MA 2017, Tutorial Sheet-4 Bessel equation and Bessel functions

- 1. Using the indicated substitutions, reduce the following differential equations to the Bessel equation and find the general solution in term of the Bessel functions.
 - (a) $x^2y'' + xy' + (\lambda^2 x^2 \nu^2)y = 0$, $(\lambda x = z)$.
 - (b) xy'' 5y' + xy = 0, $(y = x^3u)$.
 - $\begin{array}{ll} ({\rm c}) \ y''+k^2xy=0, & (y=u\sqrt{x},\, \frac{2}{3}kx^{3/2}=z). \\ ({\rm d}) \ x^2y''+(1-2\nu)xy'+\nu^2(x^{2\nu}+1-\nu^2)y=0, & (y=x^\nu u,\ x^\nu=z). \end{array}$
- 2. Prove the following Bessel identities.

(a)
$$[x^{p}J_{p}(x)]' = x^{p}J_{p-1}(x)$$

(b) $[x^{-p}J_{p}(x)]' = -x^{-p}J_{p+1}(x).$
(c) $J'_{p}(x) + \frac{p}{x}J_{p}(x) = J_{p-1}(x).$
(d) $J'_{p}(x) - \frac{p}{x}J_{p}(x) = -J_{p+1}(x).$
(e) $J_{p-1}(x) - J_{p+1}(x) = 2J'_{p}(x).$
(f) $J_{p-1}(x) + J_{p+1}(x) = \frac{2p}{x}J_{p}(x).$
. Show that (a) $J_{1/2} = \sqrt{\frac{2}{\pi x}}\sin x,$ (b) $J_{-1/2} = \sqrt{\frac{2}{\pi x}}\cos x.$
(c) $J_{3/2} = \sqrt{\frac{2}{\pi x}}\left(\frac{\sin x}{x} - \cos x\right),$ (d) $J_{-3/2} = -\sqrt{\frac{2}{\pi x}}\left(\frac{\cos x}{x} + \sin x\right).$

- 4. For an integer n, show that $J_n(x)$ is an even (resp. odd) function if n is even (resp. odd).
- 5. Express $J_2(x), J_3(x), J_4(x)$ in terms of $J_0(x)$ and $J_1(x)$.
- 6. Show the following.

3

(a)
$$J_3 + 3J'_0 + 4J'''_0 = 0.$$
 (b) $\int J_{\nu+1}dx = \int J_{\nu-1}dx - 2J_{\nu}.$

7. If y_1 and y_2 are any two solutions of the Bessel equation of order ν , then show that $y_1y'_2 - y'_1y_2 = c/x$ for a suitable constant c.

8. Show that
$$\int x^{\mu} J_{\nu}(x) dx = x^{\mu} J_{\nu+1}(x) - (\mu - \nu - 1) \int x^{\mu-1} J_{\nu+1}(x) dx$$

9. Expand the indicated function in Fourier-Bessel series over the given interval and in terms of the Bessel function of given order. (The Bessel expansion theorem applies in each case.)

(a)
$$f(x) = 1$$
 over $[0, 1]$, $\nu = 0$.
(b) $f(x) = x$ over $[0, 1]$, $\nu = 1$.
(c) $f(x) = x^3$ over $[0, 1]$, $\nu = 1$.
(d) $f(x) = x^2$ over $[0, 1]$, $\nu = 2$.
(e) $f(x) = \sqrt{x}$ over $[0, 1]$, $\nu = \frac{1}{2}$.
10. If $f(x) = \begin{cases} 1 & \text{if } 0 \le x < 1/2 \\ 1/2 & \text{if } x = 1/2 \\ 0 & \text{if } 1/2 < x \le 1 \\ 0 & \text{if } 1/2 < x \le 1 \end{cases}$, show that $f(x) = \sum_{n=1}^{\infty} \frac{J_1(\lambda_{0,n}/2)}{\lambda_{0,n}J_1(\lambda_{0,n})^2} J_0(\lambda_{0,n}x)$, where $\lambda_{0,n}$'s are positive zeros of $J_0(x)$.