MA-207 Differential Equations II

Ronnie Sebastian

Department of Mathematics
Indian Institute of Technology Bombay
Powai, Mumbai - 76
September 19, 2021

Some course policies

Some course policies

Evaluation: 50 marks are waiting to be earned:

Some course policies

Evaluation: 50 marks are waiting to be earned:
Quiz 20 marks

Some course policies

Evaluation: 50 marks are waiting to be earned:

Quiz
20 marks
End Semester exam 30 marks

Some course policies

Evaluation: 50 marks are waiting to be earned:
Quiz
20 marks
End Semester exam 30 marks
Total 50 marks

Some course policies

Evaluation: 50 marks are waiting to be earned:
Quiz
20 marks
End Semester exam 30 marks
Total 50 marks

The quiz will be held in the tutorial on 12th October, 2021.

Some course policies

Evaluation: 50 marks are waiting to be earned:
Quiz
20 marks
End Semester exam 30 marks
Total 50 marks

The quiz will be held in the tutorial on 12th October, 2021.
FR grade if marks are $<15 / 50$.

Some course policies

Evaluation: 50 marks are waiting to be earned:
Quiz
20 marks
End Semester exam 30 marks
Total 50 marks

The quiz will be held in the tutorial on 12th October, 2021.
FR grade if marks are $<15 / 50$.
Any form of academic dishonesty will invite severe penalties.

Elementary differential equations with boundary value problems by William F. Trench (available online)
Differential Equations with Applications and Historical Notes by George F. Simmons

Aim of this course

Aim of this course

The aim of this course is to see some methods to find solutions to differential equations.

Aim of this course

The aim of this course is to see some methods to find solutions to differential equations.

There are two parts in this course.

Aim of this course

The aim of this course is to see some methods to find solutions to differential equations.

There are two parts in this course.
(1) In the first part we shall see how to solve differential equations in one variable.

Aim of this course

The aim of this course is to see some methods to find solutions to differential equations.

There are two parts in this course.
(1) In the first part we shall see how to solve differential equations in one variable.
(2) In the second part we shall see how to solve differential equations involving functions of two variables.

Aim of this course

The aim of this course is to see some methods to find solutions to differential equations.

There are two parts in this course.
(1) In the first part we shall see how to solve differential equations in one variable.
(2) In the second part we shall see how to solve differential equations involving functions of two variables.
In both parts we shall find solutions to the differential equations as series.

Aim of this course

The aim of this course is to see some methods to find solutions to differential equations.

There are two parts in this course.
(1) In the first part we shall see how to solve differential equations in one variable.
(2) In the second part we shall see how to solve differential equations involving functions of two variables.
In both parts we shall find solutions to the differential equations as series.

In the first part, these series will usually be power series in one variable. In the second part, we will consider more complicated kinds of series, for example, Fourier series.

Aim of this course

A very beautiful, simple and powerful technique we will learn in this course is the Method of Separation of Variables. This will come towards the end of the course.

Aim of this course

A very beautiful, simple and powerful technique we will learn in this course is the Method of Separation of Variables. This will come towards the end of the course.

Separation of variables, combined with the series representation, yields a way to solve some PDE's, which otherwise will be incredibly hard to solve.

Aim of this course

A very beautiful, simple and powerful technique we will learn in this course is the Method of Separation of Variables. This will come towards the end of the course.

Separation of variables, combined with the series representation, yields a way to solve some PDE's, which otherwise will be incredibly hard to solve.
For example, try to solve the following PDE (heat equation) on your own

Aim of this course

A very beautiful, simple and powerful technique we will learn in this course is the Method of Separation of Variables. This will come towards the end of the course.

Separation of variables, combined with the series representation, yields a way to solve some PDE's, which otherwise will be incredibly hard to solve.
For example, try to solve the following PDE (heat equation) on your own

$$
\begin{array}{ll}
u_{t}=k^{2} u_{x x} & 0<x<L, \quad t>0 \\
u(0, t)=0 & t \geq 0 \\
u(L, t)=0, & t \geq 0 \\
u(x, 0)=x(L-x), & 0 \leq x \leq L
\end{array}
$$

Aim of this course

A very beautiful, simple and powerful technique we will learn in this course is the Method of Separation of Variables. This will come towards the end of the course.

Separation of variables, combined with the series representation, yields a way to solve some PDE's, which otherwise will be incredibly hard to solve.
For example, try to solve the following PDE (heat equation) on your own

$$
\begin{array}{ll}
u_{t}=k^{2} u_{x x} & 0<x<L, \quad t>0 \\
u(0, t)=0 & t \geq 0 \\
u(L, t)=0, & t \geq 0 \\
u(x, 0)=x(L-x), & 0 \leq x \leq L
\end{array}
$$

More generally, instead of $x(L-x)$ we could have taken any "nice" function. We will learn in the last few lectures how to solve this PDE.

Aim of this course

A very beautiful, simple and powerful technique we will learn in this course is the Method of Separation of Variables. This will come towards the end of the course.

Separation of variables, combined with the series representation, yields a way to solve some PDE's, which otherwise will be incredibly hard to solve.
For example, try to solve the following PDE (heat equation) on your own

$$
\begin{array}{ll}
u_{t}=k^{2} u_{x x} & 0<x<L, \quad t>0 \\
u(0, t)=0 & t \geq 0 \\
u(L, t)=0, & t \geq 0 \\
u(x, 0)=x(L-x), & 0 \leq x \leq L
\end{array}
$$

More generally, instead of $x(L-x)$ we could have taken any "nice" function. We will learn in the last few lectures how to solve this PDE. This ends a very brief introduction and we now begin the course with a study of power series.

Power Series

Power Series

Consider an ODE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

with $p(x), q(x)$ continuous.

Consider an ODE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

with $p(x), q(x)$ continuous.
Let $y_{1}(x)$ be one solution of the above ODE.

Consider an ODE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

with $p(x), q(x)$ continuous.
Let $y_{1}(x)$ be one solution of the above ODE.
We can try to use the method of variation of parameters to find another linearly independent solution, that is, put

$$
y_{2}(x)=u(x) y_{1}(x)
$$

in the ODE and solve for $u(x)$.

Consider an ODE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

with $p(x), q(x)$ continuous.
Let $y_{1}(x)$ be one solution of the above ODE.
We can try to use the method of variation of parameters to find another linearly independent solution, that is, put

$$
y_{2}(x)=u(x) y_{1}(x)
$$

in the ODE and solve for $u(x)$.
Question. How to find one solution?

Consider an ODE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

with $p(x), q(x)$ continuous.
Let $y_{1}(x)$ be one solution of the above ODE.
We can try to use the method of variation of parameters to find another linearly independent solution, that is, put

$$
y_{2}(x)=u(x) y_{1}(x)
$$

in the ODE and solve for $u(x)$.
Question. How to find one solution?
For this, we will solve our ODE in terms of power series.

Power Series

Definition

For real numbers $x_{0}, a_{0}, a_{1}, a_{2}, \ldots$, an infinite series

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}:=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\ldots
$$

is called a power series in $x-x_{0}$ with center x_{0}.

Power Series

Definition

For real numbers $x_{0}, a_{0}, a_{1}, a_{2}, \ldots$, an infinite series

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}:=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\ldots
$$

is called a power series in $x-x_{0}$ with center x_{0}.
For a real number x_{1}, if the limit

$$
\lim _{N \rightarrow \infty} \sum_{n=0}^{N} a_{n}\left(x_{1}-x_{0}\right)^{n}
$$

exists and is finite, then we say the power series converges at the point $x=x_{1}$.

Power Series

Definition

For real numbers $x_{0}, a_{0}, a_{1}, a_{2}, \ldots$, an infinite series

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}:=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\ldots
$$

is called a power series in $x-x_{0}$ with center x_{0}.
For a real number x_{1}, if the limit

$$
\lim _{N \rightarrow \infty} \sum_{n=0}^{N} a_{n}\left(x_{1}-x_{0}\right)^{n}
$$

exists and is finite, then we say the power series converges at the point $x=x_{1}$.
In this case, the value of the series at x_{1} is, by definition, the value of the limit.

Definition

If the series does not converge at x_{1}, that is, either the limit does not exist, or it is $\pm \infty$, then we say the power series diverges at x_{1}.

Definition

If the series does not converge at x_{1}, that is, either the limit does not exist, or it is $\pm \infty$, then we say the power series diverges at x_{1}. Obviously, a power series always converges at its center $x=x_{0}$.

Power series - Radius of convergence

Theorem

For any power series,

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

exactly one of these statements is true.

Power series - Radius of convergence

Theorem

For any power series,

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

exactly one of these statements is true.
(1) The power series converges only for $x=x_{0}$.
(2) The power series converges for all values of x.
(3) There is a positive number $0<R<\infty$ such that the power series converges if $\left|x-x_{0}\right|<R$ and diverges if $\left|x-x_{0}\right|>R$.

Power series - Radius of convergence

Theorem

For any power series,

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

exactly one of these statements is true.
(1) The power series converges only for $x=x_{0}$.
(2) The power series converges for all values of x.
(3) There is a positive number $0<R<\infty$ such that the power series converges if $\left|x-x_{0}\right|<R$ and diverges if $\left|x-x_{0}\right|>R$.
R is called the radius of convergence of the power series.

Power series - Radius of convergence

Theorem

For any power series,

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

exactly one of these statements is true.
(1) The power series converges only for $x=x_{0}$.
(2) The power series converges for all values of x.
(3) There is a positive number $0<R<\infty$ such that the power series converges if $\left|x-x_{0}\right|<R$ and diverges if $\left|x-x_{0}\right|>R$.
R is called the radius of convergence of the power series.
Define $R=0$ in case (i)

Power series - Radius of convergence

Theorem

For any power series,

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

exactly one of these statements is true.
(1) The power series converges only for $x=x_{0}$.
(2) The power series converges for all values of x.
(3) There is a positive number $0<R<\infty$ such that the power series converges if $\left|x-x_{0}\right|<R$ and diverges if $\left|x-x_{0}\right|>R$.
R is called the radius of convergence of the power series.
Define $R=0$ in case (i)
Define $R=\infty$ in case (ii).

Power Series - Radius of convergence

Question. How to compute the radius of convergence?

Power Series - Radius of convergence

Question. How to compute the radius of convergence?
There are two methods to do this.

Power Series - Radius of convergence

Question. How to compute the radius of convergence?
There are two methods to do this.

Theorem

(Ratio test)

Power Series - Radius of convergence

Question. How to compute the radius of convergence?
There are two methods to do this.

Theorem

(Ratio test) Assume that there is an integer N such that for all $n \geq N$ we have $a_{n} \neq 0$.

Power Series - Radius of convergence
Question. How to compute the radius of convergence?
There are two methods to do this.

Theorem

(Ratio test) Assume that there is an integer N such that for all $n \geq N$ we have $a_{n} \neq 0$. Also assume the following limit exists

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|
$$

and denote it by L.

Power Series - Radius of convergence

Question. How to compute the radius of convergence?
There are two methods to do this.

Theorem

(Ratio test) Assume that there is an integer N such that for all $n \geq N$ we have $a_{n} \neq 0$. Also assume the following limit exists

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|
$$

and denote it by L.
Then radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is
$R=1 / L$

Power Series - Radius of convergence

Question. How to compute the radius of convergence?
There are two methods to do this.

Theorem

(Ratio test) Assume that there is an integer N such that for all $n \geq N$ we have $a_{n} \neq 0$. Also assume the following limit exists

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|
$$

and denote it by L.
Then radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is
$R=1 / L$.
For $L=0$, we get $R=\infty$

Power Series - Radius of convergence

Question. How to compute the radius of convergence?
There are two methods to do this.

Theorem

(Ratio test) Assume that there is an integer N such that for all $n \geq N$ we have $a_{n} \neq 0$. Also assume the following limit exists

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|
$$

and denote it by L.
Then radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is
$R=1 / L$.
For $L=0$, we get $R=\infty$ and for $L=\infty$, we get $R=0$.

Power series - Radius of convergence

The ratio test will not work for all series (for example, when many of the a_{n} 's are 0).

The ratio test will not work for all series (for example, when many of the a_{n} 's are 0).
However, the root test, which is the second method to compute the radius of convergence, will work for all power series. We first need to recall the definition of limsup.

The ratio test will not work for all series (for example, when many of the a_{n} 's are 0).
However, the root test, which is the second method to compute the radius of convergence, will work for all power series. We first need to recall the definition of limsup.

Definition

Suppose we are given a sequence $\left\{a_{n}\right\}_{n \geq 1}$.

The ratio test will not work for all series (for example, when many of the a_{n} 's are 0).
However, the root test, which is the second method to compute the radius of convergence, will work for all power series. We first need to recall the definition of limsup.

Definition

Suppose we are given a sequence $\left\{a_{n}\right\}_{n \geq 1}$.
For every $k \geq 1$ define

$$
b_{k}:=\sup _{n \geq k}\left\{a_{n}\right\} .
$$

Power series - Radius of convergence
The ratio test will not work for all series (for example, when many of the a_{n} 's are 0).
However, the root test, which is the second method to compute the radius of convergence, will work for all power series. We first need to recall the definition of limsup.

Definition

Suppose we are given a sequence $\left\{a_{n}\right\}_{n \geq 1}$.
For every $k \geq 1$ define

$$
b_{k}:=\sup _{n \geq k}\left\{a_{n}\right\} .
$$

Convince yourself that $\left\{b_{k}\right\}_{k \geq 1}$ is a decreasing sequence, that is,

$$
b_{1} \geq b_{2} \geq b_{3} \geq \ldots
$$

The ratio test will not work for all series (for example, when many of the a_{n} 's are 0).
However, the root test, which is the second method to compute the radius of convergence, will work for all power series. We first need to recall the definition of limsup.

Definition

Suppose we are given a sequence $\left\{a_{n}\right\}_{n \geq 1}$.
For every $k \geq 1$ define

$$
b_{k}:=\sup _{n \geq k}\left\{a_{n}\right\} .
$$

Convince yourself that $\left\{b_{k}\right\}_{k \geq 1}$ is a decreasing sequence, that is,

$$
b_{1} \geq b_{2} \geq b_{3} \geq \ldots
$$

Define

$$
\limsup \left\{a_{n}\right\}:=\lim _{n \rightarrow \infty} b_{n}
$$

Power series - Radius of convergence

Definition

Similarly, define $\lim \inf \left\{a_{n}\right\}$, by replacing sup by inf in the above discussion.

Power series - Radius of convergence

Definition

Similarly, define $\lim \inf \left\{a_{n}\right\}$, by replacing sup by inf in the above discussion.

Remark

Note that for a sequence $\left\{a_{n}\right\}_{n \geq 1}$, the limit may not exist. However, the limsup and liminf always exist (possibly $+\infty$ or $-\infty)$.

Power series - Radius of convergence

Definition

Similarly, define $\lim \inf \left\{a_{n}\right\}$, by replacing sup by inf in the above discussion.

Remark

Note that for a sequence $\left\{a_{n}\right\}_{n \geq 1}$, the limit may not exist. However, the limsup and liminf always exist (possibly $+\infty$ or $-\infty)$.

Theorem

Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of real numbers. Then $\lim _{n \rightarrow \infty} a_{n}$ exists if and only if $\lim \sup \left\{a_{n}\right\}=\liminf \left\{a_{n}\right\}$.
Further, if $\lim _{n \rightarrow \infty} a_{n}$ exists, then

$$
\limsup \left\{a_{n}\right\}=\liminf \left\{a_{n}\right\}=\lim _{n \rightarrow \infty} a_{n}
$$

Power series - Radius of convergence

Strictly speaking, when we say that $\lim _{n \rightarrow \infty} a_{n}$ exists, we mean that this limit exists and is finite.

Strictly speaking, when we say that $\lim _{n \rightarrow \infty} a_{n}$ exists, we mean that this limit exists and is finite.

However, sometimes we shall be a little careless and say that $\lim _{n \rightarrow \infty} a_{n}$ exists in the following cases also: if $\lim _{n \rightarrow \infty} a_{n}=\infty$ or $\lim _{n \rightarrow \infty} a_{n}=-\infty$.

Strictly speaking, when we say that $\lim _{n \rightarrow \infty} a_{n}$ exists, we mean that this limit exists and is finite.

However, sometimes we shall be a little careless and say that $\lim _{n \rightarrow \infty} a_{n}$ exists in the following cases also: if $\lim _{n \rightarrow \infty} a_{n}=\infty$ or $\lim _{n \rightarrow \infty} a_{n}=-\infty$.

Recall, for example, the definition of $\lim _{n \rightarrow \infty} a_{n}=\infty$. For every $N \in \mathbb{R}$, there exists $n(N) \geq 1$ (that is, n depends on N) such that $a_{k} \geq N$ for all $k \geq n(N)$.

Power series - Radius of convergence

Strictly speaking, when we say that $\lim _{n \rightarrow \infty} a_{n}$ exists, we mean that this limit exists and is finite.

However, sometimes we shall be a little careless and say that $\lim _{n \rightarrow \infty} a_{n}$ exists in the following cases also: if $\lim _{n \rightarrow \infty} a_{n}=\infty$ or $\lim _{n \rightarrow \infty} a_{n}=-\infty$.

Recall, for example, the definition of $\lim _{n \rightarrow \infty} a_{n}=\infty$. For every $N \in \mathbb{R}$, there exists $n(N) \geq 1$ (that is, n depends on N) such that $a_{k} \geq N$ for all $k \geq n(N)$.

For example, convince yourself that for the sequence defined by $b_{2 n-1}:=n$ and $b_{2 n}:=n-1(n \geq 1)$, we have $\lim _{n \rightarrow \infty} b_{n}=\infty$

Power series - Radius of convergence

Now that we have recalled the definition of limsup, we return to the root test.

Power series - Radius of convergence

Now that we have recalled the definition of limsup, we return to the root test.

Theorem

(Root test)

Power series - Radius of convergence

Now that we have recalled the definition of limsup, we return to the root test.

Theorem

(Root test)Let $\limsup \left\{\left|a_{n}\right|^{1 / n}\right\}=L$.

Power series - Radius of convergence

Now that we have recalled the definition of limsup, we return to the root test.

Theorem

(Root test)Let $\limsup \left\{\left|a_{n}\right|^{1 / n}\right\}=L$.
Then radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is
$R=1 / L$.

Now that we have recalled the definition of limsup, we return to the root test.

Theorem

(Root test)Let $\limsup \left\{\left|a_{n}\right|^{1 / n}\right\}=L$.
Then radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is
$R=1 / L$.
For $L=0$, we get $R=\infty$.

Now that we have recalled the definition of limsup, we return to the root test.

Theorem

(Root test)Let $\limsup \left\{\left|a_{n}\right|^{1 / n}\right\}=L$.
Then radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is
$R=1 / L$.
For $L=0$, we get $R=\infty$.
For $L=\infty$, we get $R=0$.

Now that we have recalled the definition of limsup, we return to the root test.

Theorem

(Root test)Let $\limsup \left\{\left|a_{n}\right|^{1 / n}\right\}=L$.
Then radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is
$R=1 / L$.
For $L=0$, we get $R=\infty$.
For $L=\infty$, we get $R=0$.
This concludes the discussion on how to compute the radius of convergence of a power series.

Theorem

Let $R>0$ be the radius of convergence of the power series

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

Then the power series converges (absolutely) for all $x \in\left(x_{0}-R, x_{0}+R\right)$.

Theorem

Let $R>0$ be the radius of convergence of the power series

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

Then the power series converges (absolutely) for all $x \in\left(x_{0}-R, x_{0}+R\right)$.

For $R=\infty$, we write $\left(x_{0}-R, x_{0}+R\right)=(-\infty, \infty)=\mathbb{R}$.

Power series - Radius of convergence

Theorem

Let $R>0$ be the radius of convergence of the power series

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

Then the power series converges (absolutely) for all $x \in\left(x_{0}-R, x_{0}+R\right)$.

For $R=\infty$, we write $\left(x_{0}-R, x_{0}+R\right)=(-\infty, \infty)=\mathbb{R}$.

Definition

The open interval $\left(x_{0}-R, x_{0}+R\right)$ is called the interval of convergence of the power series.

Power series - examples

Power series - examples

Example

Find the radius of convergence and interval of convergence (if $R>0$) of

$$
\sum_{0}^{\infty} n!x^{n}
$$

Power series - examples

Example

Find the radius of convergence and interval of convergence (if $R>0$) of

$$
\sum_{0}^{\infty} n!x^{n}
$$

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|
$$

Power series - examples

Example

Find the radius of convergence and interval of convergence (if $R>0$) of

$$
\sum_{0}^{\infty} n!x^{n}
$$

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!}{n!}\right|
$$

Power series - examples

Example

Find the radius of convergence and interval of convergence (if $R>0$) of

$$
\sum_{0}^{\infty} n!x^{n}
$$

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!}{n!}\right|=\lim _{n \rightarrow \infty}(n+1)=\infty
$$

Power series - examples

Example

Find the radius of convergence and interval of convergence (if $R>0$) of

$$
\sum_{0}^{\infty} n!x^{n}
$$

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!}{n!}\right|=\lim _{n \rightarrow \infty}(n+1)=\infty
$$

So $R=1 / \infty=0$.

Power series - examples

Power series - examples

Example

Find the radius of convergence and interval of convergence (if $R>0$) of

$$
\sum_{10}^{\infty}(-1)^{n} \frac{x^{n}}{n^{n}}
$$

Power series - examples

Example

Find the radius of convergence and interval of convergence (if $R>0$) of

$$
\begin{array}{r}
\sum_{10}^{\infty}(-1)^{n} \frac{x^{n}}{n^{n}} \\
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|
\end{array}
$$

Power series - examples

Example

Find the radius of convergence and interval of convergence (if $R>0$) of

$$
\begin{gathered}
\sum_{10}^{\infty}(-1)^{n} \frac{x^{n}}{n^{n}} \\
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n^{n}}{(n+1)^{n+1}}\right|
\end{gathered}
$$

Power series - examples

Example

Find the radius of convergence and interval of convergence (if $R>0$) of

$$
\begin{gathered}
\sum_{10}^{\infty}(-1)^{n} \frac{x^{n}}{n^{n}} \\
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n^{n}}{(n+1)^{n+1}}\right|=0
\end{gathered}
$$

Power series - examples

Example

Find the radius of convergence and interval of convergence (if $R>0$) of

$$
\begin{gathered}
\sum_{10}^{\infty}(-1)^{n} \frac{x^{n}}{n^{n}} \\
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n^{n}}{(n+1)^{n+1}}\right|=0
\end{gathered}
$$

So $R=1 / 0=\infty$.

Power series - examples

Example

Find the radius of convergence and interval of convergence (if $R>0$) of

$$
\begin{gathered}
\sum_{10}^{\infty}(-1)^{n} \frac{x^{n}}{n^{n}} \\
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n^{n}}{(n+1)^{n+1}}\right|=0
\end{gathered}
$$

So $R=1 / 0=\infty$. Interval of convergence $(-\infty, \infty)$.

Power series - examples

Power series - examples

Example

Find the radius of convergence and interval of convergence (if $R>0$) of

$$
\sum_{0}^{\infty} 2^{n} n^{3}(x-1)^{n}
$$

Power series - examples

Example

Find the radius of convergence and interval of convergence (if $R>0$) of

$$
\begin{array}{r}
\sum_{0}^{\infty} 2^{n} n^{3}(x-1)^{n} \\
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|
\end{array}
$$

Power series - examples

Example

Find the radius of convergence and interval of convergence (if $R>0$) of

$$
\begin{gathered}
\sum_{0}^{\infty} 2^{n} n^{3}(x-1)^{n} \\
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2^{n+1}(n+1)^{3}}{2^{n} n^{3}}\right|
\end{gathered}
$$

Power series - examples

Example

Find the radius of convergence and interval of convergence (if $R>0$) of

$$
\begin{gathered}
\sum_{0}^{\infty} 2^{n} n^{3}(x-1)^{n} \\
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2^{n+1}(n+1)^{3}}{2^{n} n^{3}}\right|=2
\end{gathered}
$$

Power series - examples

Example

Find the radius of convergence and interval of convergence (if $R>0$) of

$$
\begin{gathered}
\sum_{0}^{\infty} 2^{n} n^{3}(x-1)^{n} \\
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2^{n+1}(n+1)^{3}}{2^{n} n^{3}}\right|=2
\end{gathered}
$$

So $R=1 / 2$.

Power series - examples

Example

Find the radius of convergence and interval of convergence (if $R>0$) of

$$
\begin{gathered}
\sum_{0}^{\infty} 2^{n} n^{3}(x-1)^{n} \\
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2^{n+1}(n+1)^{3}}{2^{n} n^{3}}\right|=2
\end{gathered}
$$

So $R=1 / 2$. Interval of convergence ($1 / 2,3 / 2$).

Power series as functions

Theorem

Let R be the radius of convergence of the power series $\sum^{\infty} a_{n}\left(x-x_{0}\right)^{n}$
$n=0$

Theorem

Let R be the radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$. We assume $R>0$.

Power series as functions

Theorem

Let R be the radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$. We assume $R>0$.

We define a function $f:\left(x_{0}-R, x_{0}+R\right) \rightarrow \mathbb{R}$ by

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

Theorem

Let R be the radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$. We assume $R>0$.
We define a function $f:\left(x_{0}-R, x_{0}+R\right) \rightarrow \mathbb{R}$ by

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

This function satisfies the following properties
(1) f is infinitely differentiable $\forall x \in\left(x_{0}-R, x_{0}+R\right)$.

Theorem (continued ...)

(2) The successive derivatives of f can be computed by differentiating the power series term-by-term, that is,

Power series as functions

Theorem (continued ...)

(2) The successive derivatives of f can be computed by differentiating the power series term-by-term, that is,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x} \sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \\
& =\sum_{n=0}^{\infty} \frac{d}{d x} a_{n}\left(x-x_{0}\right)^{n}
\end{aligned}
$$

Exchanging a differential operator and a sum/integral is something which needs to be done with care

$$
=\sum_{n=0}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1}
$$

Theorem (continued ...)

(3) $f^{(k)}(x)=\sum_{n=0}^{\infty} n(n-1) \ldots(n-k+1) a_{n}\left(x-x_{0}\right)^{n-k}$

Power series as functions

Theorem (continued ...)

(3) $f^{(k)}(x)=\sum_{n=0}^{\infty} n(n-1) \ldots(n-k+1) a_{n}\left(x-x_{0}\right)^{n-k}$
(9) The power series representing the derivatives $f^{(n)}(x)$ have same radius of convergence R.

Theorem (continued ...)

(3) $f^{(k)}(x)=\sum_{n=0}^{\infty} n(n-1) \ldots(n-k+1) a_{n}\left(x-x_{0}\right)^{n-k}$
(9) The power series representing the derivatives $f^{(n)}(x)$ have same radius of convergence R.
(3) We can determine the coefficients a_{n} (in terms of derivatives of f at x_{0}) as

$$
a_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!}
$$

Theorem (continued ...)

- We can also integrate the function $f(x)=\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ term-wise, that is,

Theorem (continued ...)

- We can also integrate the function $f(x)=\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ term-wise, that is, if $[a, b] \subset\left(x_{0}-R, x_{0}+R\right)$, then

$$
\int_{a}^{b} f(x) d x=\sum_{n=0}^{\infty} a_{n} \int_{a}^{b}\left(x-x_{0}\right)^{n} d x=\sum_{0}^{\infty} \frac{a_{n}}{n+1}\left(x-x_{0}\right)^{n+1}
$$

Exchanging an integral operator and a sum is something which needs to be done with care

Power series as functions

Theorem

Power series as functions

Theorem
(i) Power series representation of f in an open interval I containing x_{0} is unique,

Power series as functions

Theorem

(i) Power series representation of f in an open interval I containing x_{0} is unique, that is, if

$$
f(x)=\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=\sum_{0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}
$$

for all $x \in I$,

Power series as functions

Theorem

(i) Power series representation of f in an open interval I containing x_{0} is unique, that is, if

$$
f(x)=\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=\sum_{0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}
$$

for all $x \in I$, then $a_{n}=b_{n} \forall n$.

Power series as functions

Theorem

(i) Power series representation of f in an open interval I containing x_{0} is unique, that is, if

$$
f(x)=\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=\sum_{0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}
$$

for all $x \in I$, then $a_{n}=b_{n} \forall n$.
(ii) If

$$
\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=0
$$

for all $x \in I$, then $a_{n}=0$ for all n.

Power series as functions

Theorem

(i) Power series representation of f in an open interval I containing x_{0} is unique, that is, if

$$
f(x)=\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=\sum_{0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}
$$

for all $x \in I$, then $a_{n}=b_{n} \forall n$.
(ii) If

$$
\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=0
$$

for all $x \in I$, then $a_{n}=0$ for all n.
Proof. (i)

Power series as functions

Theorem

(i) Power series representation of f in an open interval I containing x_{0} is unique, that is, if

$$
f(x)=\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=\sum_{0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}
$$

for all $x \in I$, then $a_{n}=b_{n} \forall n$.
(ii) If

$$
\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=0
$$

for all $x \in I$, then $a_{n}=0$ for all n.
Proof. (i)

$$
a_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!}=b_{n} \quad \text { for all } n
$$

Power series as functions

Theorem

(i) Power series representation of f in an open interval I containing x_{0} is unique, that is, if

$$
f(x)=\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=\sum_{0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}
$$

for all $x \in I$, then $a_{n}=b_{n} \forall n$.
(ii) If

$$
\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=0
$$

for all $x \in I$, then $a_{n}=0$ for all n.
Proof. (i)

$$
a_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!}=b_{n} \quad \text { for all } n
$$

It is clear that (ii) follows from (i).

Examples of power series

Example (Power series representation of some familiar functions)

Examples of power series

Example (Power series representation of some familiar functions)

$$
\text { (i) } e^{x}=\sum_{0}^{\infty} \frac{x^{n}}{n!} \quad-\infty<x<\infty
$$

Examples of power series

Example (Power series representation of some familiar functions)
(i) $e^{x}=\sum_{0}^{\infty} \frac{x^{n}}{n!} \quad-\infty<x<\infty$
(ii) $\sin x=\sum_{0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \quad-\infty<x<\infty$

Examples of power series

Example (Power series representation of some familiar functions)
(i) $e^{x}=\sum_{0}^{\infty} \frac{x^{n}}{n!} \quad-\infty<x<\infty$
(ii) $\sin x=\sum_{0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \quad-\infty<x<\infty$
(iii) $\frac{1}{1-x}=\sum_{0}^{\infty} x^{n} \quad-1<x<1$

Examples of power series

Example (Power series representation of some familiar functions)

(i) $e^{x}=\sum_{0}^{\infty} \frac{x^{n}}{n!} \quad-\infty<x<\infty$
(ii) $\sin x=\sum_{0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \quad-\infty<x<\infty$
(iii) $\frac{1}{1-x}=\sum_{0}^{\infty} x^{n} \quad-1<x<1$
(iv) $\frac{d}{d x}(\sin x)$

Examples of power series

Example (Power series representation of some familiar functions)

(i) $e^{x}=\sum_{0}^{\infty} \frac{x^{n}}{n!} \quad-\infty<x<\infty$
(ii) $\sin x=\sum_{0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \quad-\infty<x<\infty$
(iii) $\frac{1}{1-x}=\sum_{0}^{\infty} x^{n} \quad-1<x<1$
(iv) $\frac{d}{d x}(\sin x)=\sum_{0}^{\infty}(-1)^{n} \frac{d}{d x}\left(\frac{x^{2 n+1}}{(2 n+1)!}\right)$

Examples of power series

Example (Power series representation of some familiar functions)

(ii) $\sin x=\sum_{0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \quad-\infty<x<\infty$
(iii) $\frac{1}{1-x}=\sum_{0}^{\infty} x^{n} \quad-1<x<1$
(iv) $\frac{d}{d x}(\sin x)=\sum_{0}^{\infty}(-1)^{n} \frac{d}{d x}\left(\frac{x^{2 n+1}}{(2 n+1)!}\right)$

$$
=\sum_{0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}
$$

Examples of power series

Example (Power series representation of some familiar functions)

(ii) $\sin x=\sum_{0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \quad-\infty<x<\infty$
(iii) $\frac{1}{1-x}=\sum_{0}^{\infty} x^{n} \quad-1<x<1$
(iv) $\frac{d}{d x}(\sin x)=\sum_{0}^{\infty}(-1)^{n} \frac{d}{d x}\left(\frac{x^{2 n+1}}{(2 n+1)!}\right)$

$$
=\sum_{0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=\cos x
$$

Algebraic operations on power series

Algebraic operations on power series

Definition
If $\quad f(x)=\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \quad g(x)=\sum_{0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}$
have radius of convergence R_{1} and R_{2}, respectively,

Algebraic operations on power series

Definition

If $\quad f(x)=\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \quad g(x)=\sum_{0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}$
have radius of convergence R_{1} and R_{2}, respectively, then

$$
c_{1} f(x)+c_{2} g(x):=\sum_{0}^{\infty}\left(c_{1} a_{n}+c_{2} b_{n}\right)\left(x-x_{0}\right)^{n}
$$

has radius of convergence $R \geq \min \left\{R_{1}, R_{2}\right\}$ for $c_{1}, c_{2} \in \mathbb{R}$.

Algebraic operations on power series

Definition

If $\quad f(x)=\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \quad g(x)=\sum_{0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}$
have radius of convergence R_{1} and R_{2}, respectively, then

$$
c_{1} f(x)+c_{2} g(x):=\sum_{0}^{\infty}\left(c_{1} a_{n}+c_{2} b_{n}\right)\left(x-x_{0}\right)^{n}
$$

has radius of convergence $R \geq \min \left\{R_{1}, R_{2}\right\}$ for $c_{1}, c_{2} \in \mathbb{R}$.
Further, we can multiply the series as if they were polynomials,

Algebraic operations on power series

Definition

If $\quad f(x)=\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \quad g(x)=\sum_{0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}$
have radius of convergence R_{1} and R_{2}, respectively, then

$$
c_{1} f(x)+c_{2} g(x):=\sum_{0}^{\infty}\left(c_{1} a_{n}+c_{2} b_{n}\right)\left(x-x_{0}\right)^{n}
$$

has radius of convergence $R \geq \min \left\{R_{1}, R_{2}\right\}$ for $c_{1}, c_{2} \in \mathbb{R}$.
Further, we can multiply the series as if they were polynomials, that is

$$
f(x) g(x)=\sum_{0}^{\infty} c_{n}\left(x-x_{0}\right)^{n} ; \quad c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+\ldots+a_{n} b_{0}
$$

Algebraic operations on power series

Definition

If $\quad f(x)=\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \quad g(x)=\sum_{0}^{\infty} b_{n}\left(x-x_{0}\right)^{n}$
have radius of convergence R_{1} and R_{2}, respectively, then

$$
c_{1} f(x)+c_{2} g(x):=\sum_{0}^{\infty}\left(c_{1} a_{n}+c_{2} b_{n}\right)\left(x-x_{0}\right)^{n}
$$

has radius of convergence $R \geq \min \left\{R_{1}, R_{2}\right\}$ for $c_{1}, c_{2} \in \mathbb{R}$.
Further, we can multiply the series as if they were polynomials, that is

$$
f(x) g(x)=\sum_{0}^{\infty} c_{n}\left(x-x_{0}\right)^{n} ; \quad c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+\ldots+a_{n} b_{0}
$$

It also has radius of convergence $R \geq \min \left\{R_{1}, R_{2}\right\}$.

Algebraic operations on power series

Example

Find the power series expansion for $\cosh x$ in terms of powers of x^{n}.

Algebraic operations on power series

Example

Find the power series expansion for $\cosh x$ in terms of powers of x^{n}.

$$
\cosh x=\frac{1}{2} e^{x}+\frac{1}{2} e^{-x}
$$

Algebraic operations on power series

Example

Find the power series expansion for $\cosh x$ in terms of powers of x^{n}.

$$
\begin{aligned}
\cosh x & =\frac{1}{2} e^{x}+\frac{1}{2} e^{-x} \\
& =\frac{1}{2} \sum_{n=0}^{\infty} \frac{x^{n}}{n!}+\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{n!}
\end{aligned}
$$

Algebraic operations on power series

Example

Find the power series expansion for $\cosh x$ in terms of powers of x^{n}.

$$
\begin{aligned}
\cosh x & =\frac{1}{2} e^{x}+\frac{1}{2} e^{-x} \\
& =\frac{1}{2} \sum_{n=0}^{\infty} \frac{x^{n}}{n!}+\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{1}{2}\left[1+(-1)^{n}\right] \frac{x^{n}}{n!}
\end{aligned}
$$

Algebraic operations on power series

Example

Find the power series expansion for $\cosh x$ in terms of powers of x^{n}.

$$
\begin{aligned}
\cosh x & =\frac{1}{2} e^{x}+\frac{1}{2} e^{-x} \\
& =\frac{1}{2} \sum_{n=0}^{\infty} \frac{x^{n}}{n!}+\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{1}{2}\left[1+(-1)^{n}\right] \frac{x^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}
\end{aligned}
$$

Algebraic operations on power series

Example

Find the power series expansion for $\cosh x$ in terms of powers of x^{n}.

$$
\begin{aligned}
\cosh x & =\frac{1}{2} e^{x}+\frac{1}{2} e^{-x} \\
& =\frac{1}{2} \sum_{n=0}^{\infty} \frac{x^{n}}{n!}+\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{1}{2}\left[1+(-1)^{n}\right] \frac{x^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}
\end{aligned}
$$

Since radius of convergence for Taylor series of e^{x} and e^{-x} are ∞,

Algebraic operations on power series

Example

Find the power series expansion for $\cosh x$ in terms of powers of x^{n}.

$$
\begin{aligned}
\cosh x & =\frac{1}{2} e^{x}+\frac{1}{2} e^{-x} \\
& =\frac{1}{2} \sum_{n=0}^{\infty} \frac{x^{n}}{n!}+\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{1}{2}\left[1+(-1)^{n}\right] \frac{x^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}
\end{aligned}
$$

Since radius of convergence for Taylor series of e^{x} and e^{-x} are ∞, the power series expansion of $\cosh x$ is valid on \mathbb{R}.

Algebraic operations on power series

Algebraic operations on power series

If $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ then $f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1}$.

Algebraic operations on power series

If $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ then $f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1}$.
Put $r=n-1$ into $f^{\prime}(x)$, we get

$$
f^{\prime}(x)=\sum_{r=0}^{\infty}(r+1) a_{r+1}\left(x-x_{0}\right)^{r}
$$

Algebraic operations on power series

If $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ then $f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1}$.
Put $r=n-1$ into $f^{\prime}(x)$, we get

$$
f^{\prime}(x)=\sum_{r=0}^{\infty}(r+1) a_{r+1}\left(x-x_{0}\right)^{r}
$$

Similarly,

$$
\begin{aligned}
f^{(k)}(x) & =\sum_{n=k}^{\infty} n(n-1) \ldots(n-k+1) a_{n}\left(x-x_{0}\right)^{n-k} \\
& =\sum_{n=0}^{\infty}(n+k)(n+k-1) \ldots(n+1) a_{n+k}\left(x-x_{0}\right)^{n}
\end{aligned}
$$

Algebraic operations on power series

Example

Algebraic operations on power series

Example

Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$.

Algebraic operations on power series

Example

Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Write $(x-1) f^{\prime \prime}$ as a power series around 0 .

Algebraic operations on power series

Example

Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Write $(x-1) f^{\prime \prime}$ as a power series around 0 .

$$
(x-1) f^{\prime \prime}=x f^{\prime \prime}-f^{\prime \prime}
$$

Algebraic operations on power series

Example

Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Write $(x-1) f^{\prime \prime}$ as a power series around 0 .

$$
\begin{aligned}
(x-1) f^{\prime \prime} & =x f^{\prime \prime}-f^{\prime \prime} \\
& =x\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Algebraic operations on power series

Example

Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Write $(x-1) f^{\prime \prime}$ as a power series around 0 .

$$
\begin{aligned}
(x-1) f^{\prime \prime} & =x f^{\prime \prime}-f^{\prime \prime} \\
& =x\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} \\
& =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-1}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Algebraic operations on power series

Example

Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Write $(x-1) f^{\prime \prime}$ as a power series around 0 .

$$
\begin{aligned}
(x-1) f^{\prime \prime} & =x f^{\prime \prime}-f^{\prime \prime} \\
& =x\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} \\
& =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-1}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} \\
& =\sum_{n=1}^{\infty}(n+1) n a_{n+1} x^{n}-\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}
\end{aligned}
$$

Algebraic operations on power series

Example

Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Write $(x-1) f^{\prime \prime}$ as a power series around 0 .

$$
\begin{aligned}
(x-1) f^{\prime \prime} & =x f^{\prime \prime}-f^{\prime \prime} \\
& =x\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} \\
& =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-1}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} \\
& =\sum_{n=1}^{\infty}(n+1) n a_{n+1} x^{n}-\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n} \\
& =\sum_{n=0}^{\infty}\left[(n+1) n a_{n+1}-(n+2)(n+1) a_{n+2}\right] x^{n}
\end{aligned}
$$

Using power series to find formal solution to ODE's

Using power series to find formal solution to ODE's

Example

Suppose

$$
y(x)=\sum_{n=0}^{\infty} a_{n}(x-1)^{n}
$$

for all x in an open interval I containing $x_{0}=1$.

Using power series to find formal solution to ODE's

Example

Suppose

$$
y(x)=\sum_{n=0}^{\infty} a_{n}(x-1)^{n}
$$

for all x in an open interval I containing $x_{0}=1$.

- Find the power series of y^{\prime} and $y^{\prime \prime}$ in terms of $x-1$ in the interval I. Use these to express the function

$$
(1+x) y^{\prime \prime}+2(x-1)^{2} y^{\prime}+3 y
$$

as a power series in $x-1$ on I.

Using power series to find formal solution to ODE's

Example

Suppose

$$
y(x)=\sum_{n=0}^{\infty} a_{n}(x-1)^{n}
$$

for all x in an open interval I containing $x_{0}=1$.

- Find the power series of y^{\prime} and $y^{\prime \prime}$ in terms of $x-1$ in the interval I. Use these to express the function

$$
(1+x) y^{\prime \prime}+2(x-1)^{2} y^{\prime}+3 y
$$

as a power series in $x-1$ on I.

- Find necessary and sufficient conditions on the coefficients a_{n} 's, so that $y(x)$ is a formal solution of the ODE

$$
(1+x) y^{\prime \prime}+2(x-1)^{2} y^{\prime}+3 y=0
$$

Using power series to find formal solution to ODE's

Example (continued ...)

Solution.

Using power series to find formal solution to ODE's

Example (continued ...)

Solution. Write the ODE in $(x-1)$, that is

Using power series to find formal solution to ODE's

Example (continued ...)

Solution. Write the ODE in $(x-1)$, that is
$(1+x) y^{\prime \prime}+2(x-1)^{2} y^{\prime}+3 y=(x-1) y^{\prime \prime}+2 y^{\prime \prime}+2(x-1)^{2} y^{\prime}+3 y$

Using power series to find formal solution to ODE's

Example (continued ...)

Solution. Write the ODE in $(x-1)$, that is
$(1+x) y^{\prime \prime}+2(x-1)^{2} y^{\prime}+3 y=(x-1) y^{\prime \prime}+2 y^{\prime \prime}+2(x-1)^{2} y^{\prime}+3 y$
Express each of $(x-1) y^{\prime \prime}, 2 y^{\prime \prime}, 2(x-1)^{2} y^{\prime}$ and $3 y$ as a power series in powers of $(x-1)$ and add them.

Using power series to find formal solution to ODE's

Example (continued ...)

Solution. Write the ODE in $(x-1)$, that is
$(1+x) y^{\prime \prime}+2(x-1)^{2} y^{\prime}+3 y=(x-1) y^{\prime \prime}+2 y^{\prime \prime}+2(x-1)^{2} y^{\prime}+3 y$
Express each of $(x-1) y^{\prime \prime}, 2 y^{\prime \prime}, 2(x-1)^{2} y^{\prime}$ and $3 y$ as a power series in powers of $(x-1)$ and add them.

$$
(x-1) y^{\prime \prime}=(x-1) \sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-2}
$$

Using power series to find formal solution to ODE's

Example (continued ...)

Solution. Write the ODE in $(x-1)$, that is
$(1+x) y^{\prime \prime}+2(x-1)^{2} y^{\prime}+3 y=(x-1) y^{\prime \prime}+2 y^{\prime \prime}+2(x-1)^{2} y^{\prime}+3 y$
Express each of $(x-1) y^{\prime \prime}, 2 y^{\prime \prime}, 2(x-1)^{2} y^{\prime}$ and $3 y$ as a power series in powers of $(x-1)$ and add them.

$$
\begin{aligned}
(x-1) y^{\prime \prime} & =(x-1) \sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-2} \\
& =\sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-1}
\end{aligned}
$$

Using power series to find formal solution to ODE's

Example (continued ...)

Solution. Write the ODE in $(x-1)$, that is
$(1+x) y^{\prime \prime}+2(x-1)^{2} y^{\prime}+3 y=(x-1) y^{\prime \prime}+2 y^{\prime \prime}+2(x-1)^{2} y^{\prime}+3 y$
Express each of $(x-1) y^{\prime \prime}, 2 y^{\prime \prime}, 2(x-1)^{2} y^{\prime}$ and $3 y$ as a power series in powers of $(x-1)$ and add them.

$$
\begin{aligned}
(x-1) y^{\prime \prime} & =(x-1) \sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-2} \\
& =\sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-1} \\
& =\sum_{n=1}^{\infty}(n+1) n a_{n+1}(x-1)^{n}
\end{aligned}
$$

Using power series to find formal solution to ODE's

Example (continued ...)

Solution. Write the ODE in $(x-1)$, that is
$(1+x) y^{\prime \prime}+2(x-1)^{2} y^{\prime}+3 y=(x-1) y^{\prime \prime}+2 y^{\prime \prime}+2(x-1)^{2} y^{\prime}+3 y$
Express each of $(x-1) y^{\prime \prime}, 2 y^{\prime \prime}, 2(x-1)^{2} y^{\prime}$ and $3 y$ as a power series in powers of $(x-1)$ and add them.

$$
\begin{aligned}
(x-1) y^{\prime \prime} & =(x-1) \sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-2} \\
& =\sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-1} \\
& =\sum_{n=1}^{\infty}(n+1) n a_{n+1}(x-1)^{n} \\
& =\sum_{n=0}^{\infty}(n+1) n a_{n+1}(x-1)^{n}
\end{aligned}
$$

Using power series to find formal solution to ODE's

Example (continued ...)

$$
2 y^{\prime \prime}=\sum_{n=2}^{\infty} 2 n(n-1) a_{n}(x-1)^{n-2}
$$

Using power series to find formal solution to ODE's

Example (continued ...)

$$
\begin{aligned}
2 y^{\prime \prime}= & \sum_{n=2}^{\infty} 2 n(n-1) a_{n}(x-1)^{n-2} \\
& =\sum_{n=0}^{\infty} 2(n+2)(n+1) a_{n+2}(x-1)^{n}
\end{aligned}
$$

Using power series to find formal solution to ODE's

Example (continued ...)

$$
\begin{aligned}
& \begin{aligned}
2 y^{\prime \prime}= & \sum_{n=2}^{\infty} 2 n(n-1) a_{n}(x-1)^{n-2} \\
& =\sum_{n=0}^{\infty} 2(n+2)(n+1) a_{n+2}(x-1)^{n}
\end{aligned} \\
& 2(x-1)^{2} y^{\prime}=2(x-1)^{2} \sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1}
\end{aligned}
$$

Using power series to find formal solution to ODE's

Example (continued ...)

$$
\begin{aligned}
& 2 y^{\prime \prime}= \sum_{n=2}^{\infty} 2 n(n-1) a_{n}(x-1)^{n-2} \\
&=\sum_{n=0}^{\infty} 2(n+2)(n+1) a_{n+2}(x-1)^{n} \\
& 2(x-1)^{2} y^{\prime}=2(x-1)^{2} \sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1} \\
&=\sum_{n=1}^{\infty} 2 n a_{n}(x-1)^{n+1}
\end{aligned}
$$

Using power series to find formal solution to ODE's

Example (continued ...)

$$
\begin{aligned}
& 2 y^{\prime \prime}= \sum_{n=2}^{\infty} 2 n(n-1) a_{n}(x-1)^{n-2} \\
&=\sum_{n=0}^{\infty} 2(n+2)(n+1) a_{n+2}(x-1)^{n} \\
& 2(x-1)^{2} y^{\prime}=2(x-1)^{2} \sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1} \\
&=\sum_{n=1}^{\infty} 2 n a_{n}(x-1)^{n+1} \\
&=\sum_{n=2}^{\infty} 2(n-1) a_{n-1}(x-1)^{n}
\end{aligned}
$$

Using power series to find formal solution to ODE's

Example (continued ...)

$$
\begin{aligned}
& 2 y^{\prime \prime}=\sum_{n=2}^{\infty} 2 n(n-1) a_{n}(x-1)^{n-2} \\
& \quad=\sum_{n=0}^{\infty} 2(n+2)(n+1) a_{n+2}(x-1)^{n} \\
& 2(x-1)^{2} y^{\prime}=2(x-1)^{2} \sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1} \\
& \\
& =\sum_{n=1}^{\infty} 2 n a_{n}(x-1)^{n+1} \\
& \\
& =\sum_{n=2}^{\infty} 2(n-1) a_{n-1}(x-1)^{n} \\
& \\
& =\sum_{n=0}^{\infty} 2(n-1) a_{n-1}(x-1)^{n} \quad\left(a_{-1}=0\right)
\end{aligned}
$$

Using power series to find formal solution to ODE's

Example (continued ...)

We have

$$
(x-1) y^{\prime \prime}=\sum_{n=0}^{\infty}(n+1) n a_{n+1}(x-1)^{n}
$$

Using power series to find formal solution to ODE's

Example (continued ...)

We have

$$
\begin{aligned}
& (x-1) y^{\prime \prime}=\sum_{n=0}^{\infty}(n+1) n a_{n+1}(x-1)^{n} \\
& 2 y^{\prime \prime}=\sum_{n=0}^{\infty} 2(n+2)(n+1) a_{n+2}(x-1)^{n}
\end{aligned}
$$

Using power series to find formal solution to ODE's

Example (continued ...)

We have

$$
\begin{aligned}
& (x-1) y^{\prime \prime}=\sum_{n=0}^{\infty}(n+1) n a_{n+1}(x-1)^{n} \\
& 2 y^{\prime \prime}=\sum_{n=0}^{\infty} 2(n+2)(n+1) a_{n+2}(x-1)^{n} \\
& 2(x-1)^{2} y^{\prime}=\sum_{n=0}^{\infty} 2(n-1) a_{n-1}(x-1)^{n} \quad\left(a_{-1}=0\right)
\end{aligned}
$$

Using power series to find formal solution to ODE's

Example (continued ...)

We have

$$
\begin{aligned}
& (x-1) y^{\prime \prime}=\sum_{n=0}^{\infty}(n+1) n a_{n+1}(x-1)^{n} \\
& 2 y^{\prime \prime}=\sum_{n=0}^{\infty} 2(n+2)(n+1) a_{n+2}(x-1)^{n} \\
& 2(x-1)^{2} y^{\prime}=\sum_{n=0}^{\infty} 2(n-1) a_{n-1}(x-1)^{n} \quad\left(a_{-1}=0\right)
\end{aligned}
$$

Now we get

$$
(x-1) y^{\prime \prime}+2 y^{\prime \prime}+2(x-1)^{2} y^{\prime}+3 y=\sum_{n=0}^{\infty} b_{n}(x-1)^{n}
$$

where

$$
b_{n}=(n+1) n a_{n+1}+2(n+2)(n+1) a_{n+2}+2(n-1) a_{n-1}+3 a_{n}
$$

Using power series to find formal solution to ODE's

Example (continued ...)

For the second part,

$$
\begin{aligned}
& y(x)=\sum_{0}^{\infty} a_{n}(x-1)^{n} \text { is the solution of the ODE } \\
& (x-1) y^{\prime \prime}+2 y^{\prime \prime}+2(x-1)^{2} y^{\prime}+3 y=0
\end{aligned}
$$

on the open interval I containing 1 if and only if

$$
\sum_{n=0}^{\infty} b_{n}(x-1)^{n}=0 \text { on } I \Longleftrightarrow b_{n}=0 \quad \text { for all } n
$$

Using power series to find formal solution to ODE's

Example (continued ...)

For the second part,

$$
\begin{aligned}
& y(x)=\sum_{0}^{\infty} a_{n}(x-1)^{n} \text { is the solution of the ODE } \\
& (x-1) y^{\prime \prime}+2 y^{\prime \prime}+2(x-1)^{2} y^{\prime}+3 y=0
\end{aligned}
$$

on the open interval I containing 1 if and only if

$$
\sum_{n=0}^{\infty} b_{n}(x-1)^{n}=0 \text { on } I \Longleftrightarrow b_{n}=0 \quad \text { for all } n
$$

that is, a_{n} 's satisfy the following recursive relation

$$
(n+1) n a_{n+1}+2(n+2)(n+1) a_{n+2}+2(n-1) a_{n-1}+3 a_{n}=0
$$

for all n.

Using power series to find formal solution to ODE's

Example (continued ...)

Thus, we can take any coefficients which satisfy the above relations, and we get a power series which satisfies the above equation.

Using power series to find formal solution to ODE's

Example (continued ...)

Thus, we can take any coefficients which satisfy the above relations, and we get a power series which satisfies the above equation. However, note that this power series may not define a nice function. In this sense, the above solution is "formal".

Taylor series

Definition

Let $f(x)$ be an infinitely differentiable at x_{0}.

Definition
Let $f(x)$ be an infinitely differentiable at x_{0}. The Taylor series of f at x_{0} is defined as the power series

$$
\left.T S f\right|_{x_{0}}:=\sum_{0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

Taylor series

Definition

Let $f(x)$ be an infinitely differentiable at x_{0}. The Taylor series of f at x_{0} is defined as the power series

$$
\left.T S f\right|_{x_{0}}:=\sum_{0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

Let us make an observation.

Taylor series

Definition

Let $f(x)$ be an infinitely differentiable at x_{0}. The Taylor series of f at x_{0} is defined as the power series

$$
\left.T S f\right|_{x_{0}}:=\sum_{0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

Let us make an observation.
Suppose f is defined by a power series in an interval of x_{0}, that is, $f(x)=\sum_{n \geq 0} a_{n}\left(x-x_{0}\right)^{n}$ in the interval $\left(x_{0}-R, x_{0}+R\right)$. When we apply the above definition of Taylor series, we see that

$$
\left.T S f\right|_{x_{0}}=\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=f(x)
$$

Thus, in this case from the Taylor series we get back the function f.

However, the class of infinitely differentiable functions is larger than the class of power series and the above need not be true for infinitely differentiable functions in an interval around x_{0}

However, the class of infinitely differentiable functions is larger than the class of power series and the above need not be true for infinitely differentiable functions in an interval around x_{0}

Example

However, the class of infinitely differentiable functions is larger than the class of power series and the above need not be true for infinitely differentiable functions in an interval around x_{0}

Example

The function $\quad f(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$

However, the class of infinitely differentiable functions is larger than the class of power series and the above need not be true for infinitely differentiable functions in an interval around x_{0}

Example

The function $\quad f(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$
is infinitely differentiable at 0 .

However, the class of infinitely differentiable functions is larger than the class of power series and the above need not be true for infinitely differentiable functions in an interval around x_{0}

Example

The function $\quad f(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$
is infinitely differentiable at 0 . But $f^{(n)}(0)=0$ for all n.

However, the class of infinitely differentiable functions is larger than the class of power series and the above need not be true for infinitely differentiable functions in an interval around x_{0}

Example

The function $\quad f(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$
is infinitely differentiable at 0 . But $f^{(n)}(0)=0$ for all n.
Hence the Taylor series of f at 0 is the constant function taking value 0 .

However, the class of infinitely differentiable functions is larger than the class of power series and the above need not be true for infinitely differentiable functions in an interval around x_{0}

Example

The function $\quad f(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$
is infinitely differentiable at 0 . But $f^{(n)}(0)=0$ for all n.
Hence the Taylor series of f at 0 is the constant function taking value 0 .
Therefore Taylor series of f at 0 does not converge to function $f(x)$ on any open interval around 0 .

Taylor series

Definition

Definition

Suppose

- $f(x)$ is infinitely differentiable at x_{0}; and

Definition
Suppose

- $f(x)$ is infinitely differentiable at x_{0}; and
- Taylor series of f at x_{0} converges to $f(x)$ for all x in some open interval around x_{0};

Definition
Suppose

- $f(x)$ is infinitely differentiable at x_{0}; and
- Taylor series of f at x_{0} converges to $f(x)$ for all x in some open interval around x_{0};
Then f is called analytic at x_{0}.

Definition
Suppose

- $f(x)$ is infinitely differentiable at x_{0}; and
- Taylor series of f at x_{0} converges to $f(x)$ for all x in some open interval around x_{0};
Then f is called analytic at x_{0}.
Thus, if f is analytic, then there is an interval I around x_{0} and f is given by a power series in I.

Taylor series

Definition

Suppose

- $f(x)$ is infinitely differentiable at x_{0}; and
- Taylor series of f at x_{0} converges to $f(x)$ for all x in some open interval around x_{0};
Then f is called analytic at x_{0}.
Thus, if f is analytic, then there is an interval I around x_{0} and f is given by a power series in I.

Example

The function $\quad f(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$
is not analytic at 0 . Here 2 nd condition fails. However, f is analytic at all $x \neq 0$.

Analytic functions

Example

(1) Polynomials, $e^{x}, \sin x$ and $\cos x$ are analytic at all $x \in \mathbb{R}$.

Analytic functions

Example

(1) Polynomials, $e^{x}, \sin x$ and $\cos x$ are analytic at all $x \in \mathbb{R}$.
(2) $f(x)=\tan x$ is analytic at all x except $x=(2 n+1) \pi / 2$, where $n= \pm 1, \pm 2, \ldots$.

Analytic functions

Example

(1) Polynomials, $e^{x}, \sin x$ and $\cos x$ are analytic at all $x \in \mathbb{R}$.
(2) $f(x)=\tan x$ is analytic at all x except $x=(2 n+1) \pi / 2$, where $n= \pm 1, \pm 2, \ldots$.
(3) $f(x)=x^{5 / 3}$ is analytic at all x except $x=0$.

Analytic functions

Theorem (Analytic functions)

Analytic functions

Theorem (Analytic functions)

(1) If $f(x)$ and $g(x)$ are analytic at x_{0}, then

Analytic functions

Theorem (Analytic functions)

(1) If $f(x)$ and $g(x)$ are analytic at x_{0}, then

$$
f(x) \pm g(x) \quad f(x) g(x) \quad f(x) / g(x) \quad\left(\text { if } g\left(x_{0}\right) \neq 0\right)
$$

are analytic at x_{0}.

Analytic functions

Theorem (Analytic functions)

(1) If $f(x)$ and $g(x)$ are analytic at x_{0}, then

$$
f(x) \pm g(x) \quad f(x) g(x) \quad f(x) / g(x) \quad\left(\text { if } g\left(x_{0}\right) \neq 0\right)
$$

are analytic at x_{0}.
(2) If $f(x)$ is analytic at x_{0} and $g(x)$ is analytic at $f\left(x_{0}\right)$, then $g(f(x)):=(g \circ f)(x)$ is analytic at x_{0}.

Analytic functions

Theorem (Analytic functions)

(1) If $f(x)$ and $g(x)$ are analytic at x_{0}, then $f(x) \pm g(x) \quad f(x) g(x) \quad f(x) / g(x) \quad$ (if $\left.g\left(x_{0}\right) \neq 0\right)$ are analytic at x_{0}.
(2) If $f(x)$ is analytic at x_{0} and $g(x)$ is analytic at $f\left(x_{0}\right)$, then $g(f(x)):=(g \circ f)(x)$ is analytic at x_{0}.
(3) If a power series $\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ has radius of convergence $R>0$, then the function $f(x):=\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is analytic at all points $x \in\left(x_{0}-R, x_{0}+R\right)$.

Analytic functions

Example

The function $f(x)=x^{2}+1$ is analytic everywhere. Since $x^{2}+1$ is never 0 , the function $h(x):=\frac{1}{x^{2}+1}$ is analytic everywhere. However, there is no power series around 0 which represents $h(x)$ on \mathbb{R}.

Analytic functions

Example

The function $f(x)=x^{2}+1$ is analytic everywhere. Since $x^{2}+1$ is never 0 , the function $h(x):=\frac{1}{x^{2}+1}$ is analytic everywhere.
However, there is no power series around 0 which represents $h(x)$ on \mathbb{R}.

If there were such a power series, then by uniqueness, it has to be the power series expansion of $h(x)$ around 0 , which is

$$
1-x^{2}+x^{4}-x^{6}+\cdots
$$

However, the radius of convergence of this is $R=1$.

Analytic functions

Example

The function $f(x)=x^{2}+1$ is analytic everywhere. Since $x^{2}+1$ is never 0 , the function $h(x):=\frac{1}{x^{2}+1}$ is analytic everywhere.
However, there is no power series around 0 which represents $h(x)$ on \mathbb{R}.

If there were such a power series, then by uniqueness, it has to be the power series expansion of $h(x)$ around 0 , which is

$$
1-x^{2}+x^{4}-x^{6}+\cdots
$$

However, the radius of convergence of this is $R=1$.
In fact, for any x_{0}, there is no power series around x_{0} which represents $h(x)$ everywhere.

Analytic functions

Theorem
Let

$$
F(x)=\frac{N(x)}{D(x)}
$$

Analytic functions

Theorem
Let

$$
F(x)=\frac{N(x)}{D(x)} \quad \text { example } F(x)=\frac{x^{3}-1}{x^{2}+1}
$$

Analytic functions

Theorem

Let

$$
F(x)=\frac{N(x)}{D(x)} \quad \text { example } F(x)=\frac{x^{3}-1}{x^{2}+1}
$$

be a rational function, where $N(x)$ and $D(x)$ are polynomials without any common factors, that is they do not have any common (complex) zeros.

Analytic functions

Theorem

Let

$$
F(x)=\frac{N(x)}{D(x)} \quad \text { example } F(x)=\frac{x^{3}-1}{x^{2}+1}
$$

be a rational function, where $N(x)$ and $D(x)$ are polynomials without any common factors, that is they do not have any common (complex) zeros. Let $\alpha_{1}, \ldots, \alpha_{r}$ be distinct complex zeros of $D(x)$.

Analytic functions

Theorem

Let

$$
F(x)=\frac{N(x)}{D(x)} \quad \text { example } F(x)=\frac{x^{3}-1}{x^{2}+1}
$$

be a rational function, where $N(x)$ and $D(x)$ are polynomials without any common factors, that is they do not have any common (complex) zeros. Let $\alpha_{1}, \ldots, \alpha_{r}$ be distinct complex zeros of $D(x)$.
Then $F(x)$ is analytic at all x except at $x \in\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$.

Analytic functions

Theorem

Let

$$
F(x)=\frac{N(x)}{D(x)} \quad \text { example } F(x)=\frac{x^{3}-1}{x^{2}+1}
$$

be a rational function, where $N(x)$ and $D(x)$ are polynomials without any common factors, that is they do not have any common (complex) zeros. Let $\alpha_{1}, \ldots, \alpha_{r}$ be distinct complex zeros of $D(x)$.
Then $F(x)$ is analytic at all x except at $x \in\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$.If x_{0} is different from $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$, then the radius of convergence R of the Taylor series of F at x_{0}

$$
T S F_{x_{0}}=\sum_{0}^{\infty} \frac{F^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

Analytic functions

Theorem (continued ...)
is given by

$$
R=\min \left\{\left|x_{0}-\alpha_{1}\right|,\left|x_{0}-\alpha_{2}\right|, \ldots,\left|x_{0}-\alpha_{r}\right|\right\}
$$

Analytic functions

Example

If

$$
F(x)=\frac{N(x)}{D(x)}=\frac{(2+3 x)}{(4+x)\left(9+x^{2}\right)}
$$

Analytic functions

Example

If

$$
F(x)=\frac{N(x)}{D(x)}=\frac{(2+3 x)}{(4+x)\left(9+x^{2}\right)}
$$

then $D(x)$ has zeros at -4 and $\pm 3 \iota$, where $\iota=\sqrt{-1}$.

Analytic functions

Example

If

$$
F(x)=\frac{N(x)}{D(x)}=\frac{(2+3 x)}{(4+x)\left(9+x^{2}\right)}
$$

then $D(x)$ has zeros at -4 and $\pm 3 \iota$, where $\iota=\sqrt{-1}$.
Hence F is analytic at all x except at $x \in\{-4, \pm 3 \iota\}$.

Analytic functions

Example

If

$$
F(x)=\frac{N(x)}{D(x)}=\frac{(2+3 x)}{(4+x)\left(9+x^{2}\right)}
$$

then $D(x)$ has zeros at -4 and $\pm 3 \iota$, where $\iota=\sqrt{-1}$.
Hence F is analytic at all x except at $x \in\{-4, \pm 3 \iota\}$.
If $x=2$, then radius of convergence of Taylor series of F at $x=2$ is

$$
\min \{|2+4|,|2+3 \iota|,|2-3 \iota|\}=\min \{6, \sqrt{13}\}=\sqrt{13}
$$

Analytic functions

Example

If

$$
F(x)=\frac{N(x)}{D(x)}=\frac{(2+3 x)}{(4+x)\left(9+x^{2}\right)}
$$

then $D(x)$ has zeros at -4 and $\pm 3 \iota$, where $\iota=\sqrt{-1}$.
Hence F is analytic at all x except at $x \in\{-4, \pm 3 \iota\}$.
If $x=2$, then radius of convergence of Taylor series of F at $x=2$ is

$$
\min \{|2+4|,|2+3 \iota|,|2-3 \iota|\}=\min \{6, \sqrt{13}\}=\sqrt{13}
$$

If $x=-6$, then radius of convergence of Taylor series of F at $x=-6$ is

$$
\min \{|-6+4|,|-6 \pm 3 \iota|\}=\min \{2, \sqrt{45}\}=2
$$

Power series solution of ODE

Theorem (Existence Theorem)

Power series solution of ODE

Theorem (Existence Theorem)
If $p(x)$ and $q(x)$ are analytic functions at x_{0}, then every solution of

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

is also analytic at x_{0};

Power series solution of ODE

Theorem (Existence Theorem)

If $p(x)$ and $q(x)$ are analytic functions at x_{0}, then every solution of

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

is also analytic at x_{0}; and therefore any solution can be expressed as

$$
y(x)=\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

Theorem (Existence Theorem)

If $p(x)$ and $q(x)$ are analytic functions at x_{0}, then every solution of

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

is also analytic at x_{0}; and therefore any solution can be expressed as

$$
y(x)=\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

If $R_{1}=$ radius of convergence of Taylor series of $p(x)$ at x_{0}, $R_{2}=$ radius of convergence of Taylor series of $q(x)$ at x_{0}, then radius of convergence of $y(x)$ is at least $\min \left(R_{1}, R_{2}\right)>0$.

Theorem (Existence Theorem)

If $p(x)$ and $q(x)$ are analytic functions at x_{0}, then every solution of

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

is also analytic at x_{0}; and therefore any solution can be expressed as

$$
y(x)=\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

If $R_{1}=$ radius of convergence of Taylor series of $p(x)$ at x_{0}, $R_{2}=$ radius of convergence of Taylor series of $q(x)$ at x_{0}, then radius of convergence of $y(x)$ is at least $\min \left(R_{1}, R_{2}\right)>0$.

In most applications, $p(x)$ and $q(x)$ are rational functions, that is quotient of polynomial functions.

Power series solution of ODE

Example

Let us solve $y^{\prime \prime}+y=0 \quad$ (1) by power series method.

Power series solution of ODE

Example

Let us solve $y^{\prime \prime}+y=0 \quad$ (1) by power series method.
Compare with $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$,

Power series solution of ODE

Example

Let us solve $y^{\prime \prime}+y=0 \quad$ (1) by power series method.
Compare with $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, $p(x)=0$ and $q(x)=1$ are analytic at all x.

Power series solution of ODE

Example

Let us solve $y^{\prime \prime}+y=0 \quad$ (1) by power series method.
Compare with $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, $p(x)=0$ and $q(x)=1$ are analytic at all x.
We can find power series solution in $x-x_{0}$ for any x_{0}.

Power series solution of ODE

Example

Let us solve $y^{\prime \prime}+y=0 \quad$ (1) by power series method.
Compare with $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, $p(x)=0$ and $q(x)=1$ are analytic at all x.
We can find power series solution in $x-x_{0}$ for any x_{0}.
Let us assume $x_{0}=0$ for simplicity.

Example

Let us solve | $y^{\prime \prime}+y=0$ | (1) by power series method. |
| :--- | :--- |

Compare with $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, $p(x)=0$ and $q(x)=1$ are analytic at all x.
We can find power series solution in $x-x_{0}$ for any x_{0}.
Let us assume $x_{0}=0$ for simplicity.
By existence theorem, all solution of (1) can be found in the form

Example

Let us solve | $y^{\prime \prime}+y=0$ | (1) by power series method. |
| :--- | :--- |

Compare with $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, $p(x)=0$ and $q(x)=1$ are analytic at all x.
We can find power series solution in $x-x_{0}$ for any x_{0}.
Let us assume $x_{0}=0$ for simplicity.
By existence theorem, all solution of (1) can be found in the form

$$
y(x)=\sum_{0}^{\infty} a_{n} x^{n}
$$

Example

Let us solve | $y^{\prime \prime}+y=0$ | (1) by power series method. |
| :--- | :--- |

Compare with $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, $p(x)=0$ and $q(x)=1$ are analytic at all x.
We can find power series solution in $x-x_{0}$ for any x_{0}.
Let us assume $x_{0}=0$ for simplicity.
By existence theorem, all solution of (1) can be found in the form

$$
y(x)=\sum_{0}^{\infty} a_{n} x^{n}
$$

and the series will have ∞ radius of convergence.

Example

Let us solve $y^{\prime \prime}+y=0 \quad$ (1) by power series method.
Compare with $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, $p(x)=0$ and $q(x)=1$ are analytic at all x.
We can find power series solution in $x-x_{0}$ for any x_{0}.
Let us assume $x_{0}=0$ for simplicity.
By existence theorem, all solution of (1) can be found in the form

$$
y(x)=\sum_{0}^{\infty} a_{n} x^{n}
$$

and the series will have ∞ radius of convergence.
Since

$$
y^{\prime \prime}=\sum_{2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}
$$

Power series solution of ODE

Example (Continue ...)

$$
y^{\prime \prime}+y=\sum_{0}^{\infty}\left((n+2)(n+1) a_{n+2}+a_{n}\right) x^{n}=0
$$

Power series solution of ODE

Example (Continue ...)

$$
y^{\prime \prime}+y=\sum_{0}^{\infty}\left((n+2)(n+1) a_{n+2}+a_{n}\right) x^{n}=0
$$

By uniqueness of power series in $x-x_{0}$ we get the recursion formula

$$
(n+2)(n+1) a_{n+2}+a_{n}=0
$$

Power series solution of ODE

Example (Continue ...)

$$
y^{\prime \prime}+y=\sum_{0}^{\infty}\left((n+2)(n+1) a_{n+2}+a_{n}\right) x^{n}=0
$$

By uniqueness of power series in $x-x_{0}$ we get the recursion formula

$$
\begin{gathered}
(n+2)(n+1) a_{n+2}+a_{n}=0 \\
\Longrightarrow a_{n+2}=\frac{-1}{(n+2)(n+1)} a_{n} \quad \forall n
\end{gathered}
$$

Power series solution of ODE

Example (Continue ...)

$$
y^{\prime \prime}+y=\sum_{0}^{\infty}\left((n+2)(n+1) a_{n+2}+a_{n}\right) x^{n}=0
$$

By uniqueness of power series in $x-x_{0}$ we get the recursion formula

$$
\begin{gathered}
(n+2)(n+1) a_{n+2}+a_{n}=0 \\
\Longrightarrow a_{n+2}=\frac{-1}{(n+2)(n+1)} a_{n} \quad \forall n
\end{gathered}
$$

Therefore,

$$
a_{2}=\frac{-1}{2.1} a_{0}, \quad a_{4}=\frac{-1}{4.3} a_{2}=\frac{1}{4!} a_{0} \ldots \quad a_{2 n}=(-1)^{n} \frac{1}{(2 n)!} a_{0}
$$

Power series solution of ODE

Example (Continue ...)

$$
y^{\prime \prime}+y=\sum_{0}^{\infty}\left((n+2)(n+1) a_{n+2}+a_{n}\right) x^{n}=0
$$

By uniqueness of power series in $x-x_{0}$ we get the recursion formula

$$
\begin{gathered}
(n+2)(n+1) a_{n+2}+a_{n}=0 \\
\Longrightarrow a_{n+2}=\frac{-1}{(n+2)(n+1)} a_{n} \quad \forall n
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
a_{2}=\frac{-1}{2.1} a_{0}, \quad a_{4}=\frac{-1}{4.3} a_{2}=\frac{1}{4!} a_{0} \ldots \quad a_{2 n}=(-1)^{n} \frac{1}{(2 n)!} a_{0} \\
a_{3}=\frac{-1}{3.2} a_{1}, \quad a_{5}=\frac{-1}{5.4} a_{3}=\frac{1}{5!} a_{1} \ldots \quad a_{2 n+1}=(-1)^{n} \frac{1}{(2 n+1)!} a_{1}
\end{gathered}
$$

Power series solution of ODE

Example (Continue ...)
Define

$$
y_{1}(x)=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\ldots \quad\left(a_{0}=1, a_{1}=0\right)
$$

Power series solution of ODE

Example (Continue ...)

Define

$$
\begin{array}{ll}
y_{1}(x)=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\ldots & \left(a_{0}=1, a_{1}=0\right) \\
y_{2}(x)=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\ldots & \left(a_{0}=0, a_{1}=1\right)
\end{array}
$$

Power series solution of ODE

Example (Continue ...)

Define

$$
\begin{array}{ll}
y_{1}(x)=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\ldots & \left(a_{0}=1, a_{1}=0\right) \\
y_{2}(x)=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\ldots & \left(a_{0}=0, a_{1}=1\right)
\end{array}
$$

Then

$$
y(x)=\sum_{0}^{\infty} a_{n} x^{n}=a_{0} y_{1}(x)+a_{1} y_{2}(x)
$$

is a general solution of the ODE (1).

Power series solution of ODE

Example (Continue ...)

Define

$$
\begin{array}{ll}
y_{1}(x)=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\ldots & \left(a_{0}=1, a_{1}=0\right) \\
y_{2}(x)=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\ldots & \left(a_{0}=0, a_{1}=1\right)
\end{array}
$$

Then

$$
y(x)=\sum_{0}^{\infty} a_{n} x^{n}=a_{0} y_{1}(x)+a_{1} y_{2}(x)
$$

is a general solution of the ODE (1).
In this case, $y_{1}(x)=\cos x$ and $y_{2}(x)=\sin x$.

Power series solution of ODE

Example (Continue ...)

Define

$$
\begin{array}{ll}
y_{1}(x)=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\ldots & \left(a_{0}=1, a_{1}=0\right) \\
y_{2}(x)=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\ldots & \left(a_{0}=0, a_{1}=1\right)
\end{array}
$$

Then

$$
y(x)=\sum_{0}^{\infty} a_{n} x^{n}=a_{0} y_{1}(x)+a_{1} y_{2}(x)
$$

is a general solution of the ODE (1).
In this case, $y_{1}(x)=\cos x$ and $y_{2}(x)=\sin x$.
We don't need to check the series for converges, since the existence theorem guarantees that the series converges for all x.

Power series solution of ODE

In this course, we will consider ODE

$$
P_{0}(x) y^{\prime \prime}+P_{1}(x) y^{\prime}+P_{2}(x) y=0
$$

with $P_{i}(x)$ polynomials for $i=0,1,2$ without any common factor.

In this course, we will consider ODE

$$
P_{0}(x) y^{\prime \prime}+P_{1}(x) y^{\prime}+P_{2}(x) y=0
$$

with $P_{i}(x)$ polynomials for $i=0,1,2$ without any common factor. If we write ODE in the standard form

$$
y^{\prime \prime}+\frac{P_{1}(x)}{P_{0}(x)} y^{\prime}+\frac{P_{2}(x)}{P_{0}(x)} y=0
$$

In this course, we will consider ODE

$$
P_{0}(x) y^{\prime \prime}+P_{1}(x) y^{\prime}+P_{2}(x) y=0
$$

with $P_{i}(x)$ polynomials for $i=0,1,2$ without any common factor. If we write ODE in the standard form

$$
y^{\prime \prime}+\frac{P_{1}(x)}{P_{0}(x)} y^{\prime}+\frac{P_{2}(x)}{P_{0}(x)} y=0
$$

and if x_{0} is not a zero of $P_{0}(x)$,

In this course, we will consider ODE

$$
P_{0}(x) y^{\prime \prime}+P_{1}(x) y^{\prime}+P_{2}(x) y=0
$$

with $P_{i}(x)$ polynomials for $i=0,1,2$ without any common factor. If we write ODE in the standard form

$$
y^{\prime \prime}+\frac{P_{1}(x)}{P_{0}(x)} y^{\prime}+\frac{P_{2}(x)}{P_{0}(x)} y=0
$$

and if x_{0} is not a zero of $P_{0}(x)$, then $P_{1}(x) / P_{0}(x)$ and $P_{2}(x) / P_{0}(x)$ will be analytic at x_{0},

In this course, we will consider ODE

$$
P_{0}(x) y^{\prime \prime}+P_{1}(x) y^{\prime}+P_{2}(x) y=0
$$

with $P_{i}(x)$ polynomials for $i=0,1,2$ without any common factor. If we write ODE in the standard form

$$
y^{\prime \prime}+\frac{P_{1}(x)}{P_{0}(x)} y^{\prime}+\frac{P_{2}(x)}{P_{0}(x)} y=0
$$

and if x_{0} is not a zero of $P_{0}(x)$, then $P_{1}(x) / P_{0}(x)$ and $P_{2}(x) / P_{0}(x)$ will be analytic at x_{0}, hence, we can find the series solution of ODE in the form

$$
y(x)=\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}
$$

Power series solution of ODE

Steps for Series solution of linear ODE

Power series solution of ODE

Steps for Series solution of linear ODE
(1) Write ODE in standard form $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$.

Steps for Series solution of linear ODE

(1) Write ODE in standard form $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$.
(2) Choose x_{0} at which $p(x)$ and $q(x)$ are analytic.

Steps for Series solution of linear ODE

(1) Write ODE in standard form $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$.
(2) Choose x_{0} at which $p(x)$ and $q(x)$ are analytic. If boundary conditions at x_{0} are given, choose the center of the power series as x_{0}.

Steps for Series solution of linear ODE

(1) Write ODE in standard form $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$.
(2) Choose x_{0} at which $p(x)$ and $q(x)$ are analytic. If boundary conditions at x_{0} are given, choose the center of the power series as x_{0}.
(3) Find minimum of radius of convergence of Taylor series of $p(x)$ and $q(x)$ at x_{0}.

Steps for Series solution of linear ODE

(1) Write ODE in standard form $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$.
(2) Choose x_{0} at which $p(x)$ and $q(x)$ are analytic. If boundary conditions at x_{0} are given, choose the center of the power series as x_{0}.
(3) Find minimum of radius of convergence of Taylor series of $p(x)$ and $q(x)$ at x_{0}.
(9) Let $y(x)=\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$, compute the power series for $y^{\prime}(x)$ and $y^{\prime \prime}(x)$ at x_{0} and substitute these into the ODE.

Steps for Series solution of linear ODE

(1) Write ODE in standard form $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$.
(2) Choose x_{0} at which $p(x)$ and $q(x)$ are analytic. If boundary conditions at x_{0} are given, choose the center of the power series as x_{0}.
(3) Find minimum of radius of convergence of Taylor series of $p(x)$ and $q(x)$ at x_{0}.
(9) Let $y(x)=\sum_{0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$, compute the power series for $y^{\prime}(x)$ and $y^{\prime \prime}(x)$ at x_{0} and substitute these into the ODE.
(0) Set the coefficients of $\left(x-x_{0}\right)^{n}$ to zero and find recursion formula.

Power series solution of ODE

Steps for Series solution of linear ODE

(1) Write ODE in standard form $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$.
(2) Choose x_{0} at which $p(x)$ and $q(x)$ are analytic. If boundary conditions at x_{0} are given, choose the center of the power series as x_{0}.
(3) Find minimum of radius of convergence of Taylor series of $p(x)$ and $q(x)$ at x_{0}.
(9) Let $y(x)=\sum^{\infty} a_{n}\left(x-x_{0}\right)^{n}$, compute the power series for $y^{\prime}(x)$ and $y^{\prime \prime}(x)$ at x_{0} and substitute these into the ODE.
(0) Set the coefficients of $\left(x-x_{0}\right)^{n}$ to zero and find recursion formula.
(0) From the recursion formula, obtain (linearly independent) solutions $y_{1}(x)$ and $y_{2}(x)$. The general solution then looks like $y(x)=a_{1} y_{1}(x)+a_{2} y_{2}(x)$.

Power series solution of ODE

Example
Find the power series in x for the general solution of

$$
\left(1+2 x^{2}\right) y^{\prime \prime}+6 x y^{\prime}+2 y=0
$$

Power series solution of ODE

Example

Find the power series in x for the general solution of

$$
\left(1+2 x^{2}\right) y^{\prime \prime}+6 x y^{\prime}+2 y=0
$$

Solution. Note that 0 is not a zero of $P_{0}(x)=1+2 x^{2}$, hence, the series solution in powers of x exists.

Power series solution of ODE

Example

Find the power series in x for the general solution of

$$
\left(1+2 x^{2}\right) y^{\prime \prime}+6 x y^{\prime}+2 y=0
$$

Solution. Note that 0 is not a zero of $P_{0}(x)=1+2 x^{2}$, hence, the series solution in powers of x exists.
Putting $y=\sum_{0}^{\infty} a_{n} x^{n}$ in the ODE, we get

$$
\begin{aligned}
& \left(1+2 x^{2}\right) y^{\prime \prime}+6 x y^{\prime}+2 y \\
& =y^{\prime \prime}+2 x^{2} y^{\prime \prime}+6 x y^{\prime}+2 y
\end{aligned}
$$

Power series solution of ODE

Example

Find the power series in x for the general solution of

$$
\left(1+2 x^{2}\right) y^{\prime \prime}+6 x y^{\prime}+2 y=0
$$

Solution. Note that 0 is not a zero of $P_{0}(x)=1+2 x^{2}$, hence, the series solution in powers of x exists.
Putting $y=\sum_{0}^{\infty} a_{n} x^{n}$ in the ODE, we get

$$
\begin{aligned}
& \left(1+2 x^{2}\right) y^{\prime \prime}+6 x y^{\prime}+2 y \\
& =y^{\prime \prime}+2 x^{2} y^{\prime \prime}+6 x y^{\prime}+2 y \\
& =\sum_{0}^{\infty}\left((n+2)(n+1) a_{n+2}+2 n(n-1) a_{n}+6 n a_{n}+2 a_{n}\right) x^{n}
\end{aligned}
$$

Power series solution of ODE

Example

Find the power series in x for the general solution of

$$
\left(1+2 x^{2}\right) y^{\prime \prime}+6 x y^{\prime}+2 y=0
$$

Solution. Note that 0 is not a zero of $P_{0}(x)=1+2 x^{2}$, hence, the series solution in powers of x exists.
Putting $y=\sum_{0}^{\infty} a_{n} x^{n}$ in the ODE, we get

$$
\begin{aligned}
& \left(1+2 x^{2}\right) y^{\prime \prime}+6 x y^{\prime}+2 y \\
& =y^{\prime \prime}+2 x^{2} y^{\prime \prime}+6 x y^{\prime}+2 y \\
& =\sum_{0}^{\infty}\left((n+2)(n+1) a_{n+2}+2 n(n-1) a_{n}+6 n a_{n}+2 a_{n}\right) x^{n} \\
& \Longrightarrow(n+2)(n+1) a_{n+2}+[2 n(n-1)+6 n+2] a_{n}=0
\end{aligned}
$$

Power series solution of ODE

Example (Continue ...)

$$
\Longrightarrow a_{n+2}=-\frac{2 n^{2}+4 n+2}{(n+2)(n+1)} a_{n}=-2 \frac{n+1}{(n+2)} a_{n} \quad n \geq 0
$$

Power series solution of ODE

Example (Continue ...)

$$
\Longrightarrow a_{n+2}=-\frac{2 n^{2}+4 n+2}{(n+2)(n+1)} a_{n}=-2 \frac{n+1}{(n+2)} a_{n} \quad n \geq 0
$$

Since indices on left and right differ by 2 , we write separately for $n=2 m$ and $n=2 m+1, \quad m \geq 0$,

Power series solution of ODE

Example (Continue ...)

$$
\Longrightarrow a_{n+2}=-\frac{2 n^{2}+4 n+2}{(n+2)(n+1)} a_{n}=-2 \frac{n+1}{(n+2)} a_{n} \quad n \geq 0
$$

Since indices on left and right differ by 2 , we write separately for $n=2 m$ and $n=2 m+1, \quad m \geq 0$, so

$$
a_{2 m+2}=-2 \frac{2 m+1}{2 m+2} a_{2 m}=-\frac{2 m+1}{m+1} a_{2 m}
$$

Power series solution of ODE

Example (Continue ...)

$$
\Longrightarrow a_{n+2}=-\frac{2 n^{2}+4 n+2}{(n+2)(n+1)} a_{n}=-2 \frac{n+1}{(n+2)} a_{n} \quad n \geq 0
$$

Since indices on left and right differ by 2 , we write separately for $n=2 m$ and $n=2 m+1, \quad m \geq 0$, so

$$
\begin{aligned}
& a_{2 m+2}=-2 \frac{2 m+1}{2 m+2} a_{2 m}=-\frac{2 m+1}{m+1} a_{2 m} \\
& a_{2 m+3}=-2 \frac{2 m+2}{2 m+3} a_{2 m+1}=-4 \frac{m+1}{2 m+3} a_{2 m+1}
\end{aligned}
$$

Power series solution of ODE

Example (Continue ...)

$$
\Longrightarrow a_{n+2}=-\frac{2 n^{2}+4 n+2}{(n+2)(n+1)} a_{n}=-2 \frac{n+1}{(n+2)} a_{n} \quad n \geq 0
$$

Since indices on left and right differ by 2 , we write separately for $n=2 m$ and $n=2 m+1, \quad m \geq 0$, so

$$
\begin{aligned}
& a_{2 m+2}=-2 \frac{2 m+1}{2 m+2} a_{2 m}=-\frac{2 m+1}{m+1} a_{2 m} \\
& a_{2 m+3}=-2 \frac{2 m+2}{2 m+3} a_{2 m+1}=-4 \frac{m+1}{2 m+3} a_{2 m+1} \\
& a_{2}=-\frac{1}{1} a_{0} \\
& a_{4}=-\frac{3}{2} a_{2}=\frac{1.3}{1.2} a_{0} \\
& a_{6}=-\frac{5}{3} a_{4}=-\frac{1.3 .5}{1.2 .3} a_{0}
\end{aligned}
$$

Power series solution of ODE

Example (Continue ...)

$$
a_{2 m}=(-1)^{m} \frac{1.3 .5 \ldots(2 m-1)}{m!} a_{0}
$$

Power series solution of ODE

Example (Continue ...)

$$
\begin{aligned}
& a_{2 m}=(-1)^{m} \frac{1.3 .5 \ldots(2 m-1)}{m!} a_{0} \\
& =(-1)^{m} \frac{\left.\prod_{j=1}^{m}(2 j-1)\right)}{m!} a_{0}
\end{aligned}
$$

Power series solution of ODE

Example (Continue ...)

$$
\begin{aligned}
& a_{2 m}=(-1)^{m} \frac{1.3 .5 \ldots(2 m-1)}{m!} a_{0} \\
& =(-1)^{m} \frac{\left.\prod_{j=1}^{m}(2 j-1)\right)}{m!} a_{0} \\
& a_{2 m+3}=-4 \frac{m+1}{2 m+3} a_{2 m+1}
\end{aligned}
$$

Power series solution of ODE

Example (Continue ...)

$$
\begin{aligned}
& a_{2 m}=(-1)^{m} \frac{1.3 .5 \ldots(2 m-1)}{m!} a_{0} \\
& =(-1)^{m} \frac{\left.\prod_{j=1}^{m}(2 j-1)\right)}{m!} a_{0} \\
& a_{2 m+3}=-4 \frac{m+1}{2 m+3} a_{2 m+1} \\
& a_{3}=-4 \frac{1}{3} a_{1} \\
& a_{5}=-4 \frac{2}{5} a_{3}=4^{2} \frac{1.2}{3.5} a_{1} \\
& a_{7}=-4 \frac{3}{7} a_{5}=-4^{3} \frac{1.2 .3}{3.5 .7} a_{1}
\end{aligned}
$$

Power series solution of ODE

Example (Continue ...)

$$
\begin{aligned}
& a_{2 m}=(-1)^{m} \frac{1.3 .5 \ldots(2 m-1)}{m!} a_{0} \\
& =(-1)^{m} \frac{\left.\prod_{j=1}^{m}(2 j-1)\right)}{m!} a_{0} \\
& a_{2 m+3}=-4 \frac{m+1}{2 m+3} a_{2 m+1} \\
& a_{3}=-4 \frac{1}{3} a_{1} \\
& a_{5}=-4 \frac{2}{5} a_{3}=4^{2} \frac{1.2}{3.5} a_{1} \\
& a_{7}=-4 \frac{3}{7} a_{5}=-4^{3} \frac{1.2 .3}{3.5 .7} a_{1} \\
& a_{2 m+1}=(-1)^{m} 4^{m} \frac{m!}{\prod_{j=1}^{m}(2 j+1)} a_{1}
\end{aligned}
$$

Power series solution of ODE

Example (continued ...)

We can write the solution

$$
y=\sum_{0}^{\infty} a_{n} x^{n}=a_{0} y_{1}(x)+a_{1} y_{2}(x)
$$

where a_{0} and a_{1} are arbitrary scalars and

Power series solution of ODE

Example (continued ...)

We can write the solution

$$
y=\sum_{0}^{\infty} a_{n} x^{n}=a_{0} y_{1}(x)+a_{1} y_{2}(x)
$$

where a_{0} and a_{1} are arbitrary scalars and

$$
y_{1}(x)=\sum_{m=0}^{\infty}(-1)^{m} \frac{\prod_{j=1}^{m}(2 j-1)}{m!} x^{2 m}
$$

Power series solution of ODE

Example (continued ...)

We can write the solution

$$
y=\sum_{0}^{\infty} a_{n} x^{n}=a_{0} y_{1}(x)+a_{1} y_{2}(x)
$$

where a_{0} and a_{1} are arbitrary scalars and

$$
\begin{aligned}
& y_{1}(x)=\sum_{m=0}^{\infty}(-1)^{m} \frac{\prod_{j=1}^{m}(2 j-1)}{m!} x^{2 m} \\
& y_{2}(x)=\sum_{m=0}^{\infty}(-1) \frac{4^{m} m!}{\prod_{j=1}^{m}(2 j+1)} x^{2 m+1}
\end{aligned}
$$

Power series solution of ODE

Example (continued ...)

We can write the solution

$$
y=\sum_{0}^{\infty} a_{n} x^{n}=a_{0} y_{1}(x)+a_{1} y_{2}(x)
$$

where a_{0} and a_{1} are arbitrary scalars and

$$
\begin{aligned}
& y_{1}(x)=\sum_{m=0}^{\infty}(-1)^{m} \frac{\prod_{j=1}^{m}(2 j-1)}{m!} x^{2 m} \\
& y_{2}(x)=\sum_{m=0}^{\infty}(-1) \frac{4^{m} m!}{\prod_{j=1}^{m}(2 j+1)} x^{2 m+1}
\end{aligned}
$$

Since $P_{0}(x)=1+2 x^{2}$ has complex zeros $\frac{ \pm \iota}{\sqrt{2}}$, the power series solution converges in the interval $\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^{2}$.

Power series solution of ODE

Example

Find the coefficients a_{0}, \ldots, a_{6} in the series solution

$$
y=\sum_{0}^{\infty} a_{n} x^{n}
$$

of the Initial Value Problem (IVP)

$$
\left(1+x+2 x^{2}\right) y^{\prime \prime}+(1+7 x) y^{\prime}+2 y=0
$$

with

$$
y(0)=-1, y^{\prime}(0)=-2 .
$$

Power series solution of ODE

Example

Find the coefficients a_{0}, \ldots, a_{6} in the series solution

$$
y=\sum_{0}^{\infty} a_{n} x^{n}
$$

of the Initial Value Problem (IVP)

$$
\left(1+x+2 x^{2}\right) y^{\prime \prime}+(1+7 x) y^{\prime}+2 y=0
$$

with

$$
y(0)=-1, y^{\prime}(0)=-2 .
$$

Zeros of $P_{0}(x)=1+x+2 x^{2}$ are $\frac{1}{4}(-1 \pm \iota \sqrt{7})$ whose absolute values are $1 / \sqrt{2}$.

Power series solution of ODE

Example

Find the coefficients a_{0}, \ldots, a_{6} in the series solution

$$
y=\sum_{0}^{\infty} a_{n} x^{n}
$$

of the Initial Value Problem (IVP)

$$
\left(1+x+2 x^{2}\right) y^{\prime \prime}+(1+7 x) y^{\prime}+2 y=0
$$

with

$$
y(0)=-1, y^{\prime}(0)=-2 .
$$

Zeros of $P_{0}(x)=1+x+2 x^{2}$ are $\frac{1}{4}(-1 \pm \iota \sqrt{7})$ whose absolute values are $1 / \sqrt{2}$. Hence the series solution to the IVP converges on the interval $\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

Power series solution of ODE

Example (continued ...)

$$
\left(1+x+2 x^{2}\right) y^{\prime \prime}+(1+7 x) y^{\prime}+2 y=\sum_{0}^{\infty} b_{n} x^{n}=0
$$

Power series solution of ODE

Example (continued ...)

$$
\begin{aligned}
& \left(1+x+2 x^{2}\right) y^{\prime \prime}+(1+7 x) y^{\prime}+2 y=\sum_{0}^{\infty} b_{n} x^{n}=0 \\
& b_{n}=(n+2)(n+1) a_{n+2}+(n+1) n a_{n+1}+2 n(n-1) a_{n} \\
& \quad+(n+1) a_{n+1}+7 n a_{n}+2 a_{n}=0
\end{aligned}
$$

Power series solution of ODE

Example (continued ...)

$$
\begin{aligned}
& \left(1+x+2 x^{2}\right) y^{\prime \prime}+(1+7 x) y^{\prime}+2 y=\sum_{0}^{\infty} b_{n} x^{n}=0 \\
& b_{n}=(n+2)(n+1) a_{n+2}+(n+1) n a_{n+1}+2 n(n-1) a_{n} \\
& \quad+(n+1) a_{n+1}+7 n a_{n}+2 a_{n}=0
\end{aligned}
$$

that is

$$
(n+2)(n+1) a_{n+2}+(n+1)^{2} a_{n+1}+\left(2 n^{2}+5 n+2\right) a_{n}=0
$$

Power series solution of ODE

Example (continued ...)

$$
\begin{aligned}
& \left(1+x+2 x^{2}\right) y^{\prime \prime}+(1+7 x) y^{\prime}+2 y=\sum_{0}^{\infty} b_{n} x^{n}=0 \\
& b_{n}=(n+2)(n+1) a_{n+2}+(n+1) n a_{n+1}+2 n(n-1) a_{n} \\
& \quad+(n+1) a_{n+1}+7 n a_{n}+2 a_{n}=0
\end{aligned}
$$

that is

$$
(n+2)(n+1) a_{n+2}+(n+1)^{2} a_{n+1}+\left(2 n^{2}+5 n+2\right) a_{n}=0
$$

Since $2 n^{2}+5 n+2=(n+2)(2 n+1)$,

$$
a_{n+2}=-\frac{n+1}{n+2} a_{n+1}-\frac{2 n+1}{n+1} a_{n} \quad n \geq 0
$$

Power series solution of ODE

Example (continued ...)

$$
a_{n+2}=-\frac{n+1}{n+2} a_{n+1}-\frac{2 n+1}{n+1} a_{n} \quad n \geq 0
$$

Power series solution of ODE

Example (continued ...)

$$
a_{n+2}=-\frac{n+1}{n+2} a_{n+1}-\frac{2 n+1}{n+1} a_{n} \quad n \geq 0
$$

From the initial conditions $y(0)=-1, y^{\prime}(0)=-2$ we get

$$
a_{0}=y(0)=-1, \quad a_{1}=y^{\prime}(0)=-2
$$

Power series solution of ODE

Example (continued ...)

$$
a_{n+2}=-\frac{n+1}{n+2} a_{n+1}-\frac{2 n+1}{n+1} a_{n} \quad n \geq 0
$$

From the initial conditions $y(0)=-1, y^{\prime}(0)=-2$ we get

$$
\begin{gathered}
a_{0}=y(0)=-1, \quad a_{1}=y^{\prime}(0)=-2 \\
a_{2}=-\frac{1}{2} a_{1}-a_{0}=2
\end{gathered}
$$

Power series solution of ODE

Example (continued ...)

$$
a_{n+2}=-\frac{n+1}{n+2} a_{n+1}-\frac{2 n+1}{n+1} a_{n} \quad n \geq 0
$$

From the initial conditions $y(0)=-1, y^{\prime}(0)=-2$ we get

$$
\begin{gathered}
a_{0}=y(0)=-1, \quad a_{1}=y^{\prime}(0)=-2 \\
a_{2}=-\frac{1}{2} a_{1}-a_{0}=2 \\
a_{3}=-\frac{2}{3} a_{2}-\frac{3}{2} a_{1}=\frac{5}{3}
\end{gathered}
$$

Power series solution of ODE

Example (continued ...)

$$
a_{n+2}=-\frac{n+1}{n+2} a_{n+1}-\frac{2 n+1}{n+1} a_{n} \quad n \geq 0
$$

From the initial conditions $y(0)=-1, y^{\prime}(0)=-2$ we get

$$
\begin{gathered}
a_{0}=y(0)=-1, \quad a_{1}=y^{\prime}(0)=-2 \\
a_{2}=-\frac{1}{2} a_{1}-a_{0}=2 \\
a_{3}=-\frac{2}{3} a_{2}-\frac{3}{2} a_{1}=\frac{5}{3}
\end{gathered}
$$

Check that

$$
y(x)=-1-2 x+2 x^{2}+\frac{5}{3} x^{3}-\frac{55}{12} x^{4}+\frac{3}{4} x^{5}+\frac{61}{8} x^{6}+\ldots
$$

Slightly more complicated ODE's

Slightly more complicated ODE's

The best possible situation is when we have an ODE of the form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x)=0
$$

where $p(x)$ and $q(x)$ are analytic in an interval around x_{0}.

Slightly more complicated ODE's

The best possible situation is when we have an ODE of the form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x)=0
$$

where $p(x)$ and $q(x)$ are analytic in an interval around x_{0}.
We just saw how to solve such ODE's.

Slightly more complicated ODE's

The best possible situation is when we have an ODE of the form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x)=0
$$

where $p(x)$ and $q(x)$ are analytic in an interval around x_{0}.
We just saw how to solve such ODE's.
We will next consider in detail the Legendre equation (an ODE which falls in the above category of "nice" ODE's)

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0
$$

Slightly more complicated ODE's

The best possible situation is when we have an ODE of the form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x)=0
$$

where $p(x)$ and $q(x)$ are analytic in an interval around x_{0}.
We just saw how to solve such ODE's.
We will next consider in detail the Legendre equation (an ODE which falls in the above category of "nice" ODE's)

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0
$$

However, there are other ODE's which occur naturally, which do not fall into the above "nice" category, and which we would like to solve.

Slightly more complicated ODE's

The best possible situation is when we have an ODE of the form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x)=0
$$

where $p(x)$ and $q(x)$ are analytic in an interval around x_{0}.
We just saw how to solve such ODE's.
We will next consider in detail the Legendre equation (an ODE which falls in the above category of "nice" ODE's)

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0
$$

However, there are other ODE's which occur naturally, which do not fall into the above "nice" category, and which we would like to solve. For example, Bessel's equation :

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0
$$

We will see later how to solve some such ODE's.

