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Some course policies

Evaluation: 50 marks are waiting to be earned:

Quiz 20 marks
End Semester exam 30 marks
Total 50 marks

The quiz will be held in the tutorial on 12th October, 2021.

FR grade if marks are < 15/50.

Any form of academic dishonesty will invite severe penalties.
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Books

Elementary differential equations with boundary value problems
by William F. Trench (available online)

Differential Equations with Applications and Historical Notes
by George F. Simmons
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Aim of this course

The aim of this course is to see some methods to find solutions to
differential equations.

There are two parts in this course.

1 In the first part we shall see how to solve differential equations
in one variable.

2 In the second part we shall see how to solve differential
equations involving functions of two variables.

In both parts we shall find solutions to the differential equations as
series.

In the first part, these series will usually be power series in one
variable. In the second part, we will consider more complicated
kinds of series, for example, Fourier series.
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Aim of this course

A very beautiful, simple and powerful technique we will learn in
this course is the Method of Separation of Variables. This will
come towards the end of the course.

Separation of variables, combined with the series representation,
yields a way to solve some PDE’s, which otherwise will be
incredibly hard to solve.

For example, try to solve the following PDE (heat equation) on
your own

ut = k2uxx 0 < x < L, t > 0

u(0, t) = 0 t ≥ 0

u(L, t) = 0, t ≥ 0

u(x, 0) = x(L− x), 0 ≤ x ≤ L
More generally, instead of x(L− x) we could have taken any
“nice” function. We will learn in the last few lectures how to solve
this PDE. This ends a very brief introduction and we now begin
the course with a study of power series.
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Power Series

Consider an ODE

y′′ + p(x)y′ + q(x)y = 0

with p(x), q(x) continuous.

Let y1(x) be one solution of the above ODE.

We can try to use the method of variation of parameters to find
another linearly independent solution, that is, put

y2(x) = u(x)y1(x)

in the ODE and solve for u(x).

Question. How to find one solution?

For this, we will solve our ODE in terms of power series.
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Power Series

Definition

For real numbers x0, a0, a1, a2, . . ., an infinite series

∞∑
n=0

an(x− x0)n := a0 + a1(x− x0) + a2(x− x0)2 + . . . .

is called a power series in x− x0 with center x0.

For a real number x1, if the limit

lim
N→∞

N∑
n=0

an(x1 − x0)n

exists and is finite, then we say the power series converges at the
point x = x1.
In this case, the value of the series at x1 is, by definition, the value
of the limit.
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Power series

Definition

If the series does not converge at x1, that is, either the limit does
not exist, or it is ±∞, then we say the power series diverges at x1.

Obviously, a power series always converges at its center x = x0.
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Power series - Radius of convergence

Theorem

For any power series,

∞∑
n=0

an(x− x0)n

exactly one of these statements is true.

1 The power series converges only for x = x0.

2 The power series converges for all values of x.

3 There is a positive number 0 < R <∞ such that the power
series converges if |x− x0| < R and diverges if |x− x0| > R.

R is called the radius of convergence of the power series.

Define R = 0 in case (i)
Define R =∞ in case (ii).
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Power Series - Radius of convergence

Question. How to compute the radius of convergence?

There are two methods to do this.

Theorem

(Ratio test) Assume that there is an integer N such that for all
n ≥ N we have an 6= 0. Also assume the following limit exists

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
and denote it by L.

Then radius of convergence of the power series
∞∑
n=0

an(x− x0)n is

R = 1/L .

For L = 0, we get R =∞
and for L =∞, we get R = 0.
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Power series - Radius of convergence

The ratio test will not work for all series (for example, when many
of the an’s are 0).

However, the root test, which is the second method to compute
the radius of convergence, will work for all power series. We first
need to recall the definition of limsup.

Definition

Suppose we are given a sequence {an}n≥1.
For every k ≥ 1 define

bk := supn≥k{an} .

Convince yourself that {bk}k≥1 is a decreasing sequence, that is,

b1 ≥ b2 ≥ b3 ≥ . . .

Define
lim sup{an} := limn→∞bn .
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Power series - Radius of convergence

Definition

Similarly, define lim inf{an}, by replacing sup by inf in the above
discussion.

Remark

Note that for a sequence {an}n≥1, the limit may not exist.
However, the lim sup and lim inf always exist (possibly +∞ or
−∞).

Theorem

Let {an}n≥1 be a sequence of real numbers. Then limn→∞an
exists if and only if lim sup{an} = lim inf{an}.
Further, if limn→∞an exists, then

lim sup{an} = lim inf{an} = limn→∞an
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Power series - Radius of convergence

Strictly speaking, when we say that limn→∞an exists, we mean
that this limit exists and is finite.

However, sometimes we shall be a little careless and say that
limn→∞an exists in the following cases also: if limn→∞an =∞ or
limn→∞an = −∞.

Recall, for example, the definition of limn→∞an =∞. For every
N ∈ R, there exists n(N) ≥ 1 (that is, n depends on N) such that
ak ≥ N for all k ≥ n(N).

For example, convince yourself that for the sequence defined by
b2n−1 := n and b2n := n− 1 (n ≥ 1), we have limn→∞bn =∞
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Power series - Radius of convergence

Now that we have recalled the definition of limsup, we return to
the root test.

Theorem

(Root test)Let lim sup{|an|1/n} = L.

Then radius of convergence of the power series
∞∑
n=0

an(x− x0)n is

R = 1/L .

For L = 0, we get R =∞.
For L =∞, we get R = 0.

This concludes the discussion on how to compute the radius of
convergence of a power series.
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Power series - Radius of convergence

Theorem

Let R > 0 be the radius of convergence of the power series

∞∑
n=0

an(x− x0)n

Then the power series converges (absolutely) for all
x ∈ (x0 −R, x0 +R).

For R =∞, we write (x0 −R, x0 +R) = (−∞,∞) = R.

Definition

The open interval (x0 −R, x0 +R) is called the interval of
convergence of the power series.
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Power series - examples

Example

Find the radius of convergence and interval of convergence (if
R > 0) of

∞∑
0

n!xn .

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)!

n!

∣∣∣∣ = lim
n→∞

(n+ 1) =∞ .

So R = 1/∞ = 0.
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Power series - examples

Example

Find the radius of convergence and interval of convergence (if
R > 0) of

∞∑
10

(−1)nx
n

nn

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ nn

(n+ 1)n+1

∣∣∣∣ = 0

So R = 1/0 =∞. Interval of convergence (−∞,∞).
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Power series - examples

Example

Find the radius of convergence and interval of convergence (if
R > 0) of

∞∑
0

2nn3(x− 1)n

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣2n+1(n+ 1)3

2nn3

∣∣∣∣ = 2

So R = 1/2. Interval of convergence (1/2, 3/2).
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Power series as functions

Theorem

Let R be the radius of convergence of the power series
∞∑
n=0

an(x− x0)n. We assume R > 0 .

We define a function f : (x0 −R, x0 +R)→ R by

f(x) =

∞∑
n=0

an(x− x0)n

This function satisfies the following properties

1 f is infinitely differentiable ∀ x ∈ (x0 −R, x0 +R).
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Power series as functions

Theorem (continued . . .)

2 The successive derivatives of f can be computed by
differentiating the power series term-by-term, that is,

f ′(x) =
d

dx

∞∑
n=0

an(x− x0)n

=

∞∑
n=0

d

dx
an(x− x0)n

Exchanging a differential operator and a sum/integral is
something which needs to be done with care

=

∞∑
n=0

nan(x− x0)n−1
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Power series as functions

Theorem (continued . . .)

3 f (k)(x) =

∞∑
n=0

n(n− 1) . . . (n− k + 1) an(x− x0)n−k

4 The power series representing the derivatives f (n)(x) have
same radius of convergence R.

5 We can determine the coefficients an (in terms of derivatives
of f at x0) as

an =
f (n)(x0)

n!
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Power series as functions

Theorem (continued . . .)

• We can also integrate the function f(x) =
∞∑
0

an(x− x0)n

term-wise, that is,if [a, b] ⊂ (x0 −R, x0 +R), then∫ b

a
f(x) dx =

∞∑
n=0

an

∫ b

a
(x− x0)n dx =

∞∑
0

an
n+ 1

(x− x0)n+1

Exchanging an integral operator and a sum is something which
needs to be done with care
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Power series as functions

Theorem

(i) Power series representation of f in an open interval I
containing x0 is unique, that is, if

f(x) =

∞∑
0

an(x− x0)n =

∞∑
0

bn(x− x0)n

for all x ∈ I, then an = bn ∀ n.
(ii) If

∞∑
0

an(x− x0)n = 0

for all x ∈ I, then an = 0 for all n.

Proof. (i)

an =
f (n)(x0)

n!
= bn for all n.

It is clear that (ii) follows from (i).
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Examples of power series

Example (Power series representation of some familiar functions)

(i) ex =

∞∑
0

xn

n!
−∞ < x <∞

(ii) sinx =

∞∑
0

(−1)n x2n+1

(2n+ 1)!
−∞ < x <∞

(iii)
1

1− x
=
∞∑
0

xn − 1 < x < 1

(iv)
d

dx
(sinx) =

∞∑
0

(−1)n d

dx

(
x2n+1

(2n+ 1)!

)

=
∞∑
0

(−1)n x2n

(2n)!
= cosx
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Algebraic operations on power series

Definition

If f(x) =

∞∑
0

an(x− x0)n g(x) =

∞∑
0

bn(x− x0)n

have radius of convergence R1 and R2, respectively, then

c1f(x) + c2g(x) :=

∞∑
0

(c1an + c2bn)(x− x0)n

has radius of convergence R ≥ min {R1, R2} for c1, c2 ∈ R.

Further, we can multiply the series as if they were polynomials,
that is

f(x)g(x) =

∞∑
0

cn(x− x0)n; cn = a0bn + a1bn−1 + . . .+ anb0

It also has radius of convergence R ≥ min {R1, R2}.

25 / 57



Algebraic operations on power series

Example

Find the power series expansion for coshx in terms of powers of
xn.

coshx =
1

2
ex +

1

2
e−x

=
1

2

∞∑
n=0

xn

n!
+

1

2

∞∑
n=0

(−1)nx
n

n!

=

∞∑
n=0

1

2
[1 + (−1)n] x

n

n!

=
∞∑
n=0

x2n

(2n)!

Since radius of convergence for Taylor series of ex and e−x are ∞,
the power series expansion of coshx is valid on R.
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Algebraic operations on power series

If f(x) =
∞∑
n=0

an(x− x0)n then f ′(x) =
∞∑
n=1

nan(x− x0)n−1.

Put r = n− 1 into f ′(x), we get

f ′(x) =

∞∑
r=0

(r + 1)ar+1(x− x0)r

Similarly,

f (k)(x) =

∞∑
n=k

n(n− 1) . . . (n− k + 1)an(x− x0)n−k

=

∞∑
n=0

(n+ k)(n+ k − 1) . . . (n+ 1)an+k(x− x0)n
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Algebraic operations on power series

Example

Let f(x) =
∞∑
n=0

anx
n. Write (x− 1)f ′′ as a power series around 0.

(x− 1)f ′′ = xf ′′ − f ′′

= x

( ∞∑
n=2

n(n− 1)anx
n−2

)
−
∞∑
n=2

n(n− 1)anx
n−2

=

∞∑
n=2

n(n− 1)anx
n−1 −

∞∑
n=2

n(n− 1)anx
n−2

=

∞∑
n=1

(n+ 1)nan+1x
n −

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n

=
∞∑
n=0

[(n+ 1)nan+1 − (n+ 2)(n+ 1)an+2]x
n

�
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Using power series to find formal solution to ODE’s

Example

Suppose

y(x) =

∞∑
n=0

an(x− 1)n

for all x in an open interval I containing x0 = 1.

Find the power series of y′ and y′′ in terms of x− 1 in the
interval I. Use these to express the function

(1 + x)y′′ + 2(x− 1)2y′ + 3y

as a power series in x− 1 on I.

Find necessary and sufficient conditions on the coefficients
an’s, so that y(x) is a formal solution of the ODE

(1 + x)y′′ + 2(x− 1)2y′ + 3y = 0

29 / 57



Using power series to find formal solution to ODE’s

Example (continued . . .)

Solution. Write the ODE in (x− 1), that is

(1 + x)y′′+2(x− 1)2y′+3y = (x− 1)y′′+2y′′+2(x− 1)2y′+3y

Express each of (x− 1)y′′, 2y′′, 2(x− 1)2y′ and 3y as a power
series in powers of (x− 1) and add them.

(x− 1)y′′ = (x− 1)

∞∑
n=2

n(n− 1)an(x− 1)n−2

=

∞∑
n=2

n(n− 1)an(x− 1)n−1

=

∞∑
n=1

(n+ 1)nan+1(x− 1)n

=

∞∑
n=0

(n+ 1)nan+1(x− 1)n
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Using power series to find formal solution to ODE’s

Example (continued . . .)

2y′′ =

∞∑
n=2

2n(n− 1)an(x− 1)n−2

=

∞∑
n=0

2(n+ 2)(n+ 1)an+2(x− 1)n

2(x− 1)2y′ = 2(x− 1)2
∞∑
n=1

nan(x− 1)n−1

=

∞∑
n=1

2nan(x− 1)n+1

=
∞∑
n=2

2(n− 1)an−1(x− 1)n

=
∞∑
n=0

2(n− 1)an−1(x− 1)n (a−1 = 0)
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Using power series to find formal solution to ODE’s

Example (continued . . .)

We have

(x− 1)y′′ =

∞∑
n=0

(n+ 1)nan+1(x− 1)n

2y′′ =

∞∑
n=0

2(n+ 2)(n+ 1)an+2(x− 1)n

2(x− 1)2y′ =

∞∑
n=0

2(n− 1)an−1(x− 1)n (a−1 = 0)

Now we get

(x− 1)y′′ + 2y′′ + 2(x− 1)2y′ + 3y =
∞∑
n=0

bn(x− 1)n

where

bn = (n+ 1)nan+1 + 2(n+ 2)(n+ 1)an+2 + 2(n− 1)an−1 + 3an
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Using power series to find formal solution to ODE’s

Example (continued . . .)

For the second part,

y(x) =

∞∑
0

an(x− 1)n is the solution of the ODE

(x− 1)y′′ + 2y′′ + 2(x− 1)2y′ + 3y = 0

on the open interval I containing 1 if and only if

∞∑
n=0

bn(x− 1)n = 0 on I ⇐⇒ bn = 0 for all n

that is, an’s satisfy the following recursive relation

(n+ 1)nan+1 + 2(n+ 2)(n+ 1)an+2 + 2(n− 1)an−1 + 3an = 0

for all n.
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Using power series to find formal solution to ODE’s

Example (continued . . .)

Thus, we can take any coefficients which satisfy the above
relations, and we get a power series which satisfies the above
equation. However, note that this power series may not define a
nice function. In this sense, the above solution is “formal”.
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Taylor series

Definition

Let f(x) be an infinitely differentiable at x0. The Taylor series of
f at x0 is defined as the power series

TS f |x0 :=

∞∑
0

f (n)(x0)

n!
(x− x0)n

Let us make an observation.

Suppose f is defined by a power series in an interval of x0, that is,
f(x) =

∑
n≥0 an(x− x0)n in the interval (x0 −R, x0 +R). When

we apply the above definition of Taylor series, we see that

TSf |x0 =

∞∑
0

an(x− x0)n = f(x) .

Thus, in this case from the Taylor series we get back the function
f .
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Taylor series

However, the class of infinitely differentiable functions is larger
than the class of power series and the above need not be true for
infinitely differentiable functions in an interval around x0

Example

The function f(x) =

{
e−1/x

2
if x 6= 0

0 if x = 0

is infinitely differentiable at 0. But f (n)(0) = 0 for all n.

Hence the Taylor series of f at 0 is the constant function taking
value 0.

Therefore Taylor series of f at 0 does not converge to function
f(x) on any open interval around 0.
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Taylor series

Definition

Suppose

f(x) is infinitely differentiable at x0; and

Taylor series of f at x0 converges to f(x) for all x in some
open interval around x0;

Then f is called analytic at x0.

Thus, if f is analytic, then there is an interval I around x0 and f
is given by a power series in I.

Example

The function f(x) =

{
e−1/x

2
if x 6= 0

0 if x = 0
is not analytic at 0. Here 2nd condition fails. However, f is
analytic at all x 6= 0.
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Analytic functions

Example

1 Polynomials, ex, sinx and cosx are analytic at all x ∈ R.

2 f(x) = tanx is analytic at all x except x = (2n+ 1)π/2,
where n = ±1,±2, . . ..

3 f(x) = x5/3 is analytic at all x except x = 0.
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Analytic functions

Theorem (Analytic functions)

1 If f(x) and g(x) are analytic at x0, then
f(x)± g(x) f(x)g(x) f(x)/g(x) (if g(x0) 6= 0)
are analytic at x0.

2 If f(x) is analytic at x0 and g(x) is analytic at f(x0), then
g(f(x)) := (g ◦ f)(x) is analytic at x0.

3 If a power series
∞∑
0

an(x− x0)n has radius of convergence

R > 0, then the function f(x) :=
∞∑
0

an(x− x0)n

is analytic at all points x ∈ (x0 −R, x0 +R).
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Analytic functions

Example

The function f(x) = x2 + 1 is analytic everywhere. Since x2 + 1 is
never 0, the function h(x) := 1

x2+1
is analytic everywhere.

However, there is no power series around 0 which represents h(x)
on R.

If there were such a power series, then by uniqueness, it has to be
the power series expansion of h(x) around 0, which is

1− x2 + x4 − x6 + · · ·

However, the radius of convergence of this is R = 1.

In fact, for any x0, there is no power series around x0 which
represents h(x) everywhere.
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Analytic functions

Theorem

Let

F (x) =
N(x)

D(x)
example F (x) =

x3 − 1

x2 + 1

be a rational function, where N(x) and D(x) are polynomials
without any common factors, that is they do not have any
common (complex) zeros. Let α1, . . . , αr be distinct complex zeros
of D(x).

Then F (x) is analytic at all x except at x ∈ {α1, . . . , αr}.If x0 is
different from {α1, . . . , αr}, then the radius of convergence R of
the Taylor series of F at x0

TS Fx0 =

∞∑
0

F (n)(x0)

n!
(x− x0)n
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Analytic functions

Theorem (continued . . . )

is given by

R = min {|x0 − α1|, |x0 − α2|, . . . , |x0 − αr|}
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Analytic functions

Example

If

F (x) =
N(x)

D(x)
=

(2 + 3x)

(4 + x)(9 + x2)

then D(x) has zeros at −4 and ±3ι, where ι =
√
−1.

Hence F is analytic at all x except at x ∈ {−4,±3ι}.
If x = 2, then radius of convergence of Taylor series of F at x = 2
is

min {|2 + 4|, |2 + 3ι|, |2− 3ι|} = min {6,
√
13} =

√
13

If x = −6, then radius of convergence of Taylor series of F at
x = −6 is

min {| − 6 + 4|, | − 6± 3ι|} = min {2,
√
45} = 2
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Power series solution of ODE

Theorem (Existence Theorem)

If p(x) and q(x) are analytic functions at x0, then every solution of

y′′ + p(x)y′ + q(x)y = 0

is also analytic at x0; and therefore any solution can be expressed
as

y(x) =

∞∑
0

an(x− x0)n

If R1 = radius of convergence of Taylor series of p(x) at x0,

R2 = radius of convergence of Taylor series of q(x) at x0,

then radius of convergence of y(x) is at least min(R1, R2) > 0.

In most applications, p(x) and q(x) are rational functions, that is
quotient of polynomial functions.
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Power series solution of ODE

Example

Let us solve y′′ + y = 0 (1) by power series method.

Compare with y′′ + p(x)y′ + q(x)y = 0,
p(x) = 0 and q(x) = 1 are analytic at all x.
We can find power series solution in x− x0 for any x0.
Let us assume x0 = 0 for simplicity.
By existence theorem, all solution of (1) can be found in the form

y(x) =

∞∑
0

anx
n

and the series will have ∞ radius of convergence.
Since

y′′ =
∞∑
2

n(n− 1)anx
n−2 =

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n
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Power series solution of ODE

Example (Continue . . .)

y′′ + y =

∞∑
0

((n+ 2)(n+ 1)an+2 + an)x
n = 0

By uniqueness of power series in x− x0 we get the recursion
formula

(n+ 2)(n+ 1)an+2 + an = 0

=⇒ an+2 =
−1

(n+ 2)(n+ 1)
an ∀n

Therefore,

a2 =
−1
2.1

a0, a4 =
−1
4.3

a2 =
1

4!
a0 . . . a2n = (−1)n 1

(2n)!
a0

a3 =
−1
3.2

a1, a5 =
−1
5.4

a3 =
1

5!
a1 . . . a2n+1 = (−1)n 1

(2n+ 1)!
a1
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Power series solution of ODE

Example (Continue . . .)

Define

y1(x) = 1− 1

2!
x2 +

1

4!
x4 − . . . (a0 = 1, a1 = 0)

y2(x) = x− 1

3!
x3 +

1

5!
x5 − . . . (a0 = 0, a1 = 1)

Then

y(x) =

∞∑
0

anx
n = a0y1(x) + a1y2(x)

is a general solution of the ODE (1).

In this case, y1(x) = cosx and y2(x) = sinx.
We don’t need to check the series for converges, since the
existence theorem guarantees that the series converges for all x.
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Power series solution of ODE

In this course, we will consider ODE

P0(x)y
′′ + P1(x)y

′ + P2(x)y = 0

with Pi(x) polynomials for i = 0, 1, 2 without any common factor.
If we write ODE in the standard form

y′′ +
P1(x)

P0(x)
y′ +

P2(x)

P0(x)
y = 0

and if x0 is not a zero of P0(x), then P1(x)/P0(x) and
P2(x)/P0(x) will be analytic at x0, hence, we can find the series
solution of ODE in the form

y(x) =

∞∑
0

an(x− x0)n
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Power series solution of ODE

Steps for Series solution of linear ODE

1 Write ODE in standard form y′′ + p(x)y′ + q(x)y = 0.

2 Choose x0 at which p(x) and q(x) are analytic. If boundary
conditions at x0 are given, choose the center of the power
series as x0.

3 Find minimum of radius of convergence of Taylor series of
p(x) and q(x) at x0.

4 Let y(x) =
∞∑
0

an(x− x0)n, compute the power series for

y′(x) and y′′(x) at x0 and substitute these into the ODE.

5 Set the coefficients of (x− x0)n to zero and find recursion
formula.

6 From the recursion formula, obtain (linearly independent)
solutions y1(x) and y2(x). The general solution then looks
like y(x) = a1y1(x) + a2y2(x).
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Power series solution of ODE

Example

Find the power series in x for the general solution of

(1 + 2x2)y′′ + 6xy′ + 2y = 0

Solution. Note that 0 is not a zero of P0(x) = 1+ 2x2, hence, the
series solution in powers of x exists.

Putting y =
∞∑
0

anx
n in the ODE, we get

(1 + 2x2)y′′ + 6xy′ + 2y

= y′′ + 2x2y′′ + 6xy′ + 2y

=

∞∑
0

((n+ 2)(n+ 1)an+2 + 2n(n− 1)an + 6nan + 2an)x
n

=⇒ (n+ 2)(n+ 1)an+2 + [2n(n− 1) + 6n+ 2]an = 0
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Power series solution of ODE

Example (Continue . . .)

=⇒ an+2 = −
2n2 + 4n+ 2

(n+ 2)(n+ 1)
an = −2 n+ 1

(n+ 2)
an n ≥ 0

Since indices on left and right differ by 2, we write separately for
n = 2m and n = 2m+ 1, m ≥ 0, so

a2m+2 = −2
2m+ 1

2m+ 2
a2m = −2m+ 1

m+ 1
a2m

a2m+3 = −2
2m+ 2

2m+ 3
a2m+1 = −4

m+ 1

2m+ 3
a2m+1

a2 = −
1

1
a0

a4 = −
3

2
a2 =

1.3

1.2
a0

a6 = −
5

3
a4 = −

1.3.5

1.2.3
a0
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Power series solution of ODE

Example (Continue . . .)

a2m = (−1)m 1.3.5. . . . (2m− 1)

m!
a0

= (−1)m
∏m

j=1(2j − 1))

m!
a0

a2m+3 = −4
m+ 1

2m+ 3
a2m+1

a3 = −4
1

3
a1

a5 = −4
2

5
a3 = 42

1.2

3.5
a1

a7 = −4
3

7
a5 = −43

1.2.3

3.5.7
a1

a2m+1 = (−1)m4m
m!∏m

j=1(2j + 1)
a1
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Power series solution of ODE

Example (continued . . .)

We can write the solution

y =

∞∑
0

anx
n = a0y1(x) + a1y2(x)

where a0 and a1 are arbitrary scalars and

y1(x) =

∞∑
m=0

(−1)m
∏m

j=1(2j − 1)

m!
x2m

y2(x) =

∞∑
m=0

(−1) 4mm!∏m
j=1(2j + 1)

x2m+1

Since P0(x) = 1 + 2x2 has complex zeros
±ι√
2

, the power series

solution converges in the interval

(
−1√
2
,
1√
2

)
. �
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Power series solution of ODE

Example

Find the coefficients a0, . . . , a6 in the series solution

y =

∞∑
0

anx
n

of the Initial Value Problem (IVP)

(1 + x+ 2x2)y′′ + (1 + 7x)y′ + 2y = 0

with
y(0) = −1, y′(0) = −2.

Zeros of P0(x) = 1 + x+ 2x2 are 1
4(−1± ι

√
7) whose absolute

values are 1/
√
2. Hence the series solution to the IVP converges

on the interval

(
−1√
2
,
1√
2

)
.
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Power series solution of ODE

Example (continued . . .)

(1 + x+ 2x2)y′′ + (1 + 7x)y′ + 2y =

∞∑
0

bnx
n = 0

bn = (n+ 2)(n+ 1)an+2 + (n+ 1)nan+1 + 2n(n− 1)an

+(n+ 1)an+1 + 7nan + 2an = 0

that is

(n+ 2)(n+ 1)an+2 + (n+ 1)2an+1 + (2n2 + 5n+ 2)an = 0

Since 2n2 + 5n+ 2 = (n+ 2)(2n+ 1),

an+2 = −
n+ 1

n+ 2
an+1 −

2n+ 1

n+ 1
an n ≥ 0
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Power series solution of ODE

Example (continued . . .)

an+2 = −
n+ 1

n+ 2
an+1 −

2n+ 1

n+ 1
an n ≥ 0

From the initial conditions y(0) = −1, y′(0) = −2 we get

a0 = y(0) = −1, a1 = y′(0) = −2

a2 = −
1

2
a1 − a0 = 2

a3 = −
2

3
a2 −

3

2
a1 =

5

3

Check that

y(x) = −1− 2x+ 2x2 +
5

3
x3 − 55

12
x4 +

3

4
x5 +

61

8
x6 + . . .
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Slightly more complicated ODE’s

The best possible situation is when we have an ODE of the form

y′′ + p(x)y′ + q(x) = 0

where p(x) and q(x) are analytic in an interval around x0.

We just saw how to solve such ODE’s.

We will next consider in detail the Legendre equation (an ODE
which falls in the above category of “nice” ODE’s)

(1− x2)y′′ − 2xy′ + α(α+ 1)y = 0 .

However, there are other ODE’s which occur naturally, which do
not fall into the above “nice” category, and which we would like to
solve. For example, Bessel’s equation :

x2y′′ + xy′ + (x2 − ν2)y = 0

We will see later how to solve some such ODE’s.
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