
Differential Topology - MA815

This file contains a list/short description of the material covered in each
of the lectures.

• Lecture 1 - How to construct smooth manifolds by glueing open subsets
of Rn. Describe the smooth functions on these manifolds, smooth maps
between smooth manifolds.

• Lecture 2 - Define tangent vector at a point p ∈ M as derivations.
Their description using coordinate functions. Given a smooth map
ϕ : X → Y describe the push forward of tangent vectors, that is,
the map Dϕ|p : TpX → Tϕ(p)Y . Construction of the tangent bundle.
Chain rule implies “functoriality” for D.

• Lecture 3 - Example of the tangent bundle of S1. Define vector bun-
dles on a smooth manifold, the tangent bundle being an example of a
vector bundle. More generally, the glueing construction can be used to
construct fiber bundles. Define the dual bundle and the determinant
bundle of a vector bundle. Cotangent vectors, their geometric signifi-
cance in terms of differential forms. Description of cotangent vectors
using coordinate functions. The cotangent bundle.

• Lecture 4 - The tangent bundle is an invariant of the smooth manifold.
Define maps between vector bundles, sections of bundles, basic results
about them. If U is a coordinate open set then the tangent bundle
over U is the trivial bundle. Conversely, if the tangent bundle is trivial,
does it mean that U can be given global coordinates? Let G be a group
acting via smooth covering maps on a smooth manifold X. Then we
give a manifold structure on X/G in a “natural” way so that the map
X → X/G becomes a smooth map. Use this in the case of R → R/Z
to see that the tangent bundle of S1 is trivial, but it does not carry
global coordinate functions ...

• Lecture 5 - The previous discussion continues ... Constructions on
vector spaces. Direct sums, tensor products, tensor algbera, symmetric
algebra, exterior algebra.

• Lecture 6 - Extend the above constructions to vector bundles. Sheaf
of sections of a vector bundle. Glueing construction for sheaves.

• Lecture 7 - Defining the differential taking i forms to i + 1 forms.
Define d using local coordinates and check that these glue together.
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Basic properties of d. The de Rham complex, de Rham cohomology
of a smooth manifold. Computing H0(X,R) when X is connected.

• Lecture 8 - Computing H∗(X,R) for X = R, S1. Ring structure de
Rham cohomology. Begin to investigate properties of de Rham coho-
mology. Pull back of vector bundles and their properties.

• Lecture 9 - A smooth map ϕ : X → Y induces a map ϕ∗ of de Rham
complexes and so gives rise to a map H∗(Y,R)→ H∗(X,R). Functo-
riality of pull back.

• Lecture 10 - Homotopic maps induce the same map on de Rham co-
homology. Cohomology of Rn and R2 \ (0, 0).

• Lecture 11 - Mayer-Vietoris sequence. Cohomology of Sn.

• Lecture 12 - Compactly supported sections of a vector bundle. Co-
homology with compact supports. Computation of H∗

c (R,R). Mayer-
Vietoris sequence for cohomology with compact support. Homotopy
invariance for cohomology with compact support. Computation of
H∗

c (Rn,R).

• Lecture 13 - Explicit isomorphism Hn
c (Rn,R) → R using integration.

Use this to define degree of a proper map Rn → Rn. Show that degree
is an integer. Define oriented manifolds, and integration on them.

• Lecture 14 - Define manifold with boundary, prove Stokes Theorem.

• Lecture 15 - Poincare duality (proof only for manifolds of finite type).

• Lecture 16 - Let M be an oriented manifold and let S ⊂M be a com-
pact and oriented embedded submanifold. Define a cohomology class
associated to S. Compute class of a point and class of the manifold
M . Kunneth formula.

• Lecture 17 - Homotopy property of vector bundles. Oriented vec-
tor bundles. Compact vertical cohomology H∗

cv(E,R) and integration
along fibers for an oriented vector bundle.

• Lecture 18 - Integration along fibers induces a map H∗
cv(E,R) →

H∗−n(M,R). Projection formula. Thom isomorphism for manifolds
of finite type.
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• Lecture 19 - Relate Poincare dual and Thom class. Apply this to show
that [ηS ] = [ηS1 ]∧ [ηS2 ], where S = S1 ∩S2 is a transverse intersection
of two embedded submanifolds S1 of M , and M , S1, S2 are oriented.

• Lecture 20 - The aim of this lecture is to see an interesting application
of [ηS ] = [ηS1 ] ∧ [ηS2 ], a result proved in the previous lecture.

The first part of this lectures describes how to give complex manifolds
an orientation in a canonical way.

The second part of the lecture shows that when S1 and S2 are two com-
plex submanifolds of a complex manifold M and they meet transver-
sally, then the intersection S = S1 ∩ S2 is a complex submanifold of
M in a canonical way.

In Lecture 19 we gave an orientation to the intersection S. In view of
the previous two parts of this lecture, S has a canonical orientation as
it is a complex manifold. Both these orientations coincide. This is left
as a check to the reader.

Now let M be a compact complex manifold and let S1 and S2 be two
closed complex submanifolds. Assume that they are in complementary
dimensions and their intersection is transversal. Then we conclude,
from the above discussions, that each point in the intersection receives
a + orientation. Using this we compute the ring structure of the
cohomology of Pn

C and show that the ring is generated by class of
the hyperplane. Finally, this is used to prove Bezout’s Theorem on
intersection of smooth hypersurfaces in P2

C.

• Lecture 21 - Define c1(L) for a complex line bundle L on X. Use
this, the previous lecture and Leray-Hirsch Theorem to compute co-
homology H∗(P(E),R), where E is a complex vector bundle on X.
(This is not mentioned in the lecture, but we can now easily define
ci(E) ∈ H2i(X,R), the Chern classes of E.) Define Poincare polyno-
mial of a manifold. Compute the Poincare polynomial of H∗(P(E),R).
The main application is to compute cohomology of Grassmannians.
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