Differential Topology - MA815

This file contains a list/short description of the material covered in each of the lectures.

- Lecture 1 How to construct smooth manifolds by glueing open subsets of \mathbb{R}^n . Describe the smooth functions on these manifolds, smooth maps between smooth manifolds.
- Lecture 2 Define tangent vector at a point $p \in M$ as derivations. Their description using coordinate functions. Given a smooth map $\varphi : X \to Y$ describe the push forward of tangent vectors, that is, the map $D\varphi|_p : T_pX \to T_{\varphi(p)}Y$. Construction of the tangent bundle. Chain rule implies "functoriality" for D.
- Lecture 3 Example of the tangent bundle of S^1 . Define vector bundles on a smooth manifold, the tangent bundle being an example of a vector bundle. More generally, the glueing construction can be used to construct fiber bundles. Define the dual bundle and the determinant bundle of a vector bundle. Cotangent vectors, their geometric significance in terms of differential forms. Description of cotangent vectors using coordinate functions. The cotangent bundle.
- Lecture 4 The tangent bundle is an invariant of the smooth manifold. Define maps between vector bundles, sections of bundles, basic results about them. If U is a coordinate open set then the tangent bundle over U is the trivial bundle. Conversely, if the tangent bundle is trivial, does it mean that U can be given global coordinates? Let G be a group acting via smooth covering maps on a smooth manifold X. Then we give a manifold structure on X/G in a "natural" way so that the map $X \to X/G$ becomes a smooth map. Use this in the case of $\mathbb{R} \to \mathbb{R}/\mathbb{Z}$ to see that the tangent bundle of S^1 is trivial, but it does not carry global coordinate functions ...
- Lecture 5 The previous discussion continues ... Constructions on vector spaces. Direct sums, tensor products, tensor algebra, symmetric algebra, exterior algebra.
- Lecture 6 Extend the above constructions to vector bundles. Sheaf of sections of a vector bundle. Glueing construction for sheaves.
- Lecture 7 Defining the differential taking i forms to i + 1 forms. Define d using local coordinates and check that these glue together.

Basic properties of d. The de Rham complex, de Rham cohomology of a smooth manifold. Computing $H^0(X, \mathbb{R})$ when X is connected.

- Lecture 8 Computing $H^*(X, \mathbb{R})$ for $X = \mathbb{R}, S^1$. Ring structure de Rham cohomology. Begin to investigate properties of de Rham cohomology. Pull back of vector bundles and their properties.
- Lecture 9 A smooth map $\varphi : X \to Y$ induces a map φ^* of de Rham complexes and so gives rise to a map $H^*(Y, \mathbb{R}) \to H^*(X, \mathbb{R})$. Functoriality of pull back.
- Lecture 10 Homotopic maps induce the same map on de Rham cohomology. Cohomology of ℝⁿ and ℝ² \ (0,0).
- Lecture 11 Mayer-Vietoris sequence. Cohomology of S^n .
- Lecture 12 Compactly supported sections of a vector bundle. Cohomology with compact supports. Computation of $H_c^*(\mathbb{R},\mathbb{R})$. Mayer-Vietoris sequence for cohomology with compact support. Homotopy invariance for cohomology with compact support. Computation of $H_c^*(\mathbb{R}^n,\mathbb{R})$.
- Lecture 13 Explicit isomorphism $H^n_c(\mathbb{R}^n, \mathbb{R}) \to \mathbb{R}$ using integration. Use this to define degree of a proper map $\mathbb{R}^n \to \mathbb{R}^n$. Show that degree is an integer. Define oriented manifolds, and integration on them.
- Lecture 14 Define manifold with boundary, prove Stokes Theorem.
- Lecture 15 Poincare duality (proof only for manifolds of finite type).
- Lecture 16 Let M be an oriented manifold and let $S \subset M$ be a compact and oriented embedded submanifold. Define a cohomology class associated to S. Compute class of a point and class of the manifold M. Kunneth formula.
- Lecture 17 Homotopy property of vector bundles. Oriented vector bundles. Compact vertical cohomology $H^*_{cv}(E,\mathbb{R})$ and integration along fibers for an oriented vector bundle.
- Lecture 18 Integration along fibers induces a map $H^*_{cv}(E,\mathbb{R}) \to H^{*-n}(M,\mathbb{R})$. Projection formula. Thom isomorphism for manifolds of finite type.

- Lecture 19 Relate Poincare dual and Thom class. Apply this to show that $[\eta_S] = [\eta_{S_1}] \wedge [\eta_{S_2}]$, where $S = S_1 \cap S_2$ is a transverse intersection of two embedded submanifolds S_1 of M, and M, S_1 , S_2 are oriented.
- Lecture 20 The aim of this lecture is to see an interesting application of $[\eta_S] = [\eta_{S_1}] \wedge [\eta_{S_2}]$, a result proved in the previous lecture.

The first part of this lectures describes how to give complex manifolds an orientation in a canonical way.

The second part of the lecture shows that when S_1 and S_2 are two complex submanifolds of a complex manifold M and they meet transversally, then the intersection $S = S_1 \cap S_2$ is a complex submanifold of M in a canonical way.

In Lecture 19 we gave an orientation to the intersection S. In view of the previous two parts of this lecture, S has a canonical orientation as it is a complex manifold. Both these orientations coincide. This is left as a check to the reader.

Now let M be a compact complex manifold and let S_1 and S_2 be two closed complex submanifolds. Assume that they are in complementary dimensions and their intersection is transversal. Then we conclude, from the above discussions, that each point in the intersection receives a + orientation. Using this we compute the ring structure of the cohomology of $\mathbb{P}^n_{\mathbb{C}}$ and show that the ring is generated by class of the hyperplane. Finally, this is used to prove Bezout's Theorem on intersection of smooth hypersurfaces in $\mathbb{P}^2_{\mathbb{C}}$.

• Lecture 21 - Define $c_1(L)$ for a complex line bundle L on X. Use this, the previous lecture and Leray-Hirsch Theorem to compute cohomology $H^*(\mathbb{P}(E),\mathbb{R})$, where E is a complex vector bundle on X. (This is not mentioned in the lecture, but we can now easily define $c_i(E) \in H^{2i}(X,\mathbb{R})$, the Chern classes of E.) Define Poincare polynomial of a manifold. Compute the Poincare polynomial of $H^*(\mathbb{P}(E),\mathbb{R})$. The main application is to compute cohomology of Grassmannians.