MA 2017, Tutorial Sheet-6 Heat equation by separation of variables

- 1. Which of the following PDEs can be reduced to two or more ODEs by the method of separation of variables?
 - (a) $au_{xy} + bu = 0$ (b) $au_{xx} + 2bu_{xy} + cu_{yy} = 0$
 - (c) $au_{xx} + 2bu_{xy} + cu_y = 0$ (d) $z_{xx} + xyz_y = 0$

(e)
$$f(x)\theta_{tt} = a^2 [f(x)\theta_x]_x$$

2. Solve the following heat equations.

(a)
$$L = 1$$
, $u_t = u_{xx}$, with $u(0,t) = 0 = u(1,t)$, $u(x,0) = x(1-x)$,
(b) $L = \pi$, $u_t = 3u_{xx}$, with $u(0,t) = 0 = u(\pi,t)$, $u(x,0) = x \sin x$,
(c) $L = 2$, $u_t = 4u_{xx}$, with $u_x(0,t) = 0 = u_x(2,t)$, $u(x,0) = \cos(\frac{\pi x}{2})$,
(d) $L = 1$, $u_t = u_{xx}$, with $u_x(0,t) = 0 = u_x(1,t)$, $u(x,0) = x^2(3x^2 - 8x + 6)$,
(e) $L = 1$, $u_t = u_{xx}$, with $u_x(0,t) = 0 = u_x(1,t)$, $u(x,0) = \cos \pi x$,

- 3. Solve the following non-homogeneous IBVP.
 - (a) L = 4, $u_t = 9u_{xx} 54x$, with u(0,t) = 1, u(4,t) = 61, $u(x,0) = 1 x + x^3$. (b) L = 1, $u_t = u_{xx} - 2$, with u(0,t) = 1, u(1,t) = 3, $u(x,0) = 2x^2 + 1$, (c) L = 1, $u_t = 3u_{xx} - 18x$, with $u_x(0,t) = -1$, $u_x(1,t) = -1$, u(x,0) = -x, (d) L = 1, $u_t = 3u_{xx} + \pi^2 \sin \pi x$, with $u_x(0,t) = 0$, $u_x(1,t) = -\pi$, $u(x,0) = 2 \cos \pi x$. (e) $L = \pi$, $u_t - u_{xx} = 8e^{-t} \sin 3x$, with $u(0,t) = 0 = u(\pi,t)$, $u(x,0) = 2 \sin 2x$.
- 4. The curved surface of a thin rod of length ℓ is insulated. The temperature throughout the rod is 100. If at each end of the rod the temperature is suddenly reduced to 0 at time t = 0, find the temperature subsequently. What is the explicit temperature at the mid-point of the rod and how does it behave with respect to the time variable t?
- 5. (a) Solve u_t-u_{xx} = e^{-t} cos 2x, with u_x(0,t) = e^{-t}, u_x(π,t) = -e^{-t}, u(x,0) = sin x.
 Remaining problems are not for the exam but only for your intellectual curiosity.
- 6. For the heat equation: $u_t ku_{xx} = 0, \ 0 < x < \ell, \ t > 0$ with $u(x,0) = u_0(x)$ and $u_x(0,t) = u_x(\ell,t) = 0$, show that $\int_0^\ell u(x,t) \, dx = C$, where C is a constant. In other words, the average temperature stays constant.

Further, show that $\lim_{t \to \infty} u(x,t) = \frac{1}{\ell} \int_0^\ell u_0(x) \, dx.$ Compute the solution, when u_0 is: (i) $u_0(x) = x$, (ii) $u_0(x) = \sin^2(\frac{\pi x}{\ell})$.

7. Compute the solution of $u_t - ku_{xx} + a^2u = 0$, $0 < x < \ell$, t > 0with $u(x,0) = u_0(x)$ and $u(0,t) = u(\ell,t) = 0$. Find $\lim_{t \to \infty} u(x,t)$.