MA 2017, Tutorial Sheet-1 Power series and Series solution

1. Find the radius of convergence of the following power series.
(i) $\sum_{n=k}^{\infty} n(n-1) \ldots(n-k+1)(x-1)^{n}$,
(ii) $\sum_{n=0}^{\infty} \frac{(2 n)!}{2^{2 n}(n!)^{2}}(x+1)^{n}$,
(iii) $\sum_{n=1}^{\infty} \frac{1}{n(n+1) \cdots(n+k+1)} x^{n}$,
(iv) $\sum_{n=1}^{\infty} \frac{n^{n}}{n!} x^{n}$,
(v) $\sum_{n=1}^{\infty} \frac{(2 n)!}{n^{n}} x^{n}$,
(vi) $\sum_{n=1}^{\infty} \frac{(3 n)!}{2^{n}(n!)^{3}} x^{n}$,
(vii) $\sum_{n=0}^{\infty} \frac{n(n+1)}{16^{n}}(x-2)^{n}$,
(viii) $\sum_{n=0}^{\infty} \frac{3^{n}}{4^{n+1}(n+1)^{2}}(x+7)^{n}$.
2. Let R be the radius of convergence of $\sum_{n=1}^{\infty} a_{n} x^{n}$ and k be a positive integer.
(i) Show that $\sum_{n=1}^{\infty} a_{n} x^{2 n}$ and $\sum_{n=1}^{\infty} a_{n}^{2} x^{n}$ have radius of convergence \sqrt{R} and R^{2} resp.
(ii) Show that $\sum_{n=1}^{\infty} a_{n} x^{k n}$ and $\sum_{n=1}^{\infty} a_{n}^{k} x^{n}$ have radius of convergence $\sqrt[k]{R}$ and R^{k} resp.
3. Find the radius of convergence R and the interval of convergence (if $R>0$) of the following power series.
(i) $\sum_{0}^{\infty}(-1)^{n}(3 n+1)(x-1)^{2 n+1}$,
(ii) $\sum_{0}^{\infty} \frac{n!}{(2 n)!}(x-1)^{2 n}$
(iii) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(27)^{n}}(x-3)^{3 n+2}$,
(iv) $\sum_{n=0}^{\infty} \frac{9^{n}(n+1)}{n+2}(x-2)^{2 n+2}$
4. Determine the radius of convergence of $\sum_{0}^{\infty} n!x^{n^{2}}$ and $\sum_{0}^{\infty} x^{n!}$.
5. Suppose $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Express the following equations in a power series in x.
(i) $(2+x) y^{\prime \prime}+x y^{\prime}+3 y$,
(ii) $\left(1+3 x^{2}\right) y^{\prime \prime}+3 x^{2} y^{\prime}-2 y$,
(iii) $\left(1+2 x^{2}\right) y^{\prime \prime}+(2-3 x) y^{\prime}+4 y$.
6. Let $f(x)$ be the function on \mathbb{R} defined by $f(x)=e^{-1 / x^{2}}$ if $x \neq 0$ and $f(0)=0$. Show that f is infinitely differentiable. Show that $f^{(n)}(0)=0$ for all $n>0$ and conclude that f is not analytic at 0 .
7. Suppose $y(x)=\sum_{n=0}^{\infty} a_{n}(x+1)^{n}$ on an open interval around $x=-1$. Find a power series in $(x+1)$ for the equation $x y^{\prime \prime}+(4+2 x) y^{\prime}+(2+x) y$.
8. Show that the series $y(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\left(2^{n} n!\right)^{2}} x^{2 n}$ is a solution of $x y^{\prime \prime}+y^{\prime}+x y=0$.
9. Find the power series in x for the general solution.
(i) $\left(1+x^{2}\right) y^{\prime \prime}+6 x y^{\prime}+6 y=0$;
(ii) $\left(1-x^{2}\right) y^{\prime \prime}-8 x y^{\prime}-12 y=0$;
(iii) $\left(1+2 x^{2}\right) y^{\prime \prime}+7 x y^{\prime}+2 y=0$.
10. Find the power series in $x-1$ for the general solution of ODE $\left(2+4 x-2 x^{2}\right) y^{\prime \prime}-12(x-1) y^{\prime}-12 y=0$.
11. Compute $a_{0}, a_{1}, \ldots, a_{6}$ in the series solution $y=\sum_{0}^{\infty} a_{n} x^{n}$ of the IVP
(i) $\left(1+2 x^{2}\right) y^{\prime \prime}+10 x y^{\prime}+8 y=0, \quad y(0)=2, \quad y^{\prime}(0)=-3$.
(ii) $\left(1+2 x^{2}\right) y^{\prime \prime}+x y^{\prime}+y=0, \quad y(0)=2, \quad y^{\prime}(0)=-1$.
12. Find the power series solution in $x-x_{0}$ of ODE's
(i) $y^{\prime \prime}-y=0 ; \quad x_{0}=3$,
(ii) $\left(1-4 x+2 x^{2}\right) y^{\prime \prime}+10(x-1) y^{\prime}+6 y=0 ; \quad x_{0}=1$.
(iii) $y^{\prime \prime}-(x-3) y^{\prime}-y=0, \quad x_{0}=3$.
13. Find the power series solution in x of ODE's
(i) $\left(1-2 x^{3}\right) y^{\prime \prime}-10 x^{2} y^{\prime}-8 x y=0$.
(ii) (Airy equation) $y^{\prime \prime}-x y=0$,
(iii) (Tchebychev eqn) $\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+p^{2} y=0$.
(v) (Hermite eqn) $y^{\prime \prime}-x^{2} y=0$.
14. Find the coefficients a_{0}, \ldots, a_{5} in the series solution in $y=\sum_{0}^{\infty} a_{n}(x+1)^{n}$ of the IVP $(3+x) y^{\prime \prime}+(1+2 x) y^{\prime}-(2-x) y=0 ; \quad y(-1)=2, y^{\prime}(-1)=-3$.
15. Find the coefficients a_{0}, \ldots, a_{5} in the series solution in $y=\sum_{0}^{\infty} a_{n} x^{n}$ of the IVP $y^{\prime \prime}+3 x y^{\prime}+\left(4+2 x^{2}\right) y=0 ; \quad y(0)=2, y^{\prime}(0)=-3$.
