MA 2017, Tutorial Sheet-2 Legendre equation and Legendre polynomials

1. Express x^{2}, x^{3}, and x^{4} as a linear combination of the Legendre polynomials.
2. Prove the following. First equality is Rodrigues formula.
$P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}=\sum_{m=0}^{[n / 2]}(-1)^{m} \frac{(2 n-2 m)!}{2^{n} m!(n-m)!(n-2 m)!} x^{n-2 m}$
where $[n / 2]$ denotes the greatest integer less than or equal to $n / 2$.
3. Show that if $f(x)$ is a polynomial with double (or multiplicity 2) roots at a and b, then $f^{\prime \prime}(x)$ vanishes at least twice in (a, b). (This is also true if $f(x)$ is a smooth function.)

Generalize this and show (using Rodrigues' formula) that $P_{n}(x)$ has n distinct roots in $(-1,1)$.
4. Take the Rodrigues formula as the definition for $P_{n}(x)$, and show the following relations.
(i) $P_{n}(-x)=(-1)^{n} P_{n}(x)$,
(ii) $P_{n}^{\prime}(-x)=(-1)^{n+1} P_{n}^{\prime}(x)$,
(iii) $P_{n}(1)=1$,
(iv) $P_{n}(-1)=(-1)^{n}$,
(v) $P_{2 n+1}(0)=0$,
(vi) $P_{2 n}(0)=(-1)^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2}}$,
(vii) $P_{n}^{\prime}(1)=\frac{1}{2} n(n+1)$,
(viii) $P_{n}^{\prime}(-1)=(-1)^{n-1} \frac{1}{2} n(n+1)$.
(ix) $P_{2 n}^{\prime}(0)=0$,
(x) $P_{2 n+1}^{\prime}(0)=(-1)^{n} \frac{(2 n+1)!}{2^{2 n}(n!)^{2}}$.
5. Show that $\int_{-1}^{1}\left(1-x^{2}\right) P_{m}^{\prime}(x) P_{n}^{\prime}(x) d x= \begin{cases}\frac{2 n(n+1)}{2 n+1} & \text { if } m=n, \\ 0 & \text { otherwise. }\end{cases}$
6. Show the following relations when $n-m$ is even and nonnegative.
(a) $\int_{-1}^{1} P_{m}^{\prime} P_{n}^{\prime} d x=m(m+1)$,
(b) $\int_{-1}^{1} x^{m} P_{n}^{\prime}(x) d x=0$.

What is the value of the integral if $n-m$ is odd (instead of even)?
7. If $x^{n}=\sum_{r=0}^{n} a_{r} P_{r}(x)$, then show that $a_{n}=\frac{2^{n}(n!)^{2}}{(2 n)!}$.
8. Expand the following functions $f(x)$ in a series of Legendre polynomials: $f(x) \approx \sum_{n \geq 0} c_{n} P_{n} \quad$ with $\quad c_{n}=\frac{2 n+1}{2} \int_{-1}^{1} f(x) P_{n}(x) d x$.
The Rodrigues formula is useful to evaluate these integrals. The Legendre expansion theorem (stated in the lecture notes) applies in each case.
(a) $f_{1}(x)= \begin{cases}-1 & \text { if }-1<x<0 \\ 1 & \text { if } 0<x<1 .\end{cases}$
(b) $f_{2}(x)= \begin{cases}0 & \text { if }-1<x<0 \\ 1 & \text { if } 0<x<1 .\end{cases}$
(c) $f_{3}(x)= \begin{cases}-x & \text { if }-1<x<0 \\ x & \text { if } 0<x<1 .\end{cases}$
(d) $f_{4}(x)= \begin{cases}0 & \text { if }-1<x<0 \\ x & \text { if } 0<x<1\end{cases}$
9. If $p(x)$ is a polynomial of degree $n \geq 1$ such that $\int_{-1}^{1} x^{k} p(x) d x=0$ for $k=$ $0,1, \ldots, n-1$, show that $p(x)=c P_{n}(x)$ for some constant c.

