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Two dimensional Laplace equation

Consider the following differential equation

uxx + uyy = 0, 0 < x < a, 0 < y < b,

called the Laplace equation in two variables.

We can can ask for solutions to the above equation, which satisfy
certain boundary conditions.

For example, in today’s lecture we will work out the case where

u(x, 0) = f(x) u(x, b) = 0 0 ≤ x ≤ a
u(0, y) = 0 u(a, y) = 0 0 ≤ y ≤ b

Let u(x, y) = X(x)Y (y). Then the differential equation becomes

X ′′(x)Y (y) +X(x)Y ′′(y) = 0
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Dirichlet boundary conditions: Finding some solutions

Thus, we have

−X ′′(x)

X(x)
=
Y ′′(y)

Y (y)
= constant

Since u(0, y) = X(0)Y (y) = 0, u(a, y) = X(a)Y (y) = 0 and we
do not want Y to be identically zero, we get that X(0) = 0 and
X(a) = 0.

This boundary condition on X forces that the constant above
should be positive. Let us denote this positive constant by λ2.

For every n ≥ 1, let

λn =
nπ

a
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Dirichlet boundary conditions: Finding some solutions

For each n ≥ 1, we have a solution to

X ′′(x) + λ2nX(x) = 0

X(0) = 0 = X(a)

given by

Xn(x) = sin
(nπx

a

)

Since we do not want X(x) to be identically 0 and
u(x, b) = X(x)Y (b) = 0, this forces that Y (b) = 0. Let us also
impose the condition that Y (0) = 1.

Next consider for each λn the problem

Y ′′(y)− λ2nY (y) = 0

Y (0) = 1

Y (b) = 0
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Dirichlet boundary conditions: Finding some solutions

The solutions to the above equation are given by

Yn(y) = sinh
(nπ(b− y)

a

)/
sinh

(nπb
a

)
.

Thus, for each n ≥ 1 we get a solution

un(x, y) = sin
(nπx

a

)
sinh

(nπ(b− y)

a

)/
sinh

(nπb
a

)
Now consider the series

u(x, y) =
∑
n≥1

αn sin
(nπx

a

)
sinh

(nπ(b− y)

a

)/
sinh

(nπb
a

)
,

where αn are real numbers.
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Dirichlet boundary conditions: Formal solutions

This gives that

u(x, 0) = f(x) =
∑
n≥1

αn sin
(nπx

a

)
,

Thus, if f(x) has the Fourier expansion

f(x) =
∑
n≥1

αn sin
nπx

a

then we will have solved our Laplace equation with the given
boundary conditions.
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Dirichlet boundary conditions: Formal solutions

Definition

Consider the Laplace equation with the boundary conditions
uxx + uyy = 0 0 < x < a, 0 < y < b
u(0, y) = 0 = u(a, y) = 0 0 ≤ y ≤ b
u(x, 0) = f(x) 0 ≤ x ≤ a
u(x, b) = 0

The formal solution of the above problem is

u(x, t) =
∑
n≥1

αn sin
(nπx

a

)
sinh

(nπ(b− y)

a

)/
sinh

(nπb
a

)
,

where

αn =
2

L

∫ L

0
f(x) sin

nπx

L
dx
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Dirichlet boundary conditions: Actual solution

Theorem

Let f be continuous and piecewise smooth on [0, a] such that
f(0) = f(a) = 0. Consider the Laplace equation with the
boundary conditions

uxx + uyy = 0 0 < x < a, 0 < y < b
u(0, y) = 0 = u(a, y) = 0 0 ≤ y ≤ b
u(x, 0) = f(x) 0 ≤ x ≤ a
u(x, b) = 0

The solution to the above problem is given by

u(x, t) =
∑
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αn sin
(nπx
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)
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Dirichlet boundary condition: Example

Example

Consider the Laplace equation with boundary conditions given by
uxx + uyy = 0 0 < x < a, 0 < y < b
u(0, y) = 0 = u(a, y) = 0 0 ≤ y ≤ b
u(x, 0) = sin

(5πx

a

)
− 3 sin

(9πx

a

)
0 ≤ x ≤ a

u(x, b) = 0

Since f is given by its Fourier series in the above example, it is
clear that

α5 = 1

α9 = −3
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Dirichlet boundary condition: Example

Example (continued)

Thus, the solution to the above problem is given by

u(x, t) = sin
(5πx

a

)
sinh

(5π(b− y)

a

)/
sinh

(5πb

a

)
− 3 sin

(9πx

a

)
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a

)/
sinh

(9πb

a
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Neumann boundary condition

Consider the following differential equation

uxx + uyy = 0, 0 < x < a, 0 < y < b,

called the Laplace equation in two variables.

Consider the boundary conditions

u(x, 0) = f(x) u(x, b) = 0 0 ≤ x ≤ a
ux(0, y) = 0 ux(a, y) = 0 0 ≤ y ≤ b

Let u(x, y) = X(x)Y (y). Then the differential equation becomes

X ′′(x)Y (y) +X(x)Y ′′(y) = 0
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Neumann boundary conditions: Finding some solutions

Thus, we have

−X ′′(x)

X(x)
=
Y ′′(y)

Y (y)
= constant

Since ux(0, y) = X ′(0)Y (y) = 0, ux(a, y) = X ′(a)Y (y) = 0 and
we do not want Y to be identically zero, we get that X ′(0) = 0
and X ′(a) = 0.

This boundary condition on X forces that the constant above
should be positive. Let us denote this positive constant by λ2.

For every n ≥ 0, let

λn =
nπ

a
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Neumann boundary conditions: Finding some solutions

For each n ≥ 0, we have a solution to

X ′′(x) + λ2nX(x) = 0

X ′(0) = 0 = X ′(a)

given by

Xn(x) = cos
(nπx

a

)

Since we do not want X(x) to be identically 0 and
u(x, b) = X(x)Y (b) = 0, this forces that Y (b) = 0. Let us also
impose the condition that Y (0) = 1.

Next consider for each λn the problem

Y ′′(y)− λ2nY (y) = 0

Y (0) = 1

Y (b) = 0
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Neumann boundary conditions: Finding some solutions

The solutions to the above equation are given by

For n ≥ 0

Y0(y) =
−1

b
y + 1

and for n ≥ 1

Yn(y) = sinh
(nπ(b− y)

a

)/
sinh

(nπb
a

)
.

Thus, for each n ≥ 0 we get a solution

un(x, y) = cos
(nπx

a

)
Yn(y)

Now consider the series

u(x, y) =
∑
n≥0

αn cos
(nπx

a

)
Yn(y),

where αn are real numbers.
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Neumann boundary conditions: Formal solution

This gives that

u(x, 0) = f(x) = α0 +
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,

Thus, if f(x) has the Fourier expansion
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)
then we will have solved our Laplace equation with the given
boundary conditions.
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Neumann boundary conditions: Actual solution

Theorem

Let f be continuous and piecewise smooth on [0, a].
Consider the Laplace equation with the boundary conditions

uxx + uyy = 0 0 < x < a, 0 < y < b
ux(0, y) = 0 = ux(a, y) = 0 0 ≤ y ≤ b
u(x, 0) = f(x) 0 ≤ x ≤ a
u(x, b) = 0 0 ≤ x ≤ a
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Example

Example

Consider the Laplace equation with boundary conditions given by
uxx + uyy = 0 0 < x < a, 0 < y < b
ux(0, y) = 0 = ux(a, y) = 0 0 ≤ y ≤ b
u(x, 0) = cos

(5πx

a

)
− 3 cos

(9πx

a

)
0 ≤ x ≤ a

u(x, b) = 0

Since f is given by its Fourier series in the above example, it is
clear that

α5 = 1

α9 = −3
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Example

Example (continued)

Thus, the solution to the above problem is given by

u(x, t) = cos
(5πx

a

)
sinh

(5π(b− y)

a

)/
sinh

(5πb

a

)
− 3 cos

(9πx

a

)
sinh

(9π(b− y)

a

)/
sinh

(9πb

a

)
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Laplace equation in polar coordinates

Consider the Dirichlet problem in a disc of radius r

uxx + uyy = 0

with
u = f

on the boundary of the disc, which is a circle of radius r.

To solve this problem write the Laplace operator in polar
coordinates.

∆ =
∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
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Laplace equation in polar coordinates

Example. Solve for harmonic function u(r, θ) in unit disc i.e.

∆u(r, θ) = 0, r < 1, θ ∈ [0, 2π]

with boundary condition

u(1, θ) = f(θ) =

{
sin θ, θ ∈ [0, π]

0, θ ∈ [π, 2π]

Laplace equation in polar coordinates is

∆u = urr +
1

r
ur +

1

r2
uθθ = 0

Assume u(r, θ) = R(r)Θ(θ). Then

R′′(r)Θ(θ) +
1

r
R′(r)Θ(θ) +

1

r2
R(r)Θ′′(θ) = 0
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R′′(r) + 1
rR
′(r)

1
r2
R(r)

= −Θ′′(θ)

Θ(θ)
= λ

Θ′′(θ) + λΘ(θ) = 0 , r2R′′(r) + rR′(r)− λR(r) = 0

Since u(r, θ+ 2π) = u(r, θ), the functions Θ and Θ′ need to be 2π
periodic.
Thus for the ODE for Θ, we need to solve

Θ′′(θ) + λΘ(θ) = 0, Θ(0) = Θ(2π), Θ′(0) = Θ′(2π)

The eigenvalues and eigenfunctions for periodic eigenvalue problem
in Θ are

λ0 = 0, Θ0 = 1
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and for n ≥ 1,

λn = n2, Θn,1(θ) = cos(nθ), Θn,2(θ) = sin(nθ)

The problem for R-function, namely

r2R′′(r) + rR′(r)− λR(r) = 0

is Cauchy-Euler equation with solution xm, where

m(m− 1) +m− λ = m2 − λ = 0

=⇒ m = ±
√
λ

For λ = λ0 = 0, the general solutions are

R0,1(r) = 1, R0,2(r) = ln r
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For λ = λn = n2 > 0, m = ±n, the general solutions are

Rn,1(r) = rn, Rn,2(r) = r−n

Let us look for a solution of the Laplace equation in the disc which
is a linear combinations of

1, ln r, rn cos(nθ), rn sin(nθ), r−n cos(nθ), r−n sin(nθ)

Since we are looking for solutions that are bounded in the disc, we
will discard ln r, r−n cos(nθ) and r−n sin(nθ).
Thus, the series solution has the form

u(r, θ) = A0 +
∑
n≥1

(Anr
n cos(nθ) +Bnr

n sin(nθ))
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The boundary condition is

u(1, θ) = f(θ) = A0 +
∑
n≥1

(An cos(nθ) +Bn sin(nθ))

Hence, Ai and Bi are Fourier coefficients of f(θ).

Check that the Fourier series of f(θ) is

f(θ) =
1

π
− 2

π

∑
n≥1

cos(2nθ)

4n2 − 1
+

1

2
sin θ

Therefore, the solution is

u(r, θ) =
1

π
− 2

π

∑
n≥1

1

4n2 − 1
r2n cos(2nθ) +

1

2
r sin θ
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Example. Solve for harmonic function u(r, θ) in an annulus

∆u(r, θ) = 0, 1 < r < 2, θ ∈ [0, 2π]

u(1, θ) = cos θ, 0 ≤ θ ≤ 2π

ur(2, θ) = sin 2θ, 0 ≤ θ ≤ 2π

This BVP can be interpreted as that for the steady state
temperature distribution in an annular region where on the outer
boundary the heat flux is prescribed and on the inner boundary, the
temperature is prescribed.
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Recall that the Laplace equation in polar coordinates is

∆u = urr +
1

r
ur +

1

r2
uθθ = 0

As the polar coordinates (r, θ) and (r, θ + 2π) represent the same
point in the plane, any function u defined in the plane is
2π-periodic in θ. Therefore,

u(r, 0) = u(r, 2π), ur(r, 0) = ur(r, 2π)

Assume u(r, θ) = R(r)Θ(θ). Then

R′′(r)Θ(θ) +
1

r
R′(r)Θ(θ) +

1

r2
R(r)Θ′′(θ) = 0
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R′′(r) + 1
rR
′(r)

1
r2
R(r)

= −Θ′′(θ)

Θ(θ)
= λ

Θ′′(θ) + λΘ(θ) = 0 , r2R′′(r) + rR′(r)− λR(r) = 0

Since u(r, θ+ 2π) = u(r, θ), the functions Θ and Θ′ need to be 2π
periodic.
Thus for the ODE for Θ, we need to solve

Θ′′(θ) + λΘ(θ) = 0, Θ(0) = Θ(2π), Θ′(0) = Θ′(2π)

The eigenvalues and eigenfunctions for periodic eigenvalue problem
in Θ are
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λ0 = 0, Θ0 = 1

and for n ≥ 1,

λn = n2, Θn,1(θ) = cos(nθ), Θn,1(θ) = sin(nθ)

The problem for R-function, namely

r2R′′(r) + rR′(r)− λR(r) = 0

is Cauchy-Euler equation with solution xm, where

m(m− 1) +m− λ = m2 − λ = 0

=⇒ m = ±
√
λ For λ = λ0 = 0, the general solutions are

R0,1(r) = 1, R0,2(r) = ln r, u0(r, θ) = A0 +B0 ln r
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For λ = λn = n2 > 0, m = ±n, the general solutions are

Rn,1(r) = rn, Rn,2(r) = r−n

Let us look for a solution of the Laplace equation in the disc which
is a linear combinations of

1, ln r, rn cos(nθ), rn sin(nθ), r−n cos(nθ), r−n sin(nθ)

Hence the general solution is

u(r, θ) = (A0 +B0 ln r) +
∑
n≥1

(Anr
n cos(nθ) +Bnnr

−n cos(nθ))

+
∑
n≥1

(Cnr
n sin(nθ) +Dnr

−n sin(nθ))

Since
u(1, θ) = cos θ, ur(2, θ) = sin 2θ
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u(1, θ) = A0 +
∑
n≥1

(An +Bn) cos(nθ) + (Cn +Dn) sin(nθ)

Compare with u(1, θ) = cos θ, we get A0 = 0,

A1 +B1 = 1, An +Bn = 0 (n ≥ 2), Cn +Dn = 0 (n ≥ 1)

ur(r, θ) =
B0

r
+
∑
n≥1

n(Anr
n−1 −Bnr−n−1) cosnθ

+n(Cnr
n−1 −Dnr

−n−1) sinnθ

Compare with ur(2, θ) = sin 2θ, we get B0 = 0,
2(2C2 − 2−3D2) = 1

An2n−1−Bn2−n−1 = 0 (n ≥ 1), Cn2n−1−Dn2−n−1 = 0 (n 6= 2)
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A0 = 0 = B0

For n = 1

A1 +B1 = 1, A1 −B12
−2 = 0 =⇒ A1 =

1

5
, B1 =

4

5

C1 +D1 = 0, C1 −D12
−2 = 0 =⇒ C1 = 0, D1 = 0

For n = 2,

A2 +B2 = 0, A22−B22
−3 = 0 =⇒ A2 = 0 = B2

C2 +D2 = 0, 2C2 −
1

23
D2 =

1

2
=⇒ C2 =

4

17
, D2 =

−4

17
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For n > 2,

An +Bn = 0, An2n−1 −Bn2−n−1 = 0 =⇒ A1
n = 0 = B1

n

Cn +Dn = 0, Cn2n−1 −Dn2−n−1 = 0 =⇒ Cn = 0 = Dn

Thus the solution is

u(r, θ) = (
1

5
r +

4

5
r−1) cos θ + (

4

17
r2 +

−4

17
r−2) sin 2θ
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