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Throughout the document H∗(X) is used in place of H∗(X,R) to denote
the de Rham cohomology of the smooth manifold X.

1 De Rham cohomology of S2 \ {x1, x2, . . . , xk}
Let X = R2 \ {x1, x2, . . . , xk−1}. Then S2 minus k points is diffeomorphic
to X, thus it suffices to compute the cohomology of X. We will compute
the cohomology groups of X using the Mayer-Vietoris sequence. Let V be
the disjoint union of k − 1 discs around the k − 1 points xi in R2. Then
R2 = X ∪V , and X ∩V is the disjoint union of k−1 punctured disks around
the points xi. Using Mayer-Vietoris Sequence for R2 = X ∪ V , we have the
long exact sequence,

0→H0(R2)→ H0(X)⊕H0(V )→ H0(X ∩ V )→
H1(R2)→ H1(X)⊕H1(V )→ H1(X ∩ V )→
H2(R2)→ H2(X)⊕H2(V )→ H2(X ∩ V )→ 0

Now

H i(V ) =

{
Rk−1 if i = 0

0 otherwise

and

H i(X ∩ V ) =

{
Rk−1 if i = 0, 1

0 otherwise

2



Using the above and replacing particular values in the long exact sequence
we get the long exact sequence

0→R→ R⊕ Rk−1 → Rk−1 →
0→ H1(X)⊕ 0→ Rk−1 →
0→ H2(X)⊕ 0→ 0→ 0

So we get,

(1.0.1) H i(X) =


R if i = 0

Rk−1 if i = 1

0 otherwise

2 De Rham cohomology of Σg \ {p}
Let Σg denote the compact orientable smooth genus g surface. Let M := Σg\
{p}, where p is a point on Σg. We know M can be constructed by attaching g-
handles to S2\{p}. Let {qi} for 1 ≤ i ≤ 2g be 2g many points on S2 different
from p. Around each qi we take two small open discs Bi and Ci such that
Bi ⊂ Ci ⊂ S2 \ {p} and Ci ∩ Cj = φ for i 6= j. Let U = (S2 \ {p}) \

⊔2g
i=1Bi.

Let F1, F2, . . . , Fg denote g-handles, that is, Fi ∼= S1 × (0, 1) and we attach
each Fi to U such that U ∩ Fi = (Ci \ Bi)

⊔
(Ci+g \ Bi+g) for i = 1, 2, . . . g.

Let V =
⊔g
i=1 Fi.
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The above picture illustrates the situation when g = 2. Regions of the same
color are being glued in a manner so that we get the surface which is a sphere
with 2 handles.

So we have U and V are open subsets of M such that, M = U ∪ V and
U ∩ V =

⊔2g
i=1(Ci \ Bi). Let jU : U ∩ V → U and jV : U ∩ V → V be the

inclusion maps. Using Mayer-Vietoris Sequence we have the exact sequence,

0→H0(M)→ H0(U)⊕H0(V )→ H0(U ∩ V )→(2.0.1)

H1(M)→ H1(U)⊕H1(V )
j∗U−j

∗
V−−−−→ H1(U ∩ V )→

H2(M)→ H2(U)⊕H2(V )
j∗U−j

∗
V−−−−→ H2(U ∩ V )→ 0

We have H0(M) = R since M is connected. The smooth manifold U is
diffeomorphic to Rk minus 2g points. Thus, using equation (1.0.1) we get

Hk(U) =


R if k = 0

R2g if k = 1

0 otherwise

Hk(V ) =


Rg if k = 0

Rg if k = 1

0 otherwise

Hk(U ∩ V ) =

{
R2g if k = 0, 1

0 otherwise

Now consider the map j∗U − j∗V : H1(U)⊕H1(V )→ H1(U ∩ V ).

Lemma 2.0.2. j∗U − j∗V : H1(U)⊕H1(V )→ H1(U ∩ V ) is surjective.

Proof. Let W =
⊔2g
i=1Ci. Then we have U and W are open is S2 \ {p} such

that U ∪W = S2 \{p} and U ∩W is diffeomorphic to
⊔2g
i=0(Ci \Bi) = U ∩V .

If fU : U ∩W → U and fW : U ∩W → W denote the inclusion maps, then
jU = fU . Using mayer-Vietoris sequence on S2 = U ∪W , we have the long
exact sequence,

0→H0(S2 \ {p})→ H0(U)⊕H0(W )→ H0(U ∩W )→

H1(S2 \ {p})→ H1(U)⊕H1(W )
f∗U−f

∗
W−−−−→ H1(U ∩W )→

H2(S2 \ {p})→ H2(U)⊕H2(W )
f∗U−f

∗
W−−−−→ H2(U ∩W )→ 0
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Now H2(S2 \ {p}) = 0 and H1(W ) = 0. So we have exact sequence,

0→ · · · → H1(U)
f∗U−→ H1(U ∩W )→ 0

So f ∗U : H1(U)→ H1(U∩W ) is surjective and hence j∗U : H1(U)→ H1(U∩V )
is also sujective. So j∗U − j∗V : H1(U)⊕H1(V )→ H1(U ∩V ) is surjective.

Combining the above Lemma with equation (2.0.1) we get the long eaxct
sequence,

0→R→ R⊕ Rg → R2g →

H1(M)→ R2g ⊕ Rg
j∗U−j

∗
V−−−−→ R2g →

H2(M)→ 0→ 0→ 0

Since j∗U − j∗V is surjective we get that H2(M) = 0 and H1(M) = R2g. So

Hk(Σg \ {p}) =


R if k = 0

R2g if k = 1

0 otherwise

3 De Rham cohomology of Σg

Let p ∈ Σg. Take U = Σg \ {p} and V be a small disc around p in Σg.
So U ∪ V = Σg and U ∩ V = V \ {p}. Using Mayer Vietoris sequence and
cohomology of U and V , we get the long exact sequence,

(3.0.1) 0→ R→ R2 → R→ H1(Σg)→ R2g → R→ H2(Σg)→ 0 .

By the surjection on the right we conclude that H2(Σg) is either R or 0.

Lemma 3.0.2. H2(Σg) = R.

Proof. Let f be a compactly supported non-negative non-zero funtion on
V (∼= R2). Let ω = fdx ∧ dy be a 2-form on V . Since ω is compactly
supported, ω can be taken as a 2-form on Σg by extending as 0 outside V . So
[ω] ∈ H2(Σg) since it is a top form. Consider the linear map

∫
: H2(Σg)→ R.

Then
∫

[ω] 6= 0 and hence H2(Σg) is nontrivial. Again we already observed
that H2(Σg) is either R or 0, so we conclude that H2(Σg) = R.
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So from the long exact sequence (3.0.1) we get H2(Σg) = R and H1(Σg) =
R2g. So,

Hk(Σg) =


R if k = 0, 2

R2g if k = 1

0 otherwise

4 De Rham cohomology of CPn

We know CP1 is diffeomorphic to S2. So,

Hk(CP1) =

{
R if k = 0 or 2

0 otherwise

Consider CPn for n > 1. Since CPn is connected, H0(CPn) ∼= R. Now CPn−1
can be identified with the subset

{[z0 : z1 : . . . : zn] ∈ CPn | zn = 0}

of CPn. Let

(1) p := [0 : 0 : . . . : 0 : 1],

(2) U := CPn \ CPn−1,

(3) V := CPn \ {p}.

Then U ∪V = CPn and U ∩V = U \{p}. Using the Mayer-Vietoris sequence
we have the exact sequence,

0→H0(CPn)→ H0(U)⊕H0(V )→ H0(U ∩ V )→(4.0.1)

H1(CPn)→ H1(U)⊕H1(V )→ H1(U ∩ V )→
. . .

H2n(CPn)→ H2n(U)⊕H2n(V )→ H2n(U ∩ V )→ 0

Now we observe that U is diffeomorphic to Cn. This shows that Hk(U) = 0 if
k 6= 0. Similarly, U∩V is diffeomorphic to Cn\{0} which deformation retracts
onto S2n−1 Hence Hk(U ∩ V ) = 0 unless k ∈ {0, 2n − 1} and H0(U ∩ V ) =
H2n−1(U ∩ V ) = R.
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Lemma 4.0.2. V deformation retracts to CPn−1 smoothly.

Proof. We define a homotopy F : V × R→ V by

(4.0.3) ([z0 : . . . : zn], t) 7→ [z0 : . . . : zn−1 : (1− t)zn)] .

To see that F is smooth : We cover CPn by the open sets U0, . . . , Un
where Ui = {[z0 : · · · : zn] ∈ CPn|zi 6= 0}. Then each Ui is diffeomorphic to
Cn by the diffeomorphism :

ϕi : Ui → Cn

[z0 : · · · : zn] 7→
(
z0
zi
, . . . ,

zi−1
zi

,
zi+1

zi
, . . . ,

zn
zi

)
We observe that [z0 : · · · : zn] ∈ V iff (z0, . . . , zn−1) 6= (0, . . . , 0). So if
(q, t) ∈ V ×R, without loss of generality we can assume (q, t) ∈ (Uj ∩V )×R
for j ∈ {0, . . . , n − 1} and also F (q, t) ∈ (Uj ∩ V ). Now (Uj ∩ V ) × R is
diffeomorphic to an open subset of Cn × R via the map (ϕj|Uj∩V × id). So

ϕj ◦ F ◦ (ϕ−1j × id) : ϕj(Uj ∩ V )× R→ Cn

is a map between euclidean spaces given by,

(w1, . . . , wn, t) 7→ (w1, . . . , wn−1, (1− t)wn) .

This map is clearly smooth and hence F is also smooth.
Recall that we identified CPn−1 with the subset {[z0 : z1 : . . . : zn] ∈

CPn | zn = 0} of CPn. So it is also clear that for all v ∈ V we have F (v, 0) = v
and F (v, 1) ∈ CPn−1. Further, for all w ∈ CPn−1 we have F (w, t) = w.
Hence, V deformation retracts to CPn−1 smoothly.

By induction let us assume that Hk(CPn−1) = R when k is an even integer
in [0, 2n− 2], and 0 for other k. Thus, the same result follows for V , that is,

Hk(V ) =

{
R if k ∈ [0, 2n− 2] and k even

0 otherwise

Since CPn, U , V and U ∩ V are all connected, it follows that the sequence

0→ H0(CPn)→ H0(U)⊕H0(V )→ H0(U ∩ V )→ 0
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is exact. From (4.0.1) it follows that

0→H1(CPn)→ H1(U)⊕H1(V )→ H1(U ∩ V )→(4.0.4)

. . .

H2n−1(CPn)→ H2n−1(U)⊕H2n−1(V )→ H2n−1(U ∩ V )→
H2n(CPn)→ H2n(U)⊕H2n(V )→ H2n(U ∩ V )→ 0

is an exact sequence. Since H i(U ∩ V ) vanishes for 1 ≤ i ≤ 2n − 2 we get
that H i(CPn)→ H i(V ) is an isomorphism for 1 ≤ i ≤ 2n− 2. The last part
of the above sequence is

0→H2n−1(CPn)→ H2n−1(U)⊕H2n−1(V )→ H2n−1(U ∩ V )→
H2n(CPn)→ H2n(U)⊕H2n(V )→ H2n(U ∩ V )→ 0

Again, substituting specifc values and using induction hypothesis this be-
comes

0→ H2n−1(CPn)→ 0→ R→ H2n(CPn)→ 0 .

This shows that H2n−1(CPn) = 0 and H2n(CPn) = R. Thus, by induction
we see that

Hk(CPn) =

{
R if k ∈ [0, 2n] and k even

0 otherwise

5 De Rham cohomology of RPn

We know RP1 is diffeomorphic to S1. So,

Hk(RP1) =

{
R if k = 0 or 1

0 otherwise

Let n > 1. Since RPn is connected, H0(RPn) ∼= R.

Lemma 5.0.1. Hk(RPn) = 0 for 0 < k < n.

Proof. Let π : Sn → RPn be the quotient map. We have the induced map
π∗ : Hk(RPn) → Hk(Sn). Let 0 < k < n and [σ] ∈ Hk(RPn). Let σ ∈
Γ(RPn,∧kΩRPn) represent the class [σ]. The class π∗[σ] is represented by the
form π∗σ. Now Hk(Sn) = 0 for 0 < k < n and so [π∗σ] = 0. Thus, there
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is an η ∈ Γ(Sn,∧k−1ΩSn) such that d(η) = π∗σ. Let f : Sn → Sn be the
involution x 7→ −x. Then we have π ◦ f = π. Thus, f ∗π∗σ = π∗σ. Let

ω :=
η + f ∗η

2
.

Then

dω = d

(
η + f ∗η

2

)
=

1

2
(dη + f ∗dη)

=
1

2
(π∗σ + f ∗π∗σ)

=
1

2
(π∗σ + π∗σ) = π∗σ.

We notice that Dπx is an isomorphism for all x ∈ Sn. We define

ω̃ : Sn → ∧k−1ΩRPn

by
ω̃(x) = (∧k−1((Dπx)̌)−1)(ω(x)).

Now we observe that ω̃ ◦ f = ω̃. That is, the section ω̃ is invariant under the
involution f and so descends to a section of RPn. So we get an induced map,

ω̃0 : RPn → ∧k−1ΩRPn

and clearly ω̃0 ∈ Γ(RPn,∧k−1ΩRPn) and is such that π∗ω̃0 = ω̃. Next we
want to check that dω̃0 = σ. But this is a local check and since π is a local
diffeomorphism, it suffices to check that π∗dω̃0 = π∗σ. But this is obvious.
This shows that [σ] = 0 in Hk(RPn). Hence Hk(RPn) = 0 for 0 < k < n.

In view of the above Lemma it only remains to compute Hn(RPn). We
will do this using the Mayer-Vietoris sequence. Let

(1) p := [0 : 0 : . . . : 0 : 1],

(2) U := RPn \ RPn−1,

(3) V := RPn \ {p}.
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Then U∪V = RPn and U∩V = U \{p}. Clearly U is diffeomorphic to Rn, V
deformation retracts to RPn−1 (same homotopy as in equation (4.0.3)) and
U ∩V is diffeomorphic to Rn \ {0} which deformation retracts onto Sn−1. So
Hk(U) ∼= 0, Hk(V ) ∼= Hk(RPn−1) and Hk(U ∩ V ) ∼= Hk(Sn−1) for all k > 0.
Using Mayer-Vietoris sequence we get the following exact sequnce

0→ · · · → Hn−1(RPn)→ Hn−1(RPn−1)→ Hn−1(Sn−1)→ Hn(RPn)→ 0

Using Hn−1(RPn) ∼= 0, we have the s.e.s,

0→ Hn−1(RPn−1)→ R→ Hn(RPn)→ 0

Using H1(RP1) ∼= R, by induction we get

Hn(RPn) =

{
R if n is odd

0 if n is even

6 De Rham cohomology of Σg \ {x1, x2, . . . , xk}
Let X denote the manifold Σg \ {x1, x2, . . . , xk}. Let M = Σg \ {x1} and V
be disjoint union of k− 1 small discs around x2, . . . , xk. So X ∪ V = M and
X ∩ V is disjoint union of k − 1 annuli. We have,

H i(M) =


R if i = 0

R2g if i = 1

0 otherwise

H i(V ) =

{
Rk−1 if i = 0

0 otherwise

H i(X ∩ V ) =

{
Rk−1 if i = 0, 1

0 otherwise

Using M-V sequence we have the long exact sequence:

0→H0(M)→ H0(X)⊕H0(V )→ H0(X ∩ V )→
H1(M)→ H1(X)⊕H1(V )→ H1(X ∩ V )→
H2(M)→ H2(X)⊕H2(V )→ H2(X ∩ V )→ 0
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Plugging in the values we get

0→R→ R⊕ Rk−1 → Rk−1 →
R2g → H1(X)→ Rk−1 →
0→ H2(X)→ 0→ 0

So we clearly get,

H i(X) =


R if i = 0

R2g+k−1 if i = 1

0 otherwise

7 De Rham cohomology of Σg#RP2

Let M = Σg#RP2. Let p ∈ Σg and q ∈ RP2. Let C ⊂ Σg be a disc around
p and D ⊂ RP2 be a disc around q. Let U = Σg \ C and V = RP2 \ D.
Then we can get M by gluing U and V so that U ∩ V is diffeomorphic to
an annulus. Let jU : U ∩ V → U and jV : U ∩ V → V denote the inclusion
maps. Using Mayer-Vietoris Sequence we have the exact sequence,

0→H0(M)→ H0(U)⊕H0(V )→ H0(U ∩ V )→(7.0.1)

H1(M)→ H1(U)⊕H1(V )
j∗U−j

∗
V−−−−→ H1(U ∩ V )→

H2(M)→ H2(U)⊕H2(V )→ H2(U ∩ V )→ 0

We have H0(M) = R since M is connected. Now U is diffeomorphic to
Σg \ {p}, so

Hk(U) =


R if k = 0

R2g if k = 1

0 otherwise

V is diffeomorphic to RP2 \ {q}, hence deformation retracts to RP1 ∼= S1, as
we saw earlier .

Hk(V ) =

{
R if k = 0, 1

0 otherwise

and clearly

Hk(U ∩ V ) =

{
R if k = 0, 1

0 otherwise
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Now consider the map j∗V : H1(V )→ H1(U ∩ V ).

Lemma 7.0.2. j∗V : H1(V )→ H1(U ∩ V ) is surjective.

Proof. Let W ⊂ RP2 be the set D ∪ (U ∩ V ). Then W is an open disk
around q. Then RP2 = V ∪W and V ∩W = U ∩ V is an annulus around
q. Let fV : V ∩W → V and fW : V ∩W → W denote the inclusions. Then
fV = jV . Using Mayer-Vietoris sequence on RP2 = V ∪W , we have the long
exact sequence,

0→H0(RP2)→ H0(V )⊕H0(W )→ H0(V ∩W )→

H1(RP2)→ H1(V )⊕H1(W )
f∗V −f

∗
W−−−−→ H1(V ∩W )→

H2(RP2)→ H2(V )⊕H2(W )
f∗V −f

∗
W−−−−→ H2(V ∩W )→ 0

Now H2(RP2) = 0 and H1(W ) = 0. So we have exact sequence,

0→ · · · → H1(V )
f∗V−→ H1(V ∩W )→ 0

So f ∗V : H1(V )→ H1(V ∩W ) is surjective and hence j∗V : H1(V )→ H1(U∩V )
is also surjective.

So j∗U − j∗V : H1(U)⊕H1(V )→ H1(U ∩ V ) is surjective. Combining the
above lemma with (7.0.1) we get the long eaxct sequence,

0→R→ R⊕ R→ R→

H1(M)→ R2g ⊕ R
j∗U−j

∗
V−−−−→ R→

H2(M)→ 0→ 0→ 0

Since j∗U − j∗V is surjective we get that H2(M) = 0 and H1(M) = R2g. So

Hk(Σg#RP2) =


R if k = 0

R2g if k = 1

0 otherwise
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8 Some constructions out of vector spaces and

their universal properties

8.1 Construction of PnC and the tautological line bundle

We first construct PnC using gluing. Let Ui ∼= Cn be the set

Ui = {z = (z0 : . . . : zi−1 : 1 : zi+1 : . . . : zn) ∈ Cn+1} .

Let Uij ⊂ Ui be the set of those points such that zj 6= 0. In particular, this
means that Uii = Ui. Define maps ϕij : Uij → Uji by multiplication by 1

zj
,

that is,

ϕij(z) = (
z0
zj

: . . . :
zi−1
zj

:
1

zj
:
zi+1

zj
: . . . :

zn
zj

) .

It is easily checked that these satisfy the cocycle condition, and gluing these
we get PnC.

Next we will glue to construct a line sub-bundle of PnC × Cn+1. First
note that over Ui we have a canonical line sub-bundle, given by the following
section of Ui × Cn+1 → Ui,

z 7→ si(z) = (z0 : . . . : zi−1 : 1 : zi+1 : . . . : zn) .

It is clear that this section is smooth and non-vanishing, thus, it defines
a line sub-bundle of Ui × Cn+1. Let us denote this line sub-bundle by Li.
As above, the map multiplication by 1

zj
fits into a commutative diagram of

smooth maps

Li|Uij
Lj|Uji

Uij Uji

The top horizontal arrow is given by (z, v) 7→ (ϕij(z), v/zj). As a result we
get that the Li’s glue together to give a line sub-bundle of PnC × Cn+1. We
denote this line sub-bundle by OPnC(−1). It has the description that over a
point [v] ∈ PnC the fiber is exactly the line in Cn+1 corresponding to [v].
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8.2 Universal property of P(V )

Let V be the vector space Cn+1. Recall that on P(V ) we have a short exact
sequence of vector bundles, namely,

0→ OP(V )(−1)→ P(V )× Cn+1 → Q→ 0 .

The above line sub-bundle has the following property. Given a point p ∈
P(V ), it corresponds to a line [lp] ∈ Cn+1. When we restrict the inclusion
OP(V )(−1) ↪→ P(V )×Cn+1 over the point p, we get exactly the line lp inside
Cn+1.

Let f : X → P(V ) be a smooth map. The pull back of the above short
exact sequence to X along f gives a short exact sequence of vector bundles
on X

0→ f ∗(OP(V )(−1))→ X × Cn+1 → f ∗Q → 0 .

Thus, consider the map Φ between the following two sets

Φ : {Smooth maps X → Pn} → {Line sub-bundles of X × Cn+1} ,

defined as Φ(f) is the line sub-bundle f ∗(OP(V )(−1)) ↪→ X × Cn+1.

Theorem 8.2.1. Φ is a bijective correspondence between maps X → P(V )
and line subbundles of X × Cn+1.

Proof. Let us define a map Ψ in the other direction, that is,

Ψ : {Line sub-bundles of X × Cn+1} → {Smooth maps X → P(V )}

Let L be a line subbundle of X ×Cn+1. We define a map Ψ(L) : X → P(V )
by the pointwise description as follows. For x ∈ X, Ψ(L)(x) = [Lx], where
[Lx] is the class of the line determined by Lx in Cn+1.

Let us check that Ψ(L) is a smooth map. To show this it is enough to
show that for each x ∈ X there is a neighbourhood U of x in X such that
Ψ(L)|U is smooth. So let x ∈ X and U be a trivializing neighbourhood of
x in X. Then we have a non-vanishing smooth section s ∈ Γ(U,L). Let
q : Cn+1 \ {(0, . . . , 0)} → P(V ) be the natural quotient map and ι : L →
X × Cn+1 be the inclusion map. Then we have Ψ(L)|U = q ◦ π ◦ ι ◦ s where
π : X × Cn+1 → Cn+1 is the projection. Since q, π and ι are smooth, so
Ψ(L)|U is smooth.
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We claim Ψ ◦ Φ = Id. Let f : X → Pn be a smooth map. Let L denote
the line bundle [f ∗OP(V )(−1)]. We claim that the lines Lx and OP(V )(−1)f(x)
inside Cn+1 are the same. If this claim is true, then it will follow that
Ψ(L)(x) = f(x), that is, Ψ ◦ Φ(f) = f . However, the claim follows trivially
from the canonical identification between the fibers (f ∗E)x and Ef(x) for a
bundle E over Y and a map f : X → Y . This proves that Ψ ◦ Φ = Id.

Next let us show that Φ ◦ Ψ = Id. Let us start with a line sub-bundle
L ↪→ X × Cn+1. By the definition of the map f that this defines, it is clear
that for each point x ∈ X the line sub-bundles L and f ∗OP(V )(−1) define
the same line inside Cn+1 over x. Now we easily conclude that these line
sub-bundles are the same. For example, consider the short exact sequence

0→ L → X × Cn+1 → Q→ 0 ,

where Q denotes the quotient. Then f ∗OP(V )(−1) maps to 0 in Q. This
shows that there is a map f ∗OP(V )(−1)→ L which is clearly forced to be an
isomorphism. This proves that Φ ◦Ψ = Id. This completes the proof of the
theorem.

8.3 Construction of Grassmannian manifold Grk(V ) and
the tautological sub-bundle

Notations :

• Mm×n(C) denotes set of all m× n matrices with entries from C.

• Ik := {I ⊂ {1, 2, . . . , n} : |I| = k} for 1 ≤ k ≤ n.

• For A = (A1, A2, . . . , An) ∈ Mk×n(C) and I = {i1 < i2 < · · · < ik} ∈
Ik, we define AI := (Ai1 , Ai2 , . . . , Aik) ∈Mk×k(C).

Let V be the n dimensional vector space Cn over C. The grassmannian
Grk(V ) is the space of all k-dimensional subspaces of V . We first construct
Grk(V ) using gluing. Let for each I ∈ Ik, UI ∼= Ck×(n−k) be the set

UI = {A ∈Mk×n(C) | AI = Ik} .

Let for I, J ∈ Ik, UIJ ⊂ UI be the set

UIJ := {A ∈ UI | AJ is non-singular} .
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In particular, this means that UII = UI . Define maps ϕIJ : UIJ → UJI to be
multiplication by (AJ)−1, that is,

ϕIJ(A) = (AJ)−1A .

It is easily checked that these satisfy the cocycle condition, and ϕIJ ’s are
smooth. Clearly gluing these UI ’s along ϕIJ ’s we get Grk(V ).

Next we will glue to construct a sub-bundle of Grk(V ) × V of rank k.
First note that over UI we have a canonical sub-bundle of rank k, given by
the following sections sI,1, sI,2, . . . , sI,k of the bundle UI × V → UI ,

(amn) = A 7→ sI,i(A) = (ai1, ai2, . . . , ain) ∈ V for 1 ≤ i ≤ k .

It is clear that these sections are smooth and since rank(A) = k, so these
spans a k dimensional subspace of V . Thus, it defines a sub-bundle of UI×V
of rank k. Let us denote this sub-bundle by SI . Now the map multiplication
by (AJ)−1 fits into a commutative diagram of smooth maps

SI |UIJ
SJ |UJI

UIJ UJI
ϕIJ

The top horizontal arrow is given by

(A, v1, . . . , vk) 7→ (ϕIJ(A), (AJ)−1 · v1, . . . , (AJ)−1 · vk) .

As a result we get that the SI ’s glue together to give a sub-bundle of Grk(V )×
V of rank k. We call this sub-bundle tautological sub-bundle overGrk(V ) and
denote it by SGrk(V ). It has the description that over a point [w] ∈ Grk(V )
the fiber is exactly the k dimensional subspace in V corresponding to [w].

It is easily checked that as sets,

Grk(V ) ∼= {A ∈Mn×k(C) : rk(A) = k}/ ∼

where A ∼ B iff A = BT for some T ∈ GL(k,C). The natural quotient map
q : {A ∈ Mn×k(C) : rk(A) = k} → Grk(V ) is smooth with respect to the
given smooth structure on Grk(V ).
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8.4 Universal property of Grk(V )

Let V be the vector space Cn over C. On Grk(V ) we have a short exact
sequence of vector bundles, namely,

0→ SGrk(V ) → Grk(V )× V → Q→ 0 .

Let f : X → Grk(V ) be a smooth map. The pull back of the above short
exact sequence to X along f gives a short exact sequence of vector bundles
on X

0→ f ∗SGrk(V ) → X × V → f ∗Q → 0 .

Thus, consider the map Φ between the following two sets

Φ : {Smooth maps X → Grk(V )} → {Sub-bundles of X × V of rank k} ,

defined as Φ(f) is the sub-bundle f ∗(SGrk(V )) ↪→ X × V .

Theorem 8.4.1. Φ is a bijective correspondence between maps X → Grk(V )
and subbundles of X × V of rank k.

Proof. Let us define a map Ψ in the other direction, that is,

Ψ : {Subbundles of X × V of rank k} → {Smooth maps X → Grk(V )}

Let K be a subbundle of X × V . We define a map Ψ(K) : X → Grk(V ) by
the pointwise description as follows. For x ∈ X, Ψ(K)(x) = [Kx], where [Kx]
is the point in Grk(V ) corresponding to the k dimensional subspace Kx of V .

Let us check that Ψ(K) is a smooth map. To show this it is enough to
show that for each x ∈ X there is a neighbourhood U of x in X such that
Ψ(K)|U is smooth. So let x ∈ X and U be a trivializing neighbourhood of x
in X i.e. K|U ∼= U × V .

Then we have k linearly independent smooth sections s1, s2, . . . , sk ∈
Γ(U,K). For each y ∈ U , viewing si(y) as a column vector in V , we have
(s1(y), . . . , sk(y)) ∈ Mn×k(C) of rank k. Let q : {A ∈ Mn×k(C) : rk(A) =
k} → Grk(V ) be the natural quotient map and π : X × V → V be the
projection. Then we have Ψ(K)|U = q ◦ π(s1, . . . , sk). Since q and π are
smooth, so Ψ(K)|U is smooth.

We claim Ψ ◦ Φ = Id. Let f : X → Grk(V ) be a smooth map. Let
K denote the bundle f ∗(SGrk(V )). We claim that the subspaces Kx and
(SGrk(V ))f(x) of V are the same. If this claim is true, then it will follow
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that Ψ(K)(x) = f(x), that is, Ψ◦Φ(f) = f . However, the claim follows triv-
ially from the canonical identification between the fibers (f ∗E)x and Ef(x)
for a bundle E over Y and a map f : X → Y . This proves that Ψ ◦ Φ = Id.

Next let us show that Φ ◦ Ψ = Id. Let us start with a sub-bundle
K ↪→ X × V of rank k. By the definition of the map f that this defines, it is
clear that for each point x ∈ X the sub-bundles K and f ∗(SGrk(V )) define the
same subspace of V over x. Now we easily conclude that these sub-bundles
are the same. For example, consider the short exact sequence

0→ K → X × V → N → 0 ,

where N denotes the quotient. Then f ∗(SGrk(V )) maps to 0 in N . This
shows that there is a map f ∗(SGrk(V )) → K which is clearly forced to be an
isomorphism. This proves that Φ ◦Ψ = Id. This completes the proof of the
theorem.

9 Some constructions out of vector bundles

and their universal properties

9.1 Projectivization of a vector bundle and Universal
line bundle

Let M be a manifold and E → M be a vector bundle over M of rank
n + 1. Let {Ui}i∈I be an open cover of M such that E is constructed by
gluing Ui × Cn+1 using transition maps ϕij : Uij → GL(n + 1,C) where
Uij = Ui ∩Uj. So for each x ∈M , ϕij(x) induces a map ϕ̃ij : PnC → PnC given
by ϕ̃ij(x)([z]) = [ϕij(x)(z)] where z ∈ Cn+1. We construct the projective
bundle P(E) over M by gluing Ui×PnC using smooth maps Uij×PnC → Uij×PnC
given by

(9.1.1) (x, [z]) 7→ (x, [ϕij(x)(z)])

Let us check that this map is smooth. Assume that [z] = [z0 : . . . : zn] where
zr 6= 0. Similarly, let ϕij(x)([z]) = [w0 : . . . : wn] where wt 6= 0. Then it is
easy to see that wm

wt
is a smooth function of zn

zr
and the coordinate functions

of ϕij(x) in a small neighbourhood of (x, [z]).
Let π : P(E)→ M denote the bundle map. We have the bundle π∗E on

P(E). Recall the definition of the pullback. It is constructed by gluing the
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trivial bundles over the set π−1(Ui) using the transition maps ϕij ◦ π. Note
that π−1(Ui) ∼= Ui×PnC since E is trivial over Ui. In this particular case, this
gluing is given as follows. Glue ψij : Uij × PnC × Cn+1 → Uij × PnC × Cn+1

using the isomorphism

(x, [v], w) 7→ (x, [ϕij(v)], ϕij(w)) .

Now on each Ui × PnC we consider the universal subbundle Ui ×O(−1) ⊂
Ui × PnC × Cn+1. We claim that the above gluing ψij gives smooth maps
Uij × O(−1) → Uij × O(−1). Set theoretically this is clear since a point in
Uij ×O(−1) looks like (x, [v], λv). Now we have the following general result.
Let N ⊂ M be an embedded submanifold. Suppose we have a smooth map
X → M such that the image lands inside N , then the set map X → N is
smooth. Applying this we see that there is a commutative square of smooth
maps

Uij ×O(−1) Uij ×O(−1)

Uij × PnC × Cn+1 Uij × PnC × Cn+1

This shows that Ui × O(−1)’s glue together to give a subbundle OP(E)(−1)
of π∗E over P(E). We call OP(E)(−1) the universal line bundle.

9.2 Universal property of P(E)

Let E be a vector bundle on a smooth manifold X of rank n+1 and f : Y →
X be a smooth map. Let π : P(E) → X be the projectivization of E and
g : Y → P(E) be a smooth map satisfying

(9.2.1) π ◦ g = f .

On P(E) we have the short exact sequence of vector bundles :

0→ OP(E)(−1)→ π∗(E)→ Q→ 0 .

The pull back of this to Y along f gives a short exact sequence of vector
bundles on Y

0→ g∗(OP(E)(−1))→ f ∗E → g∗Q → 0 .
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Thus, consider the map Φ between the following two sets

Φ :

{
Smooth maps Y

g−→ P(E)
satisfying (9.2.1)

}
→ {Line sub-bundles of f ∗E} ,

defined as Φ(g) is the line sub-bundle g∗(OP(V )(−1)) ↪→ f ∗E.

Theorem 9.2.2. Φ is a bijective correspondence between maps g : Y → P(E)
satisfying (9.2.1) and line subbundles of f ∗E on Y .

Proof. We have f̃ : f ∗E → E which makes the following diagram commute

f ∗E E

Y X

f̃

f

and fibre-wise the map is given by f̃y(v) = v where v ∈ f ∗Ey which is
canonically identified with Ef(y). Let us define a map Ψ in the other direction,
that is,

Ψ : {Line sub-bundles of f ∗E} →
{

Smooth maps Y
g−→ P(E)

satisfying (9.2.1)

}
Let L be a line subbundle of f ∗E. We define a map Ψ(L) : Y → P(E) by

the pointwise description as follows. For y ∈ Y , Ψ(L)(y) = [f̃y(Ly)], where

[f̃y(Ly)] is the point in P(Ef(y)) determined by the line f̃y(Ly) in Ef(y).
To check that Ψ(L) is smooth we need only show that for each y ∈ Y

there is a neighbourhood V of y in Y and an open set W in P(E) containing
Ψ(L)(y) such that Ψ(L)|V : V → W is smooth. So let y ∈ Y and U be a
E-trivializing neighbourhood of f(y) in X. So we have smooth vector bundle
isomorphisms α and β such that

α : E|U
∼−→ U × Cn+1 and β : P(E)|U

∼−→ U × PnC .

Now let V ⊂ f−1(U) be a neighbourhood of y in Y such that L is trivial
over V . So we have a non-vanishing smooth section s ∈ Γ(V,L). Since L is
a sub-bundle of f ∗E we view s(p) as a vector in f ∗Ep for p ∈ U . So we get
Ψ(L) is the composition of the following maps :

V
s−→ (f ∗E)|V \ s0

f̃−→E|U \ s0
α−→ U × (Cn+1 \ {(0, . . . , 0)})

(Id,q)−−−→ U × PnC
β−1

−−→ P(E)|U
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where s0 denotes the zero section of the corresponding bundles and q :
Cn+1 \ {(0, . . . , 0)} → PnC is the natural quotient map. Since all maps in
this sequence are smooth so Ψ(L)|V : V → P(E)|U is smooth. And hence
Ψ(L) is smooth.

We claim that Φ ◦ Ψ = Id. Let L denote the line bundle g∗(OP(E)(−1)).
By canonical identification of g∗(OP(E)(−1))y andOP(E)(−1)g(y), we have that

Ly and OP(E)(−1)g(y) are the same inside Cn+1. And by definition of f̃ we

have f̃y(Ly) and Ly are the same inside Cn+1. So f̃y(Ly) and OP(E)(−1)g(y)
are same when considered as a subspace of Cn+1. So it follows that Ψ(L)(y) =
g(y) and hence Ψ ◦ Φ(g) = g.

Next we show that Φ◦Ψ = Id. We start with a line sub-bundle L ↪→ f ∗E.
By definition of the map Ψ(L) at each point y ∈ Y , the line sub-bundle L
and Ψ(L)∗OP(E)(−1) defines the same line inside Cn+1 over y. Now we can
conclude that these line sub-bundles are the same by considering the short
exact sequence

0→ L → f ∗E → N → 0 ,

where N denotes the quotient. Then g∗OP(E)(−1) maps to 0 in N . This
shows that there is a map g∗OP(E)(−1)→ L which is clearly forced to be an
isomorphism. This proves that Φ ◦Ψ = Id. This completes the proof of the
theorem.

9.3 Construction of Flag of a vector bundle F(E)

Let M be a manifold and E → M be a vector bundle over M of rank n.
Let π : P(E) → M be the projectivization of E → M . We have the vector
bundle π∗(E) over P(E) of rank n and the universal subbundle S of rank 1.
We define the universal quotient bundle Q1, a vector bundle of rank n − 1
over P(E), to be the cokernel of the inclusion S ↪→ π∗E. Thus, we have a
short exact sequence of vector bundles

0→ S → π∗E → Q1 → 0

on P(E). We again apply projectivization on the vector bundle Q1 → P(E)
to get the bundle π1 : P(Q1) → P(E). Similarly, we can get the universal
quotient bundle of rank n − 2, namely, π∗1Q1 → Q2, over P(Q1). We apply
projectivization again to get P(Q2)→ P(Q1). Repeating this process we get
a sequence of bundles of decreasing rank:

M ← P(E)← P(Q1)← · · · ← P(Qn−2)← P(Qn−1)
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where Qi+1 is the universal quotient bundle over P(Qi).
We define flag of the vector bundle E to be F(E) := P(Qn−1). A point in

F(E) is of the form (x, l1, l2, . . . , ln) where x ∈M and l1 is a one dimensional
subspace of W1 := Ex and li+1 is a one dimensional subspace of Wi+1 := Wi/li
for i = 1, . . . , n− 1. Let ηi : Wi → Wi+1 denote the quotient map. Then we
get a sequence surjective maps :

Ex = W1
η1−→ W2

η2−→ W3
η3−→ . . .

ηn−1−−−→ Wn .

Let Vi := ker(ηi ◦ · · · ◦ η1) is a i-dimensional subspace of Ex for 1 ≤ i < n.
So we have a full flag in Ex :

V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ Vn = Ex .

So to each point (x, l1, l2, . . . , ln) in F(E) we can assign the full flag {Vi}n1
in Ex and clearly this assignment is bijective. So equivalently we can say a
point of F(E) is of the form (x, V1, . . . , Vn) where x ∈ M and V1 ⊂ V2 ⊂
· · · ⊂ Vn−1 ⊂ Vn = Ex is a full flag in Ex.

9.4 The tautological filtration over F(E)

Definition 9.4.1. Let B be a vector bundle over M of rank n. A full-
sequence of sub-bundles A in B over M is a sequence of sub-bundles A :
A1 ↪→ A2 ↪→ · · · ↪→ An−1 ↪→ B where Ai is a vector bundle over M of rank

i. We denote the quotient bundle of the inclusion Ai ↪→ B by B�Ai .

Let E be a vector bundle on a smooth manifold X of dimension n and
F(E)

σ−→ X be flag of E → X. We have the sequence of bundles:

X
π←− P(E)

π1←− P(Q1)
π2←− · · · πn−2←−−− P(Qn−2)

πn−1←−−− P(Qn−1) = F(E)

where Q1 is the universal quotient bundle over P(E), Qi+1 is the universal
quotient bundle over P(Qi) for i > 0, πi’s denote the bundle maps as shown
in the diagram and σ = π ◦ π1 ◦ · · · ◦ πn−1. Let S1 denotes the universal line
bundle over P(E) and Si+1 denotes the universal line bundle over P(Qi) for
i > 0. So we have the following diagram:

S1 S2 . . . Sn−1

X P(E) P(Q1) · · · P(Qn−2) P(Qn−1) = F(E)π π1 π2 πn−2 πn−1
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In particular, by definition we have short exact sequences

0→ Si → π∗i−1Qi−1 → Qi → 0 .

Let us consider the following line bundles over F(E),

Bi := ((πn−1 ◦ · · · ◦ πi)∗(Si)) 1 ≤ i < n .

So B1 is a line sub-bundle of E1 := σ∗E and B2 is a line sub-bundle of
E2 := E1�B1

. Similarly we write Ei+1 := Ei�Bi
for 1 < i < n. So Bi is a line

sub-bundle of Ei for 1 ≤ i < n. Let βi : Ei → Ei+1 denote the quotient map,
then we have sequence of surjective maps:

σ∗E = E1
β1−→ E2

β2−→ E3
β3−→ . . .

βn−1−−−→ En .

Hence we get a full-sequence of sub-bundles R in σ∗E over F(E):

R : R1 ↪→ R2 ↪→ . . . ↪−→ Rn−1 ↪−→ σ∗E

where
Ri := ker(βi ◦ · · · ◦ β1) .

We call R to be the tautological filtration of vector bundles over F(E).
It has the description that over a point (x, V1, . . . , Vn) ∈ F(E) the fiber of
Rk is exactly the k dimensional subspace Vk of Ex.

9.5 Universal property of F(E)

Let E be a vector bundle on a smooth manifold X of dimension n and
F(E)

σ−→ X be flag of E → X.
Let f : Y → X be a smooth map and g : Y → F(E) be a smooth map

which makes the following diagram commute

(9.5.1)

F(E)

Y X .

σ

f

g

We have the tautological filtration of bundles R over F(E). The pullback
of R to Y along g gives a full-sequence of sub-bundles in f ∗E over Y :

g∗R : g∗R1 ↪→ g∗R2 ↪→ . . . ↪−→ g∗Rn−1 ↪−→ g∗(σ∗E) = f ∗E.
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Consider the map Φ between the following two sets

Φ :

{
Smooth maps Y

g−→ F(E)
satisfying (9.5.1)

}
→ {full-sequence of sub-bundles in f ∗E} ,

defined as: Φ(g) is the full-sequence of sub-bundles g∗R in f ∗E.

Theorem 9.5.2. Φ is bijective.

Proof. Let us define a map Ψ in the other direction, that is,

Ψ : {full-sequence of sub-bundles in f ∗E} →
{

Smooth maps Y
g−→ F(E)

satisfying (9.5.1)

}
Let

A : A1 ↪→ A2 ↪→ . . . ↪−→ An−1 ↪−→ f ∗E

be a full-sequence of sub-bundles in f ∗E over Y . So A1 is a line sub-bundle of
f ∗E over Y . By theorem 9.2.2 we get a unique smooth map g1 : Y → P(E)
which satisfies g∗1(S1) = g∗1(OP(E)(−1)) = A1. So g∗1(Q1) = f ∗E/A1. Now we
have the following commutative diagram :

f ∗E/A1 = g∗1Q1 Q1

Y P(E)

g̃1

g1

and A2/A1 is a line sub-bundle of f ∗E/A1 over Y . So again by theorem 9.2.2
we get a unique smooth map g2 : Y → P(Q1) satisfying g∗2(S2) = A2/A1. So
g∗2(Q2) = f ∗E/A2. So again we get the commutative diagram :

f ∗E/A2 = g∗2Q2 Q2

Y P(Q1)

g̃2

g2

and A3/A2 is a line sub-bundle of f ∗E/A2 over Y . Proceeding in a similar
way we will get a unique smooth map gn : Y → P(Qn−1) = F(E). We define
Ψ(A) := gn. It is clear from the construction that Φ ◦Ψ = Id.
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We show that Φ is injective. Let g and h be two smooth maps : Y → F(E)
satisfying (9.5.1) such that Φ(g) = Φ(h). Then in particular two line bundles
g∗R1 and h∗R1 over Y are same which equivalent to saying that the bundles
(π1 ◦ · · · ◦ πn−1 ◦ g)∗(S1) and (π1 ◦ · · · ◦ πn−1 ◦ h)∗(S1) are same. So by 9.2.2
we have π1 ◦ · · · ◦ πn−1 ◦ g = π1 ◦ · · · ◦ πn−1 ◦ h = f1 say. So now we have the
commutative diagram,

P(Q1)

Y P(E) .

π1

f1

g1,h1

where g1 := π2 ◦ · · · ◦ πn−1 ◦ g and h1 := π2 ◦ · · · ◦ πn−1 ◦ h.
Now the line sub-bundles g∗R2/g

∗R1 and h∗R2/h
∗R1 of f ∗E/g∗R1 over

Y are same which is equivalent to saying that the sub-bundles g∗1(S2) and
h∗1(S2) of f ∗1Q1 are same. Again using 9.2.2 we get that π2 ◦ · · · ◦ πn−1 ◦ g =
π2 ◦ · · · ◦ πn−1 ◦ h. Proceeding similarly after n steps we get that g = h.

So Φ is both injective and surjective. Hence Φ is a bijective correspon-
dence and the theorem is proved.

9.6 Poincare polynomial of the flag of a bundle

For a vector bundle E →M of rank n we have the sequence of bundles

F(E) = P(Qn−1)→ P(Qn−2)→ · · · → P(Q1)→ P(E)→M

where Qi+1 is the universal quotient bundle over P(Qi). We have proved in
Lecture 21 that the poincare polynomial of P(E) is given by,

P (P(E), t) = P (M, t)
1− t2n

1− t2
.

Again

P (P(Q1), t) = P (P(E), t)
1− t2(n−1)

1− t2

= P (M, t)
1− t2n

1− t2
· 1− t2(n−1)

1− t2
.
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So by induction we get,

P (P(Qn−1), t) = P (M, t) ·
∏n

i=2(1− t2i)
(1− t2)n−1

.

So poincare polynomial of F(E) is given by,

P (F(E), t) = P (M, t) ·
∏n

i=2(1− t2i)
(1− t2)n−1

.(9.6.1)
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10 De Rham Cohomology of Complex Grass-

mannian manifold

We will determine the poincare polynomial of grassmannian manifold. Let
Grk(Cn) denotes the complex grassmannian manifold : the set of all k di-
mensional linear subspaces of Cn. Let us consider the trivial bundle F =
Grk(Cn) × Cn over Grk(Cn). Recall that we have the universal subbundle
SGrk(Cn) of F whose fiber at a point [V ] ∈ Grk(Cn) is the the k dimen-
sional subspace V . We write the vector bundle SGrk(Cn) simply as S here.
We define the universal quotient bundle Q over Grk(Cn) to be the coker-
nel of the inclusion : S ↪→ F . Now we take the flag of S to get a bundle
σ : F(S) → Grk(Cn). Pulling back Q we get a vector bundle σ∗(Q) over
F(S) of rank n− k. Again taking flag of σ∗(Q) we get a sequence of bundle

F(σ∗Q)
τ−→ F(S)

σ−→ Grk(Cn).

Now considering Cn as a vector bundle E over a point {∗} we construct
F(E)

π−→ {∗}.
Claim : F(E) and F(σ∗Q) are diffeomorphic as smooth manifolds.

Proof. Let us first give a map δ : F(σ∗Q) → F(E). Using the universal
property of F(E) it suffices to give a full sequence of sub-bundles of the
trivial bundle of rank n over F(σ∗Q). On Grk(Cn) there is a short exact
sequence

0→ S → F → Q→ 0 .

Pulling this back along σ ◦ τ we get the following short exact sequence on
F(σ∗Q)

0→ (σ ◦ τ)∗S → (σ ◦ τ)∗F
θ−→ (σ ◦ τ)∗Q→ 0 .

Since (σ ◦ τ)∗Q ∼= τ ∗(σ∗Q), there is a canonical full sequence of sub-bundles
in τ ∗(σ∗Q) over the space F(σ∗Q). We can take the inverse image of this
sequence under the map θ, let us call this sequence of sub-bundles R′. This
is not a full sequence in the trivial bundle. We also have a full sequence of
sub-bundles in σ∗S over the space F(S). Let us call this sequence R. Then it
is clear that τ ∗R ⊂ R′ is a full sequence of sub-bundles of the trivial bundle
(σ ◦ τ)∗F over F(σ∗Q). By the universal property of F(E) we get a map
δ : F(σ∗Q)→ F(E).

We claim that δ is bijective. This will become clear from the set theoretic
description of δ. Let p ∈ F(σ∗Q). Then we get a point σ ◦ τ(p) ∈ Grk(Cn),
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which corresponds to a k-dimensional subspace Tk ⊂ Cn. The fiber of S over
the point σ ◦ τ(p) is precisely Tk. The point τ(p) corresponds to a full flag
inside Tk. The point p corresponds to a full flag inside Cn/Tk. But these
two full flags give rise to a full flag inside Cn. This corresponds to a point in
F(E), which is precisely δ(p). There is a bijection between the two sets

1. A full flag in Cn

2. A k-dimensional subspace Tk ⊂ Cn, a full flag inside Tk and a full flag
inside Cn/Tk.

From this bijection and the set theoretic description of δ it is clear that δ is
bijective.

Finally let us construct a map which is a smooth inverse to δ. Firstly to
get a map F(E) → Grk(Cn), by universal property of Grassmannians 8.4.1
it is enough to get a subbundle of trivial bundle of rank k over F(E).

Recall that over F(E) we have the tautological filtration of bundles R :
R1 ↪→ R2 ↪→ . . . ↪−→ Rn−1 ↪−→ π∗E. In particular Rk is a subbundle of trivial
bundle π∗E of rank k over F(E). So we get a smooth map h : F(E) →
Grk(Cn).

Now Rk : R1 ↪→ R2 ↪→ . . . ↪−→ Rk = h∗S is a full-sequence of sub-bundles
in h∗S over F(E). So by theorem 9.5.2 we get a smooth map

g : F(E)→ F(S)

satisfying σ ◦ g = h which has the set theoretic description,

(V1, V2, . . . , Vn) 7→ ([Vk], V1, . . . , Vk).

Now g∗(σ∗Q) = (σ ◦ g)∗Q = h∗Q and R/Rk : Rk+1/Rk ↪→ Rk+2/Rk ↪→
. . . ↪−→ Rn/Rk = h∗Q is a full-sequence of sub-bundles in h∗Q over F(E). So
again using theorem 9.5.2 we get a smooth map

ψ : F(E)→ F(σ∗Q)

which has the set theoretic description,

(V1, V2, . . . , Vn) 7→ ([Vk], V1, . . . , Vk, Vk+1/Vk, . . . , Vn/Vk) .

By set theoretic description of δ and ψ it is clear that ψ is smooth inverse
of δ. So we conclude that δ is a diffeomorphism and hence F(E) and F(σ∗Q)
are diffeomorphic as smooth manifold.
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Now from equation (9.6.1) we have,

P (F(E), t) = P (∗, t) ·
∏n

i=1(1− t2i)
(1− t2)n

=

∏n
i=1(1− t2i)
(1− t2)n

.(10.0.1)

Again

P (F(σ∗Q), t) = P (F(S), t) ·
∏n−k

i=1 (1− t2i)
(1− t2)n−k

= P (Grk(Cn), t) ·
∏k

i=1(1− t2i)
(1− t2)k

·
∏n−k

i=1 (1− t2i)
(1− t2)n−k

(10.0.2)

By the claim we have F(E) ∼= F(σ∗Q), so combining equation 10.0.1 and
10.0.2 we get,

P (Grk(Cn), t) =

∏n
i=1(1− t2i)∏k

i=1(1− t2i)
∏n−k

i=1 (1− t2i)
.
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11 De Rham cohomology of U(n)

The unitary group U(n) is the group of all n × n unitary matrices which is
a compact submanifold of the smooth manifold GL(n,C).

Proposition 11.0.1. For n > 1, We have a locally trivial fiber bundle :

(11.0.2) U(n− 1) ↪→ U(n)→ S2n−1 .

Proof. We consider the map

f : U(n)→ S2n−1

A 7→ Ae1

where {e1, . . . , en} is the standard ordered basis of Cn over C. Clearly f is
smooth and surjective. Since U(n) and S2n−1 are compact and hausdorff, so
f is proper. Clearly fiber over each point in S2n−1 is diffeomorphic to the
closed submanifold U(n− 1) of U(n). So if we show that f is a submersion
and since the fiber is compact it is easy to see that we get a locally trivial
fiber bundle (11.0.2).

To see that f is submersion : Firstly we show f is submersion at identity
In ∈ U(n). We have

DfIn : TInU(n)→ Te1S
2n−1 .

Considering U(n) as a submanifold of GL(n,C) and S2n−1 as a submanifold
of Cn we clearly have,

DfIn : {A ∈ GL(n,C) : A is skew hermition} → {x ∈ Cn : xT e1 = 0}

given by,
DfIn(B) = Be1 .

If x ∈ Te1S2n−1, so we have xT e1 = 0. Writing x =
∑n

i=1 xiei with xi ∈ C,
we have x1 = 0. So taking

B =


0 x2 . . . xn
x2 0 . . . 0
...

. . .

xn 0 . . . 0


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clearly B is skew hermition and Be1 = x. This proves that DfIn is surjective
and hence f is a submersion at In.

Now to see that f is a submersion at any U ∈ U(n), we observe that the
following diagram is commutative :

U(n) U(n)

S2n−1 S2n−1

LU

f f

φU

where LU is left multiplication by U i.e. LU(A) = UA and φU(x) = Ux.
Moreover both LU and φU are diffeomorphisms. So from the commutative
diagram

TInU(n) TUU(n)

Te1S
2n−1 T(Ue1)S

2n−1

(DLU )In

DfIn DfU

(DφU )e1

it is clear that f is submersion at U ∈ U(n).

Before going to cohomology of U(n), we first see some definitions and
theorems to be used in the computation of cohomology.

Definition 11.0.3 (Exterior Algebras). The exterior algebra Λ[a1, a2, . . . , ar]
over R is the free R-module with basis the finite products ai1 · · · aik for i1 <
· · · < ik with multiplication defined by the rules aiaj = −ajai (in particu-
lar, this implies a2i = 0). Defining the empty product of ai’s to be 1 ∈ R,
Λ[a1, a2, . . . , ar] becomes an algebra with the identity element 1.

We can make Λ[a1, a2, . . . , ar] a graded algebra just by defining degree
of the elements a1, . . . , ar. For example if we have degree(ai) = di ≥ 0 for
i = 1, 2, . . . , r, then degree of the monomial ai1 · · · aik is di1 + · · · + dik for
i1 < · · · < ik and k ≤ r.

Theorem 11.0.4 (Special case of Leray-Serre spectral sequence). Let F ↪→
E → B be a locally trivial fiber bundle and suppose F is connected and B
is simply connected. Then there is a first quadrant cohomological spectral
sequence of algebras {E∗,∗r , dr}, where dr is of bidegre (r, 1 − r), such that
Ep,q

2
∼= Hp(B,R)⊗Hq(F,R) and the spectral sequence converges to H∗(E,R)

as an algebra. Moreover, the differential dr is an antiderivation i.e.

dr(a · b) = d(a) · b+ (−1)u+va · d(b) where a ∈ Eu,v
r .
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Now we compute the De Rham cohomology of U(n) :

Proposition 11.0.5. For n ≥ 1 the cohomology ring of U(n) is given by

H∗(U(n);R) ∼= Λ[x1, x3, . . . , x2n−1]

isomorphic as graded algebra with degree(xi) = i.

Proof. For n = 1, clearly U(1) = {a ∈ C∗ : aa = 1 = aa} = S1. So

H i(U(1);R) =

{
R if i = 0, 1

0 otherwise

Letting x1 to be a generator of H1(U(1)), we have x21 = 0. So

H∗(U(1);R) ∼= Λ[x1] with degree(x1) = 1 .

We proceed by induction on n. So we assume the statement to be true for
n = m. So we have

H∗(U(m);R) ∼= Λ[x1, x3, . . . , x2m−1] with degree(xi) = i .

So by graded ring structure of H∗(U(m);R), we have xi ∈ H i(U(m);R).
Now we prove the statement for n = m+ 1.

Considering the fiber bundle (11.0.2) for n = m + 1, we have the locally
trivial fiber bundle

U(m) ↪→ U(m+ 1)→ S2m+1 .

with U(m) connected and S2m+1 simply connected. So using theorem (11.0.4)
we will get a Leray-Serre spectral sequnece of algebras {E∗,∗r , dr} where

dp,qr : Ep,q
r → Ep+r,q−r+1

r and Ep,q
r+1 = ker dp,qr /Im dp−r,q+r−1r

and Ep,q
2
∼= Hp(S2m+1;R)⊗Hq(U(m);R) and the spectral sequence converges

to H∗(U(m+ 1);R) as an algebra.
By construction of spectral sequence we have

E∗,∗2
∼= H∗(S2m+1;R)⊗H∗(U(m);R)

isomorphic as graded algebras.
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Let x2m+1 be a generator of H2m+1(S2m+1;R) so that H∗(S2m+1;R) ∼=
Λ[x2m+1] isomorphic as graded algebra where degree of x2m+1 is 2m+ 1. So

E∗,∗2
∼= Λ[x1, x3, . . . , x2m−1]⊗ Λ[x2m+1] ∼= Λ[x1, x3, . . . , x2m+1]

isomorphic as graded algebras and degree of xi is i.

Claim : For r ≥ 2,

E∗,∗r
∼= H∗(S2m+1;R)⊗H∗(U(m);R) ∼= Λ[x1, x3, . . . , x2m+1]

isomorphic as graded algebras and Ep,q
r
∼= Hp(S2m+1;R)⊗Hq(U(m);R).

Proof : We have the result for r = 2. We proceed by induction on r. So we
assume we have the result for r = s ≥ 2 i.e.

E∗,∗s
∼= H∗(S2m+1;R)⊗H∗(U(m);R) ∼= Λ[x1, x3, . . . , x2m+1]

isomorphic as graded algebras. We need to prove the result for r = s+1. We
intend to prove that ds = 0. Then it will follow that E∗,∗s+1

∼= E∗,∗s isomorphic
as graded algebras. So the claim is proved by induction.

To show that ds = 0 : Since ds is an antiderivation, it is enough to show
that ds takes the generators to 0 i.e. ds(xi) = 0 for i = 1, 3, . . . , 2m+ 1.

• For i = 1, 3, . . . , 2m− 1,

xi ∈ E0,i
s and d0,is : E0,i

s → Es,i−s+1
s .

◦ If s 6= 2m+ 1, Hs(S2m+1;R) = 0 and hence

Es,i−s+1
s

∼= Hs(S2m+1;R)⊗H i−s+1(U(m);R) ∼= 0

So ds(xi) = 0

◦ If s = 2m + 1, then i− s + 1 = i− 2m < 0. So Es,i−s+1
s

∼= 0 and
hence ds(xi) = 0.

• For i = 2m+ 1,

x2m+1 ∈ E2m+1,0
s and d2m+1,0

s : E2m+1,0
s → E2m+1+s,1−s

s .

Now 1− s < 0, so E2m+1+s,1−s
s = 0 and hence ds(x2m+1) = 0.
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So we have ds(xi) = 0 for i = 1, 3, . . . , 2m+ 1 and hence ds = 0. So we have
proved that for r ≥ 2, E∗,∗r

∼= Λ[x1, x3, . . . , x2m+1] as graded algebras.
So

H∗(U(m+ 1);R) ∼= E∗,∗∞
∼= Λ[x1, x3, . . . , x2m+1] .

isomorphic as graded algebra with degree(xi) = i.
So by induction we have proved that for n ≥ 1,

H∗(U(n);R) ∼= Λ[x1, x3, . . . , x2n−1]

isomorphic as graded algebra with degree(xi) = i.

12 De Rham cohomology of GL(n,C)

Lemma 12.0.1. GL(n,C) is diffeomorphic to U(n) × Herm(n,C) where
U(n) denotes the set of all n× n complex unitary matrices and Herm(n,C)
denotes the set of all n× n complex hermitian matrices.

Proof. We will prove the Lemma in 3 steps.
Step 1. We will show that the set of all n × n complex positive defi-

nite hermitian matrices Herm+(n,C) is open in Herm(n,C). Hence, it is a
manifold of dimension n2. We show that the complement of Herm+(n,C) in
Herm(n,C) is closed. Let {Am} be a sequence in Herm(n,C)\Herm+(n,C)
such that {Am} converges to A ∈ Herm(n,C). So for each m ∈ N, ∃xm ∈
Cn \ {0} s.t. x∗mAmxm ≤ 0. Replacing xm with xm

||xm|| we can assume

xm ∈ S2n−1 for all m ∈ N. Since S2n−1 is compact, so {xm} has a convergent
subsequence say {xmk

} and let limk→∞ xmk
= x ∈ S2n−1. Then x∗Ax =

limk→∞(x∗mk
Amk

xmk
) ≤ 0. So A ∈ Herm(n,C) \Herm+(n,C). So comple-

ment of Herm+(n,C) is closed in Herm(n,C) and hence Herm+(n,C) is
open in Herm(n,C). Hence Herm+(n,C) is a manifold of dimension n2.

Step 2. In this step we shall show that GL(n,C) is diffeomorphic
to U(n)× Herm+(n,C). If P ∈ Herm+(n,C) then ∃ an complex uni-
tary matrix Q such that QPQ−1 is diagonal. Say QPQ−1 = D = (dij)
with 0 < d11 ≤ d22 ≤ · · · ≤ dnn and dij = 0 for i 6= j. Then define√
P = Q−1(diag(

√
d11,
√
d22, . . . ,

√
dnn))Q where

√
dii is positive square root

of dii. We show that
√
P is well defined. Say R be another complex unitary
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matrix such that RPR−1 = D. Then we have, Q−1DQ = R−1DR. Letting
(bij) = B = RQ−1 we get BD = DB. Hence for any i, j,

n∑
k=1

bikdkj =
n∑
k=1

dikbkj

which implies, bijdjj = diibij. So bij(djj − dii) = 0. Since
√
dii,
√
djj > 0, we

get bij(
√
djj −

√
dii) = 0. So bij

√
djj =

√
diibij. This implies that

n∑
k=1

bik
√
dkj =

n∑
k=1

√
dikbkj

So

B


√
d11 0 . . . 0
0

√
d22 . . . 0

...
. . .

0 0 . . .
√
dnn

 =


√
d11 0 . . . 0
0

√
d22 . . . 0

...
. . .

0 0 . . .
√
dnn

B

So

Q−1(diag(
√
d11,

√
d22, . . . ,

√
dnn))Q = R−1(diag(

√
d11,

√
d22, . . . ,

√
dnn))R

Hence
√
P is well-defined and

√
P ∈ Herm+(n,C).

Define

Φ : GL(n,C)→ U(n)×Herm+(n,C)

A 7→ (A(
√
A∗A)−1,

√
A∗A)

And

Ψ : U(n)×Herm+(n,C) −→ GL(n,C)

(A,B) 7→ AB

Clearly Ψ and Φ are inverses of each other and Ψ is smooth. To show that Φ
is smooth it is enough to show that the map P 7→

√
P is smooth. Let f, g :

Herm+(n,C)→ Herm+(n,C) defined by f(P ) = P 2 and g(P ) =
√
P . Then

f is smooth and f and g are inverses of each other. Let P ∈ Herm+(n,C)
then we have, DfP : Herm(n,C)→ Herm(n,C) given by DfP (X) = PX +
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XP . We show that DfP is an isomorphism. If PX + XP = 0 for some
X ∈ Herm(n,C), then PXP−1 = −X. Now ∃ complex unitary matrix
Q such that QPQ−1 = D = diag(λ1, λ2, . . . , λn), where λi > 0. Letting
(yij) = Y = QXQ−1, we have DYD−1 = −Y . So λiyijλ

−1
j = −yij. Since

λi
λj
> 0 so yij = 0 and hence X= O.

So by inverse function theorem f is diffeomorphism. Hence g is smooth.
So Φ is smooth. Hence Ψ is a diffeomorphism.

Step 3. In this step we shall show that Herm+(n,C) is diffeomorphic to
Herm(n,C). We take the map

exp : Herm(n,C)→ Herm+(n,C)

A 7→ exp(A) =
∞∑
n=0

An

n!

We prove that this is a diffeomorphism. We know exp is smooth. Now
exp(O) = In and D exp0 is the identity map hence isomorphism. By inverse
function theorem we get open sets U ⊂ Herm(n,C) containing O and V ⊂
Herm+(n,C) containing In such that exp : U → V is diffeomorphism. Say
ϕ : V → U be the smooth inverse of exp.

We construct a global inverse of exp. We have already proved that taking
square root is a smooth map on positive definite hermitian matrices. Let
B ∈ Herm+(n,C). Then limk→∞B

1/2k = In. So ∃k ∈ N such that B1/2k ∈
V . Define

log : Herm+(n,C)→ Herm(n,C) by log(B) = 2kϕ(B1/2k)

log is well defined : Say if m, k ∈ N such that B1/2m , B1/2k ∈ V . Then
ϕ(B1/2m), ϕ(B1/2k) ∈ U. Now

exp

(
1

2k
ϕ(B1/2m)

)
= (exp(ϕ(B1/2m))

1

2k

= B
1

2(k+m)

= (exp(ϕ(B1/2k))
1

2m

= exp

(
1

2m
ϕ(B1/2k)

)
.
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Since exp is a diffeomorphism on U , so 1
2k
ϕ(B1/2m) = 1

2m
ϕ(B1/2k), that is,

2mϕ(B1/2m) = 2kϕ(B1/2k). So log is well defined.
Now for B ∈ Herm+(n,C), if B1/2k ∈ V ,

exp(log(B)) = exp(2kϕ(B1/2k) = (exp(ϕ(B1/2k)))2
k

= (B1/2k)2
k

= B.

For A ∈ Herm(n,C), ∃m ∈ N such that 1
2m
A ∈ U . Then (expA)1/2

m
=

exp( 1
2m
A) ∈ V . Now

log(exp(A)) = 2mϕ(exp(
1

2m
A)) = 2m

1

2m
A = A.

So, log is inverse of exp. Since ϕ is smooth, so log is also smooth. Hence
exp is a diffeomorphism.

Combining steps (2) and (3) we get GL(n,C) is diffeomorphic to U(n)×
Herm(n,C).

Since, Herm(n,C) is diffeomorphic to Rn2
. So, H∗(Herm(n,C)) ∼=

H∗(Rn2
). By Kunneth formula we will get H∗(GL(n,C)) ∼= H∗(U(n)). So

using proposition (11.0.5) we have

H∗(GL(n,C)) ∼= Λ[x1, x3, . . . , x2n−1]

isomorphic as graded algebra with degree(xi) = i.

37



13 De Rham cohomology of SU(n)

The special unitary group SU(n) is the group of all n × n unitary matrices
with determinant 1 which is a compact submanifold of the smooth manifold
GL(n,C). Clearly SU(1) is a manifold with a single element. So

(13.0.1) H i(SU(1);R) =

{
R if i = 0

0 otherwise

Proposition 13.0.2. For n > 1 the cohomology ring of SU(n) is given by

H∗(SU(n);R) ∼= Λ[x3, x5, . . . , x2n−1]

isomorphic as graded algebras with degree(xi) = i.

Proof. For n = 2, SU(2) is diffeomorphic to S3. So we have

H i(SU(2);R) =

{
R if i = 0, 3

0 otherwise

Letting x3 to be a generator of H3(SU(2)), we have x23 = 0. So

H∗(SU(2);R) ∼= Λ[x3] with degree(x3) = 3 .

We proceed by induction on n. So we assume the statement to be true
for n = m. So we have

H∗(SU(m);R) ∼= Λ[x3, x5, . . . , x2m−1] with degree(xi) = i .

So by graded ring structure of H∗(SU(m);R), we have xi ∈ H i(SU(m);R).
Now we prove the statement for n = m + 1. Recall by proposition (11.0.1)
we have the Fiber bundle :

U(m) ↪→ U(m+ 1)
f−→ S2m+1

with f(A) = Ae1, where {e1, . . . , em+1} is the standard ordered basis of Cm+1

over C. If we restrict f on SU(m + 1), it is easy to check that f |SU(m+1)

is again proper submersion onto S2m+1. So we get the locally trivial fiber
bundle :

SU(m) ↪→ SU(m+ 1)
f−→ S2m+1 .
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with SU(m) connected and S2m+1 simply connected. So by theorem (11.0.4)
we will get a Leray-Serre spectral sequnece of algebras {E∗,∗r , dr} where

dp,qr : Ep,q
r → Ep+r,q−r+1

r and Ep,q
r+1 = ker dp,qr /Im dp−r,q+r−1r

and Ep,q
2
∼= Hp(S2m+1;R) ⊗ Hq(SU(m);R) and the spectral sequence con-

verges to H∗(SU(m+ 1);R) as an algebra.
By construction of spectral sequence we have

E∗,∗2
∼= H∗(S2m+1;R)⊗H∗(SU(m);R)

isomorphic as graded algebras.
Let x2m+1 be a generator of H2m+1(S2m+1;R) so that H∗(S2m+1;R) ∼=

Λ[x2m+1] isomorphic as graded algebra where degree(x2m+1) = 2m+ 1. So

E∗,∗2
∼= Λ[x3, x5, . . . , x2m−1]⊗ Λ[x2m+1] ∼= Λ[x3, x5, . . . , x2m+1]

isomorphic as graded algebras and degree of xi is i.

Claim : For r ≥ 2,

E∗,∗r
∼= H∗(S2m+1;R)⊗H∗(SU(m);R) ∼= Λ[x3, x5, . . . , x2m+1]

isomorphic as graded algebras and Ep,q
r
∼= Hp(S2m+1;R)⊗Hq(SU(m);R).

Proof : We have the result for r = 2. We proceed by induction on r. So we
assume we have the result for r = s ≥ 2 i.e.

E∗,∗s
∼= H∗(S2m+1;R)⊗H∗(SU(m);R) ∼= Λ[x3, x5, . . . , x2m+1]

isomorphic as graded algebras. We need to prove the result for r = s+1. We
intend to prove that ds = 0. Then it will follow that E∗,∗s+1

∼= E∗,∗s isomorphic
as graded algebras. So the claim is proved by induction.

To show that ds = 0 : Since ds is an antiderivation, it is enough to show
that ds takes the generators to 0 i.e. ds(xi) = 0 for i = 3, 5, . . . , 2m+ 1.

• For i = 3, 5, . . . , 2m− 1,

xi ∈ E0,i
s and d0,is : E0,i

s → Es,i−s+1
s .
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◦ If s 6= 2m+ 1, Hs(S2m+1;R) = 0 and hence

Es,i−s+1
s

∼= Hs(S2m+1;R)⊗H i−s+1(SU(m);R) ∼= 0

So ds(xi) = 0

◦ If s = 2m + 1, then i− s + 1 = i− 2m < 0. So Es,i−s+1
s

∼= 0 and
hence ds(xi) = 0.

• For i = 2m+ 1,

x2m+1 ∈ E2m+1,0
s and d2m+1,0

s : E2m+1,0
s → E2m+1+s,1−s

s .

Now 1− s < 0, so E2m+1+s,1−s
s = 0 and hence ds(x2m+1) = 0.

So we have ds(xi) = 0 for i = 3, 5, . . . , 2m+ 1 and hence ds = 0. So we have
proved that for r ≥ 2, E∗,∗r

∼= Λ[x3, x5, . . . , x2m+1] as graded algebras.
So

H∗(SU(m+ 1);R) ∼= E∗,∗∞
∼= Λ[x3, x5, . . . , x2m+1] .

isomorphic as graded algebra with degree(xi) = i.
So by induction we have proved that for n > 1,

H∗(SU(n);R) ∼= Λ[x3, x5, . . . , x2n−1]

isomorphic as graded algebras with degree(xi) = i.
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