundary conditions: Getting some solutions

For each λn we consider the equation in the t variable

T ′′(t) + k2λT (t) = 0

Thus, for each λn we get a solution for T given by

Tn(t) = αn cos
(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
)
,

where αn and βn are real numbers.

Thus, we get a solution for each n ≥ 1

un(x, t) = Tn(t)Xn(x) =
(
αn cos

(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
))

sin
nπx

L

5 / 40



Dirichlet boundary conditions: Getting some solutions

For each λn we consider the equation in the t variable

T ′′(t) + k2λT (t) = 0

Thus, for each λn we get a solution for T given by

Tn(t) = αn cos
(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
)
,

where αn and βn are real numbers.

Thus, we get a solution for each n ≥ 1

un(x, t) = Tn(t)Xn(x) =
(
αn cos

(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
))

sin
nπx

L

5 / 40



Dirichlet boundary conditions: Formal solution

From the above we conclude that one possible solution of the wave
equation with boundary conditions is,

u(x, t) =
∑
n≥1

(
αn cos

(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
))

sin
nπx

L
.

This function satisfies

u(x, 0) =
∑
n≥1

αn sin
nπx

L
and

ut(x, 0) =
∑
n≥1

βn sin
nπx

L
.
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Dirichlet boundary conditions: Formal solution

Thus, if f(x) and g(x) have Fourier expansions given by

f(x) =
∑
n≥1

αn sin
nπx

L
and

g(x) =
∑
n≥1

βn sin
nπx

L
.

then we will have solved our wave equation with the given
boundary and initial conditions.

Definition

Consider the wave equation with initial and boundary values given
by

utt = k2uxx 0 < x < L, t > 0
u(0, t) = u(L, t) = 0 t > 0
u(x, 0) = f(x) 0 ≤ x ≤ L
ut(x, 0) = g(x) 0 ≤ x ≤ L
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Dirichlet boundary conditions: Formal solution

Definition (continued)

The formal solution of the above problem is

u(x, t) =
∑
n≥1

(
αn cos

(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
))

sin
nπx

L
.

where

αn =
2

L

∫ L

0
f(x) sin

nπx

L
dx and

βn =
2

L

∫ L

0
g(x) sin

nπx

L
dx.

We say u(x, t) is a formal solution, since the series for u(x, t) may
NOT make sense, or it may not make sense to differentiate it term
wise.
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Dirichlet boundary conditions: Actual solution

Theorem

Let f and g be continuous and piecewise smooth functions on
[0, L] such that f(0) = f(L) = 0. Then the problem given by

utt = k2uxx 0 < x < L, t > 0
u(0, t) = u(L, t) = 0 t > 0
u(x, 0) = f(x) 0 ≤ x ≤ L
ut(x, 0) = g(x) 0 ≤ x ≤ L

has an actual solution, which is given by

u(x, t) =
∑
n≥1

(
αn cos

(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
))

sin
nπx

L
.

where

αn =
2

L

∫ L

0
f(x) sin

nπx

L
dx and βn =

2

L

∫ L

0
g(x) sin

nπx

L
dx.
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Dirichlet boundary conditions: Example

Example

Consider the wave equation with initial and boundary value given
by

utt = 5uxx 0 < x < 1, t > 0
u(0, t) = u(L, t) = 0 t > 0
u(x, 0) = sinπx+ 3 sin 5πx 0 ≤ x ≤ 1
ut(x, 0) = sin 5πx− 26 sin 9πx 0 ≤ x ≤ 1

Since both f and g are given by their Fourier series in the above
example, it is clear that

α1 = 1 β1 = 0

α5 = 3 β5 = 1

α9 = 0 β9 = −26
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Dirichlet boundary conditions: Example

Example (continued)

Thus, the solution to the above problem is given by

u(x, t) = cos(
√
5πt) sin(πx) + (3 cos(

√
5πt)+

1

5π
√
5
sin(
√
5πt)) sin(5πx) +

−26
9π
√
5
sin(
√
9πt) sin(9πx)
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Dirichlet boundary conditions: Formal solution

Theorem

Let f and g be continuous and piecewise smooth functions on
[0, L]. Then the problem given by

utt = k2uxx 0 < x < L, t > 0
u(0, t) = u(L, t) = 0 t > 0
u(x, 0) = f(x) 0 ≤ x ≤ L
ut(x, 0) = g(x) 0 ≤ x ≤ L

has an actual solution, which is given by

u(x, t) =
∑
n≥1

(
αn cos

(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
))

sin
nπx

L
.

where

αn =
2

L

∫ L

0
f(x) sin

nπx

L
dx and βn =

2

L

∫ L

0
g(x) sin

nπx

L
dx.
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Neumann boundary condition

Consider the following differential equation

utt = k2uxx, 0 < x < L, t > 0,

We wish to find solutions of the above PDE which satisfy the
following initial and boundary conditions
The initial conditions are

u(x, 0) = f(x) and ut(x, 0) = g(x).

The (Neumann) boundary conditions are

ux(0, t) = ux(L, t) = 0.
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Neumann boundary conditions: Getting some solutions

We will use the method of separation of variables to first find some
solutions to the wave equation with boundary conditions. That is,
we forget about the initial conditions for now.

Suppose
u(x, t) = X(x)T (t)

Substituting this in wave equation utt = k2uxx

X(x)T ′′(t) = k2X ′′(x)T (t).

We can now separate the variables:

X ′′(x)

X(x)
=

T ′′(t)

k2T (t)

The equality is between a function of x and a function of t, so
both must be constant, say −λ.
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Neumann boundary conditions: Getting some solutions

Thus, we get the conditions

X ′′(x) + λX(x) = 0 and T ′′(t) + k2λT (t) = 0.

We also have the boundary conditions

ux(0, t) = X ′(0)T (t) = 0 and ux(L, t) = X ′(L)T (t) = 0.

Since we don’t want T to be identically zero, we get

X ′(0) = 0 and X ′(L) = 0.

First let us solve the eigenvalue problem

X ′′(x) + λX(x) = 0

X ′(0) = X ′(L) = 0,

Recall from the section on eigenvalue problems, that we need that
λ ≥ 0. The solutions to this problem are given by

λn =
n2π2

L2
n ≥ 0 Xn = cos

nπx

L
, n ≥ 0.
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Neumann boundary conditions: Getting some solutions

For each λn we consider the equation in the t variable

T ′′(t) + k2λnT (t) = 0

For n = 0 we get T0(t) = β0t+ α0

For each n ≥ 1 we get a solution for T given by

Tn(t) = αn cos
(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
)
,

where αn and βn are real numbers.

Thus, we get a solution for each n ≥ 1

un(x, t) = Tn(t)Xn(x) =
(
αn cos

(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
))

cos
nπx

L

16 / 40



Neumann boundary conditions: Getting some solutions

For each λn we consider the equation in the t variable

T ′′(t) + k2λnT (t) = 0

For n = 0 we get T0(t) = β0t+ α0

For each n ≥ 1 we get a solution for T given by

Tn(t) = αn cos
(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
)
,

where αn and βn are real numbers.

Thus, we get a solution for each n ≥ 1

un(x, t) = Tn(t)Xn(x) =
(
αn cos

(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
))

cos
nπx

L

16 / 40



Neumann boundary conditions: Getting some solutions

For each λn we consider the equation in the t variable

T ′′(t) + k2λnT (t) = 0

For n = 0 we get T0(t) = β0t+ α0

For each n ≥ 1 we get a solution for T given by

Tn(t) = αn cos
(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
)
,

where αn and βn are real numbers.

Thus, we get a solution for each n ≥ 1

un(x, t) = Tn(t)Xn(x) =
(
αn cos

(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
))

cos
nπx

L

16 / 40



Neumann boundary conditions: Formal solution

For n = 0 we get

u0(x, t) = T0(t)X0(x) = β0t+ α0

From the above we conclude that one possible solution of the wave
equation with boundary conditions is,

u(x, t) = β0t+α0+
∑
n≥1

(
αn cos

(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
))

cos
nπx

L
.

This function satisfies

u(x, 0) = α0 +
∑
n≥1

αn cos
nπx

L
and

ut(x, 0) = β0 +
∑
n≥1

βn cos
nπx

L
.

17 / 40



Neumann boundary conditions: Formal solution

For n = 0 we get

u0(x, t) = T0(t)X0(x) = β0t+ α0

From the above we conclude that one possible solution of the wave
equation with boundary conditions is,

u(x, t) = β0t+α0+
∑
n≥1

(
αn cos

(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
))

cos
nπx

L
.

This function satisfies

u(x, 0) = α0 +
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L
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Neumann boundary conditions: Formal solution

Thus, if f(x) and g(x) have Fourier expansions given by

f(x) = α0 +
∑
n≥1

αn cos
nπx

L
and

g(x) = β0 +
∑
n≥1

βn cos
nπx

L
.

then we will have solved our wave equation with the given
boundary and initial conditions.

Definition

Consider the wave equation with initial and boundary values given
by

utt = k2uxx 0 < x < L, t > 0
ux(0, t) = ux(L, t) = 0 t > 0
u(x, 0) = f(x) 0 ≤ x ≤ L
ut(x, 0) = g(x) 0 ≤ x ≤ L
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Neumann boundary conditions: Formal solution

Definition (continued)

The formal solution of the above problem is
u(x, t) = β0t+ α0+∑

n≥1

(
αn cos

(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
))

cos
nπx

L
.

where

α0 =
1

L

∫ L

0
f(x) dx αn =

2

L

∫ L

0
f(x) cos

nπx

L
dx and

β0 =
1

L

∫ L

0
g(x) dx βn =

2

L

∫ L

0
g(x) cos

nπx

L
dx.

We say u(x, t) is a formal solution, since the series for u(x, t) may
NOT make sense, or it may not make sense to differentiate it term
wise.
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Neumann boundary conditions: Actual solution

Theorem

Let f and g be continuous and piecewise smooth functions on
[0, L]. Then the problem given by

utt = k2uxx 0 < x < L, t > 0
ux(0, t) = ux(L, t) = 0 t > 0
u(x, 0) = f(x) 0 ≤ x ≤ L
ut(x, 0) = g(x) 0 ≤ x ≤ L

has an actual solution, which is given by
u(x, t) = β0t+ α0+∑

n≥1

(
αn cos

(knπ
L

t
)
+
βnL

knπ
sin
(knπ
L

t
))

cos
nπx

L
.

where

α0 =
1

L

∫ L

0
f(x) dx αn =

2

L

∫ L

0
f(x) cos

nπx

L
dx and

β0 =
1

L

∫ L

0
g(x) dx βn =

2

L

∫ L

0
g(x) cos

nπx

L
dx.
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Neumann boundary conditions: Example

Example

Consider the wave equation with initial and boundary value given
by

utt = 5uxx 0 < x < 1, t > 0
ux(0, t) = ux(L, t) = 0 t > 0
u(x, 0) = 34 + cosπx+ 3 cos 5πx 0 ≤ x ≤ 1
ut(x, 0) = 23 + cos 5πx− 26 cos 9πx 0 ≤ x ≤ 1

Since both f and g are given by their Fourier series in the above
example, it is clear that

α0 = 34 β0 = 23

α1 = 1 β1 = 0

α5 = 3 β5 = 1

α9 = 0 β9 = −26
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Neumann boundary conditions: Example

Example (continued)

Thus, the solution to the above problem is given by

u(x, t) = 23t+ 34 + cos(
√
5πt) cos(πx)

+ (3 cos(
√
5πt) +

1

5π
√
5
sin(
√
5πt)) cos(5πx)

−26
9π
√
5
sin(
√
9πt) cos(9πx)
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Non homogeneous PDE: Dirichlet boundary condition

Let us now consider the following PDE
utt − k2uxx = F (x, t) 0 < x < L, t > 0

u(0, t) = f1(t) t > 0

u(L, t) = f2(t) t > 0

u(x, 0) = f(x) 0 ≤ x ≤ L
ut(x, 0) = g(x) 0 ≤ x ≤ L

How do we solve this?

Let us first make the substitution

z(x, t) = u(x, t)− (1− x

L
)f1(t)−

x

L
f2(t)

Then clearly

ztt − k2zxx = G(x, t)
z(0, t) = 0
z(L, t) = 0
z(x, 0) = v(x)
zt(x, 0) = w(x)
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Non homogeneous PDE: Dirichlet boundary condition

It is clear that we would have solved for u iff we have solved for z.
In view of this observation, let us try and solve the problem for z.

By observing the boundary conditions, we guess that we should try
and look for a solution of the type

z(x, t) =
∑
n≥1

Zn(t) sin(
nπx

L
)

Differentiating the above term by term we get that is satisfies the
equation

ztt − k2zxx =
∑
n≥1

(
Z ′′n(t) +

k2n2π2

L2
Zn(t)

)
sin(

nπx

L
)

Let us write
G(x, t) =

∑
n≥1

Gn(t) sin(
nπx

L
)
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Non homogeneous PDE: Dirichlet boundary condition

Thus, if we need ztt − k2zxx = G(x, t) then we should have that

Gn(t) = Z ′′n(t) +
k2n2π2

L2
Zn(t) (∗)

We also need that z(x, 0) = v(x) and zt(x, 0) = w(x).
If

v(x) =
∑
n≥1

bn sin
nπx

L
w(x) =

∑
n≥1

cn sin
nπx

L

then we should have that

Zn(0) = bn Z ′n(0) = cn (!)

Clearly, there is a unique solution to the differential equation (∗)
with initial condition (!).
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Non homogeneous PDE: Dirichlet boundary condition

Thus, we let Zn(t) be this unique solution, then the series

z(x, t) =
∑
n≥1

Zn(t) sin(
nπx

L
)

solves our non homogeneous PDE with Dirichlet boundary
conditions for z.
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Non homogeneous PDE: Dirichlet boundary condition

Example

Let us now consider the following PDE
utt − uxx = et 0 < x < 1, t > 0

u(0, t) = 0 t > 0

u(1, t) = 0 t > 0

u(x, 0) = x(x− 1) 0 ≤ x ≤ 1

ut(x, 0) = 0 0 ≤ x ≤ 1

From the boundary conditions u(0, t) = u(1, t) = 0 it is clear that
we should look for solution in terms of Fourier sine series.

The Fourier sine series of F (x, t) is given by (for n ≥ 1)

Fn(t) = 2

∫ 1

0
F (x, t) sinnπx dx

= 2

∫ 1

0
et sinnπx dx =

2(1− (−1)n)et

nπ
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Non homogeneous PDE: Dirichlet boundary condition

Example (continued ...)

Thus, the Fourier series for et is given by

et =
∑
n≥1

2(1− (−1)n)
nπ

et sinnπx

The Fourier sine series for f(x) = x(x− 1) is given by

x(x− 1) =
∑
n≥1

4((−1)n − 1)

(nπ)3
sinnπx

Substitute u(x, t) =
∑

n≥1 un(t) sinnπx into the equation
utt − uxx = et∑
n≥1

(
u′′n(t) + n2π2un(t)

)
sinnπx =

∑
n≥1

2(1− (−1)n)
nπ

et sinnπx
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Non homogeneous PDE: Dirichlet boundary condition

Example (continued ...)

Thus, for n ≥ 1 and even we get

u′′n(t) + n2π2un(t) = 0

that is,
un(t) = Cn cosnπt+Dn sinnπt

Since n is even, the nth Fourier coefficient of f(x) is 0. Thus, we
get that Cn = 0. Further, since g(x) = 0, the nth Fourier
coefficient is 0. Thus, we get that Dn = 0.

We conclude that un(t) = 0 for n ≥ 1 and even.
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Example

For n ≥ 1 and odd we get

u′′n(t) + n2π2un(t) =
4

nπ
et

If we put un(t) = cet then we get

cet + n2cet =
4

nπ
et

Solving the above we get that
4

n(n2 + 1)π
et is a solution.

The general solution is given by

un(t) =
4

n(n2 + 1)π
et + Cn cosnπt+Dn sinnπt

Let us now use the initial condition to determine the constants.
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Non homogeneous PDE: Dirichlet boundary condition

Example (continued ...)

In the case n ≥ 1 odd, we have the Fourier coefficient of x(x− 1)
is −8

(nπ)3
. Thus, we get

Cn +
4

n(n2 + 1)π
=
−8

(nπ)3

The nth Fourier coefficient of g is 0, and so we get

u′n(0) =
4

n(n2 + 1)π
+ nDn = 0

Thus, the solution we are looking for is given by

u(x, t) =
∑
n≥0

u2n+1(t) sin(2n+ 1)πx

where un(t), Cn and Dn are given as above.
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Non homogeneous PDE: Neumann boundary condition

Let us now consider the following PDE
utt − k2uxx = F (x, t) 0 < x < L, t > 0

ux(0, t) = f1(t) t > 0

ux(L, t) = f2(t) t > 0

u(x, 0) = f(x) 0 ≤ x ≤ L
ut(x, 0) = g(x) 0 ≤ x ≤ L

How do we solve this?

Let us first make the substitution

z(x, t) = u(x, t)− (x− x2

2L
)f1(t)−

x2

2L
f2(t)

Then clearly

ztt − k2zxx = G(x, t)
zx(0, t) = 0
zx(L, t) = 0
z(x, 0) = v(x)
zt(x, 0) = w(x)
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Non homogeneous PDE: Neumann boundary condition

It is clear that we would have solved for u iff we have solved for z.
In view of this observation, let us try and solve the problem for z.

By observing the boundary conditions, we guess that we should try
and look for a solution of the type

z(x, t) =
∑
n≥0

Zn(t) cos(
nπx

L
)

Differentiating the above term by term we get that is satisfies the
equation

ztt − k2zxx =
∑
n≥0

(
Z ′′n(t) +

k2n2π2

L2
Zn(t)

)
cos(

nπx

L
)

Let us write
G(x, t) =

∑
n≥0

Gn(t) cos(
nπx

L
)
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nπx

L
)

Differentiating the above term by term we get that is satisfies the
equation

ztt − k2zxx =
∑
n≥0

(
Z ′′n(t) +

k2n2π2

L2
Zn(t)

)
cos(

nπx

L
)

Let us write
G(x, t) =

∑
n≥0

Gn(t) cos(
nπx

L
)
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Non homogeneous PDE: Neumann boundary condition

Thus, if we need ztt − k2zxx = G(x, t) then we should have that

Gn(t) = Z ′′n(t) +
k2n2π2

L2
Zn(t) (∗)

We also need that z(x, 0) = v(x) and zt(x, 0) = w(x).
If

v(x) =
∑
n≥0

bn cos
nπx

L
w(x) =

∑
n≥0

cn cos
nπx

L

then we should have that

Zn(0) = bn Z ′n(0) = cn (!)

Clearly, there is a unique solution to the differential equation (∗)
with initial condition (!).
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Non homogeneous PDE: Neumann boundary condition

Thus, we let Zn(t) be this unique solution, then the series

z(x, t) =
∑
n≥0

Zn(t) cos(
nπx

L
)

solves our non homogeneous PDE with Dirichlet boundary
conditions for z.
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Non homogeneous PDE: Neumann boundary condition

Example

Let us now consider the following PDE
utt − uxx = et 0 < x < 1, t > 0

ux(0, t) = 0 t > 0

ux(1, t) = 0 t > 0

u(x, 0) = x(x− 1) 0 ≤ x ≤ 1

ut(x, 0) = 0 0 ≤ x ≤ 1

From the boundary conditions ux(0, t) = ux(1, t) = 0 it is clear
that we should look for solution in terms of Fourier cosine series.

The Fourier cosine series of F (x, t) is given by (for n ≥ 0)

F0(t) =

∫ 1

0
F (x, t) dx =

∫ 1

0
etdx = et

Fn(t) = 2

∫ 1

0
F (x, t) cosnπx dx = 2

∫ 1

0
et cosnπx dx = 0 n > 0
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Non homogeneous PDE: Neumann boundary condition

Example (continued ...)

Thus, the Fourier series for et is simply et.

The Fourier cosine series for f(x) = x(x− 1) is given by

x(x− 1) = −1

6
+
∑
n≥1

2((−1)n + 1)

(nπ)2
cosnπx

Substitute u(x, t) =
∑

n≥0 un(t) cosnπx into the equation
utt − uxx = et∑

n≥0

(
u′′n(t) + n2π2un(t)

)
cosnπx = et
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Non homogeneous PDE: Neumann boundary condition

Example (continued ...)

Thus, for n = 0 we get
u′′0(t) = et

that is,
u0(t) = et + Ct+D

Let us now use the initial condition to determine the constants.

In the case n = 0, we have that the Fourier coefficient of x(x− 1)
is −16 . Thus, when we put u0(0) = −1

6 we get 1 +D = −1
6 .

We also have u′0(0) = 0, that is,1 + C = 0.

Thus,

u0(t) = et − t− 7

6

38 / 40



Non homogeneous PDE: Neumann boundary condition

Example (continued ...)

Thus, for n = 0 we get
u′′0(t) = et

that is,
u0(t) = et + Ct+D

Let us now use the initial condition to determine the constants.

In the case n = 0, we have that the Fourier coefficient of x(x− 1)
is −16 . Thus, when we put u0(0) = −1

6 we get 1 +D = −1
6 .

We also have u′0(0) = 0, that is,1 + C = 0.

Thus,

u0(t) = et − t− 7

6

38 / 40



Non homogeneous PDE: Neumann boundary condition

Example (continued ...)

Thus, for n = 0 we get
u′′0(t) = et

that is,
u0(t) = et + Ct+D

Let us now use the initial condition to determine the constants.

In the case n = 0, we have that the Fourier coefficient of x(x− 1)
is −16 . Thus, when we put u0(0) = −1

6 we get 1 +D = −1
6 .

We also have u′0(0) = 0, that is,1 + C = 0.

Thus,

u0(t) = et − t− 7

6

38 / 40



Non homogeneous PDE: Neumann boundary condition

Example (continued ...)

For n ≥ 1
u′′n(t) + n2π2un(t) = 0

that is,
un(t) = Cn cosnπt+Dn sinnπt

In the case n ≥ 1 odd, we have that the Fourier coefficient of
x(x− 1) is 0. Thus, when we put un(0) = 0 we get Cn = 0.

We also have u′n(0) = 0, that is, Dn = 0. Thus, if n is odd then
un(t) = 0.

In the case n ≥ 1 even, we have the Fourier coefficient of x(x− 1)
is 4

(nπ)2
. Thus, we get

Cn =
4

(nπ)2

We also have u′n(0) = 0, that is, Dn = 0.
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Example (continued ...)

Thus, when n is even we get

un(t) =
4

(nπ)2
cosnπt

The solution we are looking for is

u(x, t) = et − t− 7

6
+
∑
n≥1

4

4(nπ)2
cos 2nπt cos 2nπx
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