## Differential Topology - MA815

This file contains a list/short description of the material covered in each of the lectures.

- Lecture 1 - How to construct smooth manifolds by glueing open subsets of $\mathbb{R}^{n}$. Describe the smooth functions on these manifolds, smooth maps between smooth manifolds.
- Lecture 2 - Define tangent vector at a point $p \in M$ as derivations. Their description using coordinate functions. Given a smooth map $\varphi: X \rightarrow Y$ describe the push forward of tangent vectors, that is, the map $\left.D \varphi\right|_{p}: T_{p} X \rightarrow T_{\varphi(p)} Y$. Construction of the tangent bundle. Chain rule implies "functoriality" for $D$.
- Lecture 3 - Example of the tangent bundle of $S^{1}$. Define vector bundles on a smooth manifold, the tangent bundle being an example of a vector bundle. More generally, the glueing construction can be used to construct fiber bundles. Define the dual bundle and the determinant bundle of a vector bundle. Cotangent vectors, their geometric significance in terms of differential forms. Description of cotangent vectors using coordinate functions. The cotangent bundle.
- Lecture 4 - The tangent bundle is an invariant of the smooth manifold. Define maps between vector bundles, sections of bundles, basic results about them. If $U$ is a coordinate open set then the tangent bundle over $U$ is the trivial bundle. Conversely, if the tangent bundle is trivial, does it mean that $U$ can be given global coordinates? Let $G$ be a group acting via smooth covering maps on a smooth manifold $X$. Then we give a manifold structure on $X / G$ in a "natural" way so that the map $X \rightarrow X / G$ becomes a smooth map. Use this in the case of $\mathbb{R} \rightarrow \mathbb{R} / \mathbb{Z}$ to see that the tangent bundle of $S^{1}$ is trivial, but it does not carry global coordinate functions ...
- Lecture 5 - The previous discussion continues ... Constructions on vector spaces. Direct sums, tensor products, tensor algbera, symmetric algebra, exterior algebra.
- Lecture 6 - Extend the above constructions to vector bundles. Sheaf of sections of a vector bundle. Glueing construction for sheaves.
- Lecture 7 - Defining the differential taking $i$ forms to $i+1$ forms. Define $d$ using local coordinates and check that these glue together.

Basic properties of $d$. The de Rham complex, de Rham cohomology of a smooth manifold. Computing $H^{0}(X, \mathbb{R})$ when $X$ is connected.

- Lecture 8 - Computing $H^{*}(X, \mathbb{R})$ for $X=\mathbb{R}, S^{1}$. Ring structure de Rham cohomology. Begin to investigate properties of de Rham cohomology. Pull back of vector bundles and their properties.
- Lecture 9 - A smooth map $\varphi: X \rightarrow Y$ induces a map $\varphi^{*}$ of de Rham complexes and so gives rise to a map $H^{*}(Y, \mathbb{R}) \rightarrow H^{*}(X, \mathbb{R})$. Functoriality of pull back.
- Lecture 10 - Homotopic maps induce the same map on de Rham cohomology. Cohomology of $\mathbb{R}^{n}$ and $\mathbb{R}^{2} \backslash(0,0)$.
- Lecture 11 - Mayer-Vietoris sequence. Cohomology of $S^{n}$.
- Lecture 12 - Compactly supported sections of a vector bundle. Cohomology with compact supports. Computation of $H_{c}^{*}(\mathbb{R}, \mathbb{R})$. MayerVietoris sequence for cohomology with compact support. Homotopy invariance for cohomology with compact support. Computation of $H_{c}^{*}\left(\mathbb{R}^{n}, \mathbb{R}\right)$.
- Lecture 13 - Explicit isomorphism $H_{c}^{n}\left(\mathbb{R}^{n}, \mathbb{R}\right) \rightarrow \mathbb{R}$ using integration. Use this to define degree of a proper map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Show that degree is an integer. Define oriented manifolds, and integration on them.
- Lecture 14 - Define manifold with boundary, prove Stokes Theorem.
- Lecture 15 - Poincare duality (proof only for manifolds of finite type).
- Lecture 16 - Let $M$ be an oriented manifold and let $S \subset M$ be a compact and oriented embedded submanifold. Define a cohomology class associated to $S$. Compute class of a point and class of the manifold $M$. Kunneth formula.
- Lecture 17 - Homotopy property of vector bundles. Oriented vector bundles. Compact vertical cohomology $H_{c v}^{*}(E, \mathbb{R})$ and integration along fibers for an oriented vector bundle.
- Lecture 18 - Integration along fibers induces a map $H_{c v}^{*}(E, \mathbb{R}) \rightarrow$ $H^{*-n}(M, \mathbb{R})$. Projection formula. Thom isomorphism for manifolds of finite type.
- Lecture 19 - Relate Poincare dual and Thom class. Apply this to show that $\left[\eta_{S}\right]=\left[\eta_{S_{1}}\right] \wedge\left[\eta_{S_{2}}\right]$, where $S=S_{1} \cap S_{2}$ is a transverse intersection of two embedded submanifolds $S_{1}$ of $M$, and $M, S_{1}, S_{2}$ are oriented.
- Lecture 20 - The aim of this lecture is to see an interesting application of $\left[\eta_{S}\right]=\left[\eta_{S_{1}}\right] \wedge\left[\eta_{S_{2}}\right]$, a result proved in the previous lecture.
The first part of this lectures describes how to give complex manifolds an orientation in a canonical way.
The second part of the lecture shows that when $S_{1}$ and $S_{2}$ are two complex submanifolds of a complex manifold $M$ and they meet transversally, then the intersection $S=S_{1} \cap S_{2}$ is a complex submanifold of $M$ in a canonical way.
In Lecture 19 we gave an orientation to the intersection $S$. In view of the previous two parts of this lecture, $S$ has a canonical orientation as it is a complex manifold. Both these orientations coincide. This is left as a check to the reader.
Now let $M$ be a compact complex manifold and let $S_{1}$ and $S_{2}$ be two closed complex submanifolds. Assume that they are in complementary dimensions and their intersection is transversal. Then we conclude, from the above discussions, that each point in the intersection receives $a+$ orientation. Using this we compute the ring structure of the cohomology of $\mathbb{P}_{\mathbb{C}}^{n}$ and show that the ring is generated by class of the hyperplane. Finally, this is used to prove Bezout's Theorem on intersection of smooth hypersurfaces in $\mathbb{P}_{\mathbb{C}}^{2}$.
- Lecture 21 - Define $c_{1}(L)$ for a complex line bundle $L$ on $X$. Use this, the previous lecture and Leray-Hirsch Theorem to compute cohomology $H^{*}(\mathbb{P}(E), \mathbb{R})$, where $E$ is a complex vector bundle on $X$. (This is not mentioned in the lecture, but we can now easily define $c_{i}(E) \in H^{2 i}(X, \mathbb{R})$, the Chern classes of $E$.) Define Poincare polynomial of a manifold. Compute the Poincare polynomial of $H^{*}(\mathbb{P}(E), \mathbb{R})$. The main application is to compute cohomology of Grassmannians.

