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Recap

The important things we did so far are

1 How to compute the radius of convergence of a power series

2 Power series defines a nice function in its interval of
convergence

3 Suppose we are given an ODE: y′′ + p(x)y′ + q(x)y = 0, and
p(x) and q(x) are analytic (given by power series) in an
interval I around x0, then the solution y is also analytic on I.

4 We can compute the two independent solutions, to an ODE
as above, by plugging in a power series into the ODE and
getting recursive relation for coefficients.
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Legendre equation

The following ODE is known as the Legendre equation.

(1− x2)y′′ − 2xy′ + p(p+ 1)y = 0

Here p denotes a fixed real number.

By Existence theorem, power series solution in x exists on the
interval (−1, 1).

Put y(x) =
∞∑
n=0

anx
n in the Legendre equation.

Equating the coefficient of xn in the resulting equation, we get the
recursive relation

(n+ 2)(n+ 1)an+2 − n(n+ 1)an + p(p+ 1)an = 0, n ≥ 0
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Legendre equation: Two independent solutions

=⇒ an+2 =
(n− p)(p+ n+ 1)

(n+ 2)(n+ 1)
an

Let us set a0 = 1 and a1 = 0 in the recursion formula to find a
first solution.

The solution is given by (note it is an even function)

y1(x) := a0

[
1− p(p+ 1)

2!
x2 +

p(p+ 1)(p− 2)(p+ 3)

4!
x4 + . . .

]
Let us find a second solution by setting a0 = 0 and a1 = 1 in the
recursion formula.

The second solution is given by (note it is an odd function)

y2(x) := a1

[
x− (p− 1)(p+ 2)

3!
x3 +

(p− 1)(p+ 2)(p− 3)(p+ 4)

5!
x5 + . . .

]
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Legendre equation: Two independent solutions

Thus, the two independent solutions are

y1(x) := a0

[
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x2 +
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y2(x) := a1

[
x− (p− 1)(p+ 2)

3!
x3 +

(p− 1)(p+ 2)(p− 3)(p+ 4)

5!
x5 + . . .

]

Remark

If p ∈ {0, 2, 4, . . .} ∪ {−1,−3,−5, . . .} then y1(x) is a polynomial
function.

y2(x) is an odd function. If p ∈ {1, 3, 5, . . .} ∪ {−2,−4,−6, . . .}
then y2(x) is a polynomial function.

Thus, if p is an integer then exactly one solution is a polynomial
and the other is an infinite power series.
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Legendre polynomials

The general solution

y(x) = a0y1(x) + a1y2(x)

is called a Legendre function.

If p = m is an integer, then precisely one of y1 or y2 is a
polynomial, and it is called the m-th Legendre polynomial Pm(x).

For m ≥ 0 note that Pm(x) is a polynomial of degree m. It is an
even function if m is even and an odd function if m is odd.

Let us write down few Legendre polynomials.

P0(x) = 1
P1(x) = x
P2(x) = (1− 3x2)(−12 ) = 1

2(3x
2 − 1)

P3(x) = (x− 5
3x

3)(−32 ) = 1
2(5x

3 − 3x)

P4(x) = (1− 10x2 + 35
3 x

4)(38) = 1
8(35x

4 − 30x2 + 3)

P5(x) = (x− 14
3 x

3 + 21
5 x

5)(158 ) = 1
8(63x

5 − 70x3 + 15x)
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Legendre polynomials

The graphs of Pm’s in the interval (−1, 1) are given below.
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What is so interesting about the collection of
Legendre polynomials?

To answer this question we need some linear algebra.
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Vector spaces

We will recall the notion of Inner product space from Linear
Algebra.

First recall the notion of a vector space V over R.

A vector space is a set equipped with two operations

addition
v + w, v, w ∈ V

scalar multiplication

cv, c ∈ R, v ∈ V

A vector space V has a dimension, which may not be finite.
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Inner product spaces

Let V be a vector space over R (not necessarily
finite-dimensional).

A bilinear form on V is a map

〈, 〉 : V × V → R

which is linear in both coordinates, that is,

〈au+ v, w〉 = a〈u,w〉+ 〈v, w〉

〈u, av + w〉 = a〈u, v〉+ 〈u,w〉
for a ∈ R and u, v ∈ V .

An inner product on V is a bilinear form on V which is

symmetric:〈v, w〉 = 〈w, v〉
positive definite: 〈v, v〉 ≥ 0 for all v and 〈v, v〉 = 0 iff v = 0

A vector space with an inner product is called an inner product
space.
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Orthogonality

In an inner product space V , two vectors u and v are orthogonal if
〈u, v〉 = 0.

More generally, a set of vectors forms an orthogonal system if they
are mutually orthogonal.

An orthogonal basis is an orthogonal system which is also a basis.

Example

Consider the vector space Rn with coordinate-wise addition and
scalar multiplication. The rule

〈(a1, . . . , an), (b1, . . . , bn)〉 :=
n∑

i=1

aibi

defines an inner product on Rn.

The standard basis {e1, . . . , en} is an orthogonal basis of Rn.
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Orthogonality

The previous example can be formulated more abstractly as follows.

Example

Let V be a finite-dimensional vector space with ordered basis
B = {e1, . . . , en}.

For u =

n∑
i=1

aiei and v =

n∑
i=1

biei define

〈u, v〉 :=
n∑

i=1

aibi

This defines an inner product on V

With this definition, {e1, . . . , en} is an orthogonal basis of V .
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Orthogonality

Lemma

Suppose V is a finite dimensional inner product space, and
e1, . . . , en is an orthogonal basis.

Then for any v ∈ V

v =

n∑
i=1

〈v, ei〉
〈ei, ei〉

ei

Proof.

Write v =

n∑
i=1

aiei. We want to find the coefficients aj . Take inner

product of v with ej :

〈v, ej〉 = 〈
n∑

i=1

aiei, ej〉 =
n∑

i=1

ai〈ei, ej〉 = aj〈ej , ej〉

Thus, aj =
〈v, ej〉
〈ej , ej〉
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Orthogonal basis

Lemma

In a finite-dimensional inner product space, there always exists an
orthogonal basis.

Start with any basis and modify it to an orthogonal basis by
Gram-Schmidt orthogonalization.

This result is not necessarily true in infinite-dimensional inner
product spaces.

For infinite dimensional vector spaces, we can only talk of a
maximal orthogonal set.

A subset {e1, e2, . . .} is called a maximal orthogonal set for V if

〈ei, ej〉 = δij

〈v, ei〉 = 0 for all i iff v = 0.
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Length of a vector

For a vector v in an inner product space, define

‖v‖ := 〈v, v〉1/2

This is called the norm or length of the vector v.

It satisfies the following three properties.

‖0‖ = 0 and ‖v‖ > 0 if v 6= 0

‖v + w‖ ≤ ‖v‖+ ‖w‖
‖av‖ = |a|‖v‖

for all v, w ∈ V and a ∈ R.
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Pythagoras theorem

Theorem

For orthogonal vectors v and w in any inner product space V ,

‖v + w‖2 = ‖v‖2 + ‖w‖2

Proof.

‖v + w‖2 = 〈v + w, v + w〉
= 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉
= 〈v, v〉+ 〈w,w〉
= ‖v‖2 + ‖w‖2

More generally, for any orthogonal system {v1, . . . , vn}
‖v1 + · · ·+ vn‖2 = ‖v1‖2 + · · ·+ ‖vn‖2

16 / 41



Pythagoras theorem

Theorem

For orthogonal vectors v and w in any inner product space V ,

‖v + w‖2 = ‖v‖2 + ‖w‖2

Proof.

‖v + w‖2 = 〈v + w, v + w〉
= 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉
= 〈v, v〉+ 〈w,w〉
= ‖v‖2 + ‖w‖2

More generally, for any orthogonal system {v1, . . . , vn}
‖v1 + · · ·+ vn‖2 = ‖v1‖2 + · · ·+ ‖vn‖2

16 / 41



Pythagoras theorem

Theorem

For orthogonal vectors v and w in any inner product space V ,

‖v + w‖2 = ‖v‖2 + ‖w‖2

Proof.

‖v + w‖2 = 〈v + w, v + w〉
= 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉
= 〈v, v〉+ 〈w,w〉
= ‖v‖2 + ‖w‖2

More generally, for any orthogonal system {v1, . . . , vn}
‖v1 + · · ·+ vn‖2 = ‖v1‖2 + · · ·+ ‖vn‖2

16 / 41



Pythagoras theorem

Theorem

For orthogonal vectors v and w in any inner product space V ,

‖v + w‖2 = ‖v‖2 + ‖w‖2

Proof.

‖v + w‖2 = 〈v + w, v + w〉

= 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉
= 〈v, v〉+ 〈w,w〉
= ‖v‖2 + ‖w‖2

More generally, for any orthogonal system {v1, . . . , vn}
‖v1 + · · ·+ vn‖2 = ‖v1‖2 + · · ·+ ‖vn‖2

16 / 41



Pythagoras theorem

Theorem

For orthogonal vectors v and w in any inner product space V ,

‖v + w‖2 = ‖v‖2 + ‖w‖2

Proof.

‖v + w‖2 = 〈v + w, v + w〉
= 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉

= 〈v, v〉+ 〈w,w〉
= ‖v‖2 + ‖w‖2

More generally, for any orthogonal system {v1, . . . , vn}
‖v1 + · · ·+ vn‖2 = ‖v1‖2 + · · ·+ ‖vn‖2

16 / 41



Pythagoras theorem

Theorem

For orthogonal vectors v and w in any inner product space V ,

‖v + w‖2 = ‖v‖2 + ‖w‖2

Proof.

‖v + w‖2 = 〈v + w, v + w〉
= 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉
= 〈v, v〉+ 〈w,w〉

= ‖v‖2 + ‖w‖2

More generally, for any orthogonal system {v1, . . . , vn}
‖v1 + · · ·+ vn‖2 = ‖v1‖2 + · · ·+ ‖vn‖2

16 / 41



Pythagoras theorem

Theorem

For orthogonal vectors v and w in any inner product space V ,

‖v + w‖2 = ‖v‖2 + ‖w‖2

Proof.

‖v + w‖2 = 〈v + w, v + w〉
= 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉
= 〈v, v〉+ 〈w,w〉
= ‖v‖2 + ‖w‖2

More generally, for any orthogonal system {v1, . . . , vn}
‖v1 + · · ·+ vn‖2 = ‖v1‖2 + · · ·+ ‖vn‖2

16 / 41



Pythagoras theorem

Theorem

For orthogonal vectors v and w in any inner product space V ,

‖v + w‖2 = ‖v‖2 + ‖w‖2

Proof.

‖v + w‖2 = 〈v + w, v + w〉
= 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉
= 〈v, v〉+ 〈w,w〉
= ‖v‖2 + ‖w‖2

More generally, for any orthogonal system {v1, . . . , vn}
‖v1 + · · ·+ vn‖2 = ‖v1‖2 + · · ·+ ‖vn‖2

16 / 41



The vector space of polynomials

The set of all polynomials in the variable x is a vector space
denoted by P(x).
The set

{1, x, x2, . . . }
is an infinite basis of the vector space P(x).
P(x) carries an inner product defined by

〈f, g〉 :=
∫ 1

−1
f(x)g(x) dx

We are integrating over finite interval [−1, 1] which ensures that
the integral is finite.

The norm of a polynomial is by definition 〈f, f〉

‖f‖ :=
(∫ 1

−1
f(x)f(x)dx

)1/2
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Derivative transfer

Note that
d

dx
(fg) = g

df

dx
+ f

dg

dx

Integrating both sides we get∫ 1

−1

d

dx
(fg) =

∫ 1

−1
g
df

dx
+

∫ 1

−1
f
dg

dx

=⇒ f(1)g(1)− f(−1)g(−1) =
∫ 1

−1
g
df

dx
+

∫ 1

−1
f
dg

dx

Thus if
f(1)g(1)− f(−1)g(−1) = 0

then we get ∫ 1

−1
g
df

dx
= −

∫ 1
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Orthogonality of Legendre polynomials

Since Pm(x) is a polynomial of degree m, it follows that

{P0(x), P1(x), P2(x), . . . }

is a basis of the vector space of polynomials P(x).

Theorem

We have

〈Pm, Pn〉 =
∫ 1

−1
Pm(x)Pn(x) dx =

{
0 if m 6= n

2
2n+1 if m = n

i.e. Legendre polynomials form an orthogonal basis for the vector
space P(x) and

‖Pn(x)‖2 =
2

2n+ 1
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Orthogonality of Legendre polynomials

The Legendre equation may be written as

((1− x2)y′)′ + p(p+ 1)y = 0

In particular, Pm(x) satisfies

((1− x2)P ′m(x))′ +m(m+ 1)Pm(x) = 0 (∗)

Proof of Orthogonality.

Multiply (∗) by Pn and integrate to get∫ 1

−1
((1− x2)P ′m)′Pn +m(m+ 1)

∫ 1

−1
PmPn = 0

By derivative transfer (f = (1− x2)P ′m and g = Pn), we get

−
∫ 1

−1
(1− x2)P ′mP ′n +m(m+ 1)

∫ 1

−1
PmPn = 0
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Orthogonality of Legendre polynomials

continued ...

Interchanging the roles of m and n, we get

−
∫ 1

−1
(1− x2)P ′mP ′n + n(n+ 1)

∫ 1

−1
PmPn = 0

Subtracting the two identities, we obtain

[m(m+ 1)− n(n+ 1)]

∫ 1

−1
PmPn = 0

If m 6= n we get ∫ 1

−1
PmPn = 0

Thus, Pm and Pn are orthogonal.
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Orthogonality of Legendre polynomials
Rodrigues formula

It only remains to show that ‖Pn(x)‖2 =
2

2n+ 1
.

We need some intermediate steps before we can show this.

Denote by D the differential operator d
dx .

Let us first note that for 0 ≤ i < n(
Di(x2 − 1)n

)
(1) = 0

This is clear once we observe

Di(x2 − 1)n = Di
(
(x− 1)n(2 + x− 1)n

)
= Di

(
2n(x− 1)n + (∗)(x− 1)n+1 + · · ·

)
By the same reasoning we get for 0 ≤ i < n(

Di(x2 − 1)n
)
(−1) = 0

Consider the polynomial of degree n given by

y(x) = Dn(x2 − 1)n
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Orthogonality of Legendre polynomials
Rodrigues formula

For k < n consider the integral∫ 1

−1
Pk(x)y(x) =

∫ 1

−1
Pk(x)D(Dn−1(x2 − 1)n)

applying derivative transfer with f = Dn−1(x2 − 1)n and
g = Pk(x) we get∫ 1

−1
Pk(x)y(x) = −

∫ 1

−1
DPk(x)D

n−1(x2 − 1)n

=

∫ 1

−1
D2Pk(x)D

n−2(x2 − 1)n

=

∫ 1

−1
DnPk(x)(x

2 − 1)n = 0

We have repeatedly applied derivative transfer with
f = Dn−i(x2 − 1)n and g = Di−1Pk(x).

Since Pk(x) is a polynomial of degree k we get that DnPk(x) = 0.
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Orthogonality of Legendre polynomials
Rodrigues formula

This forces that y(x) = cPn(x) for some nonzero constant c as we
know that Pk(x)’s are orthogonal to each other.

Dn(x2 − 1)n = Dn
(
(x− 1)n(2 + x− 1)n

)
= Dn

(
2n(x− 1)n + (∗)(x− 1)n+1 + · · ·

)
From the above it is clear that

y(1) = n!2n

Thus, we can normalize our Legendre polynomials so that
Pm(1) = 1. That is, take

Pm(x) =
1

2nn!

dn

dxn
(x2 − 1)n

This is called Rodrigues formula.
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Orthogonality of Legendre polynomials
Computing ‖Pn(x)‖

Proof.∫ 1

−1
Pn(x)Pn(x) dx =

1

22n(n!)2

∫ 1

−1

dn

dxn
(x2 − 1)n

dn

dxn
(x2 − 1)n dx

=
(−1)n

22n(n!)2

∫ 1

−1
(x2 − 1)n

d2n

dx2n
(x2 − 1)n dx

by derivative transfer

=
(2n)!

22n(n!)2

∫ 1

−1
(1− x2)n dx

In =

∫ 1

−1
(1− x2)n dx =

∫ 1

−1
(1− x2)ndx

dx
dx

dt
= 2n

∫ 1

−1
(1− x2)n−1x2dx = −2nIn + 2nIn−1
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22n(n!)2
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−1

dn

dxn
(x2 − 1)n

dn

dxn
(x2 − 1)n dx

=
(−1)n

22n(n!)2

∫ 1

−1
(x2 − 1)n

d2n

dx2n
(x2 − 1)n dx

by derivative transfer
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Computing ‖Pn(x)‖

Proof.

We get the recursive relation

(2n+ 1)In = 2nIn−1

We conclude that

In =
2n

2n+ 1

2(n− 1)

2n− 1
· · · 2

3
I0

We conclude that

‖Pn(x)‖ =
(2n)!

22n(n!)2
2n

2n+ 1

2(n− 1)

2n− 1
· · · 2

3
I0

=
I0

2n+ 1
=

2

2n+ 1

This completes the proof of the theorem.
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Exercises

These exercises are related to some facts from linear algebra that
we used in the lecture today.

1 Recall the proof of the Gram Schmidt orthogonalization
lemma.

2 Let fi(x) (for i ≥ 0) be a collection of nonzero polynomials.
Assume that fi(x) has degree i. Show that
{f0(x), f1(x), . . . , fn(x)} is a basis for the vector space
consisting of polynomials of degree ≤ n.
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Recall

The Legendre equation

(1− x2)y′′ − 2xy′ + p(p+ 1)y = 0

When p = m is an integer then exactly one of the two independent
solutions is a polynomial, denoted by Pm(x). This is a polynomial
of degree m.

Theorem

We have

〈Pm, Pn〉 =
∫ 1

−1
Pm(x)Pn(x) dx =

{
0 if m 6= n

2
2n+1 if m = n

i.e. Legendre polynomials form an orthogonal basis for the vector
space P(x) and

‖Pn(x)‖2 =
2

2n+ 1
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Expansion of polynomial in terms of Pn’s

Since each Pn(x) is a polynomial of degree n, we see that

{P0(x), P1(x), P2(x), . . .}

form a basis for the vector space of polynomials P(x).
If f(x) is a polynomial of degree n, then we can express

f(x) =
n∑

k=0

akPk(x) ak ∈ R

To find ak, we can use orthogonality of Pn’s.∫ 1

−1
f(x)Pk(x) dx =

∫ 1

−1

(
n∑

i=0

aiPi(x)

)
Pk(x) dx

=

n∑
i=0

(∫ 1

−1
aiPi(x)Pk(x) dx

)
= ak

∫ 1

−1
Pk(x)Pk(x) dx

=⇒ ak =
2n+ 1

2

∫ 1

−1
f(x)Pk(x) dx
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Square-integrable functions

A function f(x) on [−1, 1] is square-integrable if∫ 1

−1
f(x)f(x)dx <∞

For instance, polynomials, continuous functions, piecewise
continuous functions are square-integrable.

The set of all square-integrable functions on [−1, 1] is a vector
space and is denoted by L2([−1, 1]).
For square-integrable functions f and g, we define their inner
product by

〈f, g〉 :=
∫ 1

−1
f(x)g(x)dx
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Fourier-Legendre series

The Legendre polynomials no longer form a basis for the vector
space L2([−1, 1]) of square-integrable functions.

In fact, the space L2([−1, 1]) is HUGE in comparison with the
space spanned by the Legendre polynomials.

What do we mean by HUGE here?

The set of rational numbers (Q) is contained in the set of real
numbers (R) and is “dense”. However, the size of R is much larger
than the size of Q. These ideas were formulated precisely by Georg
Cantor.
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Fourier-Legendre series

But Legendre polynomials form a maximal orthogonal set in
L2([−1, 1]).

This means that a square-integrable function which is orthogonal
to all Legendre polynomials is necessarily the constant function “0”
(a nontrivial fact).

We can expand any square-integrable function f(x) on [−1, 1] in a
series of Legendre polynomials

∞∑
n=0

cnPn(x), cn =
〈f, Pn〉
〈Pn, Pn〉

=
2n+ 1

2

∫ 1

−1
f(x)Pn(x)dx

This is called the Fourier-Legendre series (or simply the Legendre
series) of f(x).

32 / 41



Fourier-Legendre series

But Legendre polynomials form a maximal orthogonal set in
L2([−1, 1]).
This means that a square-integrable function which is orthogonal
to all Legendre polynomials is necessarily the constant function “0”
(a nontrivial fact).

We can expand any square-integrable function f(x) on [−1, 1] in a
series of Legendre polynomials

∞∑
n=0

cnPn(x), cn =
〈f, Pn〉
〈Pn, Pn〉

=
2n+ 1

2

∫ 1

−1
f(x)Pn(x)dx

This is called the Fourier-Legendre series (or simply the Legendre
series) of f(x).

32 / 41



Fourier-Legendre series

But Legendre polynomials form a maximal orthogonal set in
L2([−1, 1]).
This means that a square-integrable function which is orthogonal
to all Legendre polynomials is necessarily the constant function “0”
(a nontrivial fact).

We can expand any square-integrable function f(x) on [−1, 1] in a
series of Legendre polynomials

∞∑
n=0

cnPn(x), cn =
〈f, Pn〉
〈Pn, Pn〉

=
2n+ 1

2

∫ 1

−1
f(x)Pn(x)dx

This is called the Fourier-Legendre series (or simply the Legendre
series) of f(x).

32 / 41



Fourier-Legendre series

Theorem (Convergence in norm)

The Fourier-Legendre series of f(x) ∈ L2([−1, 1]) given by

∞∑
n=0

cnPn(x), cn =
2n+ 1

2

∫ 1

−1
f(x)Pn(x)dx

converges in L2 norm to f(x), that is

‖f(x)−
m∑

n=0

cnPn(x)‖ → 0 as m→∞

Pointwise convergence of Fourier-Legendre series to f(x) is more
delicate.
There are two issues here:

Does the Fourier-Legendre series converge at x?

If yes, then does it converge to f(x)?
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Fourier-Legendre series

A useful result in this direction is the Legendre expansion theorem:

Theorem

If both f(x) and f ′(x) have at most a finite number of jump
discontinuities in the interval [−1, 1],
then the Legendre series converges to

1

2
(f(x−) + f(x+)) for − 1 < x < 1

f(−1+) for x = −1

f(1−) for x = 1

In particular, the series converges to f(x) at every point of
continuity x.
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Fourier-Legendre series

Example

Consider the function

f(x) =

{
1 if 0 < x < 1

−1 if − 1 < x < 0

The Legendre series of f(x) is

∞∑
n=0

cnPn(x), cn =
2n+ 1

2

∫ 1

−1
f(x)Pn(x) dx

Since P2n(x) is even function and f is an odd function, we get

c2n = 0 n ≥ 0

Recall, P1(x) = x, so

c1 =
3

2

∫ 1

−1
f(x)x dx =

3

2
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c2n = 0 n ≥ 0

Recall, P1(x) = x, so

c1 =
3

2

∫ 1

−1
f(x)x dx =

3
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Fourier-Legendre series

Example (continued . . .)

P3(x) =
1
2(5x

3 − 3x), so

c3 =
7

2

∫ 1

−1
f(x)

1

2
(5x3 − 3x) dx =

7

2
(
5

4
x4 − 3

2
x2)
∣∣1
0
= −7

8

Check that the Legendre series of f is

3

2
P1(x)−

7

8
P3(x) +

11

16
P5(x)− . . .

By the Legendre expansion theorem, this series converges to f(x)
for x 6= 0 and to 0 for x = 0.
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Least Square Approximation

Theorem

Suppose we want to approximate f ∈ L2([−1, 1]) in the sense of
least square by polynomials p(x) of degree ≤ n; that is, we want
to find a polynomial p(x) which minimizes

I =

∫ 1

−1
[f(x)− p(x)]2 dx

Then the minimizing polynomial is precisely the first n+ 1 terms
of the Legendre series of f(x), i.e.

c0P0(x) + . . .+ cnPn(x) ck =
2k + 1

2

∫ 1

−1
f(x)Pk(x)dx

Proof.

Write degree ≤ n polynomial p(x) =
n∑

k=0

bkPk(x), then
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proof continued . . .

I =

∫ 1

−1

[
f(x)−

n∑
k=0

bkPk(x)

]2
dx

=

∫ 1

−1
f(x)2 dx+

n∑
k=0

2

2k + 1
b2k − 2

n∑
k=0

bk

[∫ 1

−1
f(x)Pk(x) dx

]

=

∫ 1

−1
f(x)2 dx+

n∑
k=0

2

2k + 1
b2k − 2

n∑
k=0

bk
2ck

2k + 1

=

∫ 1

−1
f(x)2 dx+

n∑
k=0

2

2k + 1
(bk − ck)2 −

n∑
k=0

2

2k + 1
c2k

Clearly, I is minimum when bk = ck for k = 0, . . . , n.

Caution. If f has a power series expansion on [−1, 1], then best
“least square polynomial approximation” to f(x) is not the partial
sums of the power series, in general.
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Some remarks

This brings to an end the discussion of second order linear ODE’s
which we can solve by power series.

Before we go on to more complicated ODE’s, let us review what
we have done so far.

1. Given an ODE of the type

F0(x)y
′′ + F1(x)y

′ + F2(x)y = 0 (∗)

first convert it to the standard form

y′′ +
F1(x)

F0(x)
y′ +

F2(x)

F0(x)
y = 0 (∗∗)

Let

p(x) :=
F1(x)

F0(x)
q(x) :=

F2(x)

F0(x)
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Some remarks

2. Now find the set

U := {x0 ∈ R | p(x), q(x) are analytic at x0}

3. By the existence theorem, for every x0 ∈ U , there will exist two
independent solutions to the above ODE, call them y1(x) and
y2(x), such that both of them will be analytic in an interval I
around x0.

4. To find the solutions in a neighborhood of x0, set
y(x) =

∑
n≥0 an(x− x0)n into the ODE (∗) or (∗∗) and get

recursive relations involving the an. Note that when you do this,
the coefficient functions (p(x), q(x), F0(x), ..) have to be written
as power series in x− x0. Note that the recursive relation you get,
will be same, irrespective of whether you choose equation (∗) or
(∗∗).
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Some remarks

5. Thus, depending on the situation, you may want to choose (∗)
or (∗∗).

For example, the Legendre equation, in the open interval (−1, 1)
around x0 = 0, the equation (∗) looks like

(1− x2)y′′ − 2xy′ + p(p+ 1)y = 0

while (∗∗) looks like

y′′ − 2
(∑

n≥0
x2n+1

)
y′ + p(p+ 1)

(∑
n≥0

x2n
)
y = 0

In this case it is clear that, we should choose (∗), as it will be
easier to work with. This is what we did in class.
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