MA-207 Differential Equations II

Ronnie Sebastian

Department of Mathematics
Indian Institute of Technology Bombay
Powai, Mumbai - 76
September 29, 2021

Ordinary and singular points

Definition

Consider the second-order linear ODE in standard form

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{*}
\end{equation*}
$$

(1) $x_{0} \in \mathbb{R}$ is called an ordinary point of $(*)$ if $p(x)$ and $q(x)$ are analytic at x_{0}
(2) $x_{0} \in \mathbb{R}$ is called regular singular point if x_{0} is not an ordinary point and both $\left(x-x_{0}\right) p(x)$ and $\left(x-x_{0}\right)^{2} q(x)$ are analytic at x_{0}.
If x_{0} is regular singular then there are functions $b(x)$ and $c(x)$ which are analytic at x_{0} such that

$$
p(x)=\frac{b(x)}{\left(x-x_{0}\right)} \quad q(x)=\frac{c(x)}{\left(x-x_{0}\right)^{2}}
$$

(3) If $x_{0} \in \mathbb{R}$ is not ordinary or regular singular, then we call it irregular singular.

Ordinary and singular points

Thus,

- The best possible situation is when x_{0} is an ordinary point.
- If x_{0} is not ordinary, then the next best possible situation is when it is regular singular. We will next learn how to deal with this situation.
- Finally, we have the situation when x_{0} is not regular singular, that is, it is irregular singular. We will not deal with this case in this course.

Ordinary and singular points

Example

$x=0$ is an irregular singular point of $x^{3} y^{\prime \prime}+x y^{\prime}+y=0$
Let us write the ODE in standard form

$$
y^{\prime \prime}+\frac{1}{x^{2}} y^{\prime}+\frac{1}{x^{3}} y=0
$$

Then

$$
p(x)=\frac{1}{x^{2}} \quad q(x)=\frac{1}{x^{3}}
$$

Clearly,

$$
x p(x)=\frac{1}{x} \quad x^{2} q(x)=\frac{1}{x}
$$

are not analytic at 0 . Thus, $x=0$ is an irregular singular point.

Solutions in the regular singular case

Example

Consider the Cauchy-Euler equation

$$
x^{2} y^{\prime \prime}+b_{0} x y^{\prime}+c_{0} y=0 \quad b_{0}, c_{0} \in \mathbb{R}
$$

$x=0$ is a regular singular point, since we can write the ODE as

$$
y^{\prime \prime}+\frac{b_{0}}{x} y^{\prime}+\frac{c_{0}}{x^{2}} y=0
$$

All $x \neq 0$ are ordinary points.
Assume $x>0$
Note that $y=x^{r}$ solves the equation iff

$$
\begin{gathered}
r(r-1)+b_{0} r+c_{0}=0 \\
\Longleftrightarrow r^{2}+\left(b_{0}-1\right) r+c_{0}=0
\end{gathered}
$$

Let r_{1} and r_{2} denote the roots of this quadratic equation.

Solutions in the regular singular case

Example (continues ...)

- If the roots $r_{1} \neq r_{2}$ are real, then

$$
x^{r_{1}} \quad \text { and } \quad x^{r_{2}}
$$

are two independent solutions.

- If the roots $r_{1}=r_{2}$ are real, then

$$
x^{r_{1}} \quad \text { and } \quad(\log x) x^{r_{1}}
$$

are two independent solutions.

- If the roots are complex (written as $a \pm i b$), then

$$
x^{a} \cos (b \log x) \quad \text { and } \quad x^{a} \sin (b \log x)
$$

are two independent solutions.
This example motivates us to look for solutions which involve x^{r}.

First solution in regular singular case

Consider

$$
\begin{aligned}
& x^{2} y^{\prime \prime}+x b(x) y^{\prime}+c(x) y=0 \text { with } \\
& b(x)=\sum_{i \geq 0} b_{i} x^{i} \quad c(x)=\sum_{i \geq 0} c_{i} x^{i}
\end{aligned}
$$

analytic functions in a small neighborhood of 0 .
$x=0$ is a regular singular point.
Define the indicial equation

$$
I(r):=r(r-1)+b_{0} r+c_{0}
$$

Look for solution of the type

$$
y(x)=\sum_{n \geq 0} a_{n} x^{n+r}
$$

by substituting this into the differential equation and setting the coefficient of x^{n+r} to 0 .

First solution in regular singular case

We get the following
(1) The coefficient of x^{r} is $I(r) a_{0}$, thus we need $I(r) a_{0}=0$
(2) The coefficient of x^{n+r}, for $n \geq 1$, is

$$
I(n+r) a_{n}+\sum_{i=0}^{n-1} b_{n-i}(i+r) a_{i}+\sum_{i=0}^{n-1} c_{n-i} a_{i}
$$

We need this to be 0
Let r_{1} and r_{2} be roots of $I(r)=0$. Assume r_{1} and r_{2} are real and $r_{1} \geq r_{2}$.
Define $a_{0}=1$.
Set $r=r_{1}$ in the above equation and define a_{n}, for $n \geq 1$, inductively by the equation

$$
a_{n}\left(r_{1}\right)=-\frac{\sum_{i=0}^{n-1} b_{n-i}\left(i+r_{1}\right) a_{i}+\sum_{i=0}^{n-1} c_{n-i} a_{i}}{I\left(n+r_{1}\right)}
$$

First solution in regular singular case

Since $I\left(n+r_{1}\right) \neq 0$ for $n \geq 1, a_{n}\left(r_{1}\right)$ is a well defined real number.
Thus,

$$
y_{1}(x)=\sum_{n \geq 0} a_{n}\left(r_{1}\right) x^{n+r_{1}}
$$

is a possible solution to the above differential equation.

First solution in regular singular case

Theorem

Consider the ODE $\quad x^{2} y^{\prime \prime}+x b(x) y^{\prime}+c(x) y=0$
where $b(x)$ and $c(x)$ are analytic at 0 . Then $x=0$ is a regular singular point of ODE.
Then (*) has a solution of the form

$$
y(x)=x^{r} \sum_{n \geq 0} a_{n} x^{n} \quad a_{0} \neq 0, \quad r \in \mathbb{C} \quad(* *)
$$

The solution (**) is called Frobenius solution or fractional power series solution.
The power series $\sum_{n \geq 0} a_{n} x^{n}$ converges on $(-\rho, \rho)$, where ρ is the minimum of the radius of convergence of $b(x)$ and $c(x)$. We will consider the solution $y(x)$ in the open interval $(0, \rho)$.

Second solution in regular singular case

The analysis now breaks into the following three cases

- $r_{1}-r_{2} \notin \mathbb{Z}$
- $r_{1}=r_{2}$
- $0 \neq r_{1}-r_{2} \in \mathbb{Z}$

Second solution: $r_{1}-r_{2} \notin \mathbb{Z}$

In this case, because of the assumption that $r_{1}-r_{2} \notin \mathbb{Z}$, it follows that $I\left(n+r_{2}\right) \neq 0$ for any $n \geq 1$.
Thus, as before, the second solution is given by

$$
y_{2}(x)=\sum_{n \geq 0} a_{n}\left(r_{2}\right) x^{n+r_{2}}
$$

Example

Consider the ODE $\quad x^{2} y^{\prime \prime}-\frac{x}{2} y^{\prime}+\frac{(1+x)}{2} y=0$
Observe that $x=0$ is a regular singular point.

$$
\begin{aligned}
I(r)= & r(r-1)-\frac{1}{2} r+\frac{1}{2} \\
& =(2 r(r-1)-r+1) / 2 \\
& =\left(2 r^{2}-3 r+1\right) / 2 \\
& =(r-1)(2 r-1) / 2
\end{aligned}
$$

Roots of $I(r)=0$ are $r_{1}=1$ and $r_{2}=1 / 2$

Second solution: $r_{1}-r_{2} \notin \mathbb{Z}$

Example (continues ... $2 x^{2} y^{\prime \prime}-x y^{\prime}+(1+x) y=0$)

Their difference $r_{1}-r_{2}=1 / 2$ is not an integer.
The equation defining a_{n}, for $n \geq 1$, is

$$
I(n+r) a_{n}+\frac{1}{2} a_{n-1}=0
$$

Thus,

$$
a_{n}(r)=-\frac{a_{n-1}(r)}{(n+r-1)(2 n+2 r-1)}
$$

Thus,

$$
\begin{aligned}
a_{n}\left(r_{1}\right)=a_{n} & (1)=-\frac{a_{n-1}}{n(2 n+1)} \\
= & (-1)^{n} \frac{1}{n!((2 n+1)(2 n-1) \ldots 3}
\end{aligned}
$$

Second solution: $r_{1}-r_{2} \notin \mathbb{Z}$

Example (continues ... $\left.2 x^{2} y^{\prime \prime}-x y^{\prime}+(1+x) y=0\right)$

$$
\begin{aligned}
y_{1}(x) & =x\left(1+\sum_{n \geq 1} \frac{(-1)^{n} x^{n}}{n!(2 n+1)(2 n-1) \ldots 3}\right) \\
a_{n}\left(r_{2}\right) & =-\frac{a_{n-1}}{n(2 n-1)} \\
& =(-1)^{n} \frac{1}{n!(2 n-1)(2 n-3) \ldots 1} \\
y_{2}(x) & =x^{1 / 2}\left(1+\sum_{n \geq 1} \frac{(-1)^{n} x^{n}}{n!(2 n-1)(2 n-3) \ldots 1}\right)
\end{aligned}
$$

Since $\left|a_{n}\right|$ are smaller that $\frac{1}{n!}$, it is clear that both solutions converge on $(0, \infty)$.

Second solution: $r_{1}=r_{2}$

Consider the differential operator

$$
L:=x^{2} \frac{d^{2}}{d x^{2}}+x b(x) \frac{d}{d x}+c(x)
$$

Consider the function of two variables

$$
\psi(r, x):=\sum_{n \geq 0} a_{n}(r) x^{n+r}
$$

Then one checks easily that

$$
L \psi(r, x)=\sum_{n \geq 0} E(n) x^{n+r}
$$

where

$$
\begin{aligned}
& E(0):=I(r) a_{0}, \quad \text { and for } n \geq 1 \\
& E(n):=I(n+r) a_{n}(r)+\sum_{i=0}^{n-1}(i+r) b_{n-i} a_{i}(r)+\sum_{i=0}^{n-1} c_{n-i} a_{i}(r)
\end{aligned}
$$

Second solution: $r_{1}=r_{2}$

$I(r)$ is the indicial equation, given by $r(r-1)+b_{0} r+c_{0}$. The roots are $r_{1} \geq r_{2}$.

Setting $a_{0}(r)=1$ and $E(n)=0$ allows us to inductively define functions $a_{n}(r)$.

Note that each $a_{n}(r)$ is a rational function in r, in fact, the denominator of $a_{n}(r)$ is $\prod_{i=1}^{n} I(i+r)$.
The functions $a_{n}(r)$ are analytic at r_{1}. They are analytic at r_{2} if $r_{1}-r_{2} \notin \mathbb{Z}$.

In particular, if we put $r=r_{1}$, then it gives a solution since

$$
L \psi\left(r_{1}, x\right)=I\left(r_{1}\right) x^{r_{1}}=0
$$

Explicitly this solution is

$$
y_{1}(x)=x^{r_{1}} \sum_{n \geq 0} a_{n}\left(r_{1}\right) x^{n}
$$

Second solution: $r_{1}=r_{2}$

If $r_{1}-r_{2} \notin \mathbb{Z}$ then the second solution is given by

$$
y_{2}(x)=x^{r_{2}} \sum_{n \geq 0} a_{n}\left(r_{2}\right) x^{n}
$$

Now let us consider the case when I has repeated roots
Since I has repeated roots $r_{1}=r_{2}$, it follows that, for every $n \geq 1$, the polynomial $\prod_{i=1}^{n} I(i+r)$ does not vanish at $r=r_{1}$

Consequently, it is clear that the $a_{n}(r)$ are analytic in a small neighborhood around $r=r_{1}=r_{2}$.

Now let us apply the differential operator $\frac{d}{d r}$ on both sides of the equation $L \psi(r, x)=I(r) x^{r}$. Clearly the operators L and $\frac{d}{d r}$ commute with each other, and so we get

$$
\begin{aligned}
\frac{d}{d r} L \psi(r, x) & =L \frac{d}{d r} \psi(r, x) \\
& =L \sum_{n \geq 0}\left(a_{n}^{\prime}(r) x^{n+r}+a_{n}(r) x^{n+r} \log x\right)=\frac{d}{d r} I(r) x^{r} \\
& =I^{\prime}(r) x^{r}+I(r) x^{r} \log x
\end{aligned}
$$

Thus, if we plug in $r=r_{1}=r_{2}$ in the above, then we get

$$
L\left(\sum_{n \geq 0} a_{n}^{\prime}\left(r_{2}\right) x^{n+r_{2}}+a_{n}\left(r_{2}\right) x^{n+r_{2}} \log x\right)=0
$$

Second solution: $r_{1}=r_{2}$

Theorem (Second solution: $r_{1}=r_{2}$)
A second solution to the differential equation is given by

$$
\sum_{n \geq 0} a_{n}^{\prime}\left(r_{2}\right) x^{n+r_{2}}+\sum_{n \geq 0} a_{n}\left(r_{2}\right) x^{n+r_{2}} \log x
$$

Example

Consider the ODE

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}+(1-2 x) y=0
$$

This has a regular singularity at $x=0$.

$$
\begin{gathered}
I(r)=r(r-1)+3 r+1 \\
=r^{2}+2 r+1
\end{gathered}
$$

has a repeated roots $-1,-1$.
Let us find the Frobenius solution directly by putting

$$
\begin{aligned}
& y=x^{r} \sum_{n \geq 0} a_{n}(r) x^{n} \quad a_{0}=1 \\
& y^{\prime}=\sum_{n \geq 0}(n+r) a_{n}(r) x^{n+r-1} \\
& y^{\prime \prime}=\sum_{n \geq 0}^{\infty}(n+r)(n+r-1) a_{n}(r) x^{n+r-2}
\end{aligned}
$$

Second solution: $r_{1}=r_{2}$

Example (continues ...)

$$
\begin{aligned}
& x^{2} y(x, r)^{\prime \prime}+3 x y(x, r)^{\prime}+(1-2 x) y(x, r) \\
& =\sum_{n=0}^{\infty}[(n+r)(n+r-1)+3(n+r)+1] a_{n}(r) x^{n+r} \\
& \quad-\sum_{n=0}^{\infty} 2 a_{n}(r) x^{n+r+1}
\end{aligned}
$$

Recursion relations for $n \geq 1$ are

$$
\begin{aligned}
a_{n}(r) & =\frac{2 a_{n-1}(r)}{(n+r)(n+r-1)+3(n+r)+1} \\
& =\frac{2 a_{n-1}(r)}{(n+r+1)^{2}} \\
& =\frac{2^{n}}{[(n+r+1)(n+r) \ldots(r+2)]^{2}} a_{0}
\end{aligned}
$$

Second solution: $r_{1}=r_{2}$

Example (continues ...)

Setting $r=-1$ (and $a_{0}=1$) yields the fractional power series solution

$$
y_{1}(x)=\frac{1}{x} \sum_{n \geq 0} \frac{2^{n}}{(n!)^{2}} x^{n}
$$

The power series converges on $(0, \infty)$.
The second solution is

$$
y_{2}(x)=y_{1}(x) \log x+x^{-1} \sum_{n \geq 1} a_{n}^{\prime}(-1) x^{n}
$$

where

$$
\begin{aligned}
& a_{n}(r)=\frac{2^{n}}{[(n+r+1)(n+r) \ldots(r+2)]^{2}} \\
& a_{n}^{\prime}(r)=\frac{-2.2^{n}[(n+r+1)(n+r) \ldots(r+2)]^{\prime}}{[(n+r+1)(n+r) \ldots(r+2)]^{3}}
\end{aligned}
$$

Second solution: $r_{1}=r_{2}$

Example (continued)

$$
=-2 a_{n}(r)\left(\frac{1}{n+r+1}+\frac{1}{n+r}+\cdots+\frac{1}{r+2}\right)
$$

Putting $\quad r=-1$, we get

$$
a_{n}^{\prime}(-1)=-\frac{2^{n+1} H_{n}}{(n!)^{2}}
$$

where

$$
H_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}
$$

(These are the partial sums of the harmonic series.)
So the second solution is

$$
y_{2}(x)=y_{1}(x) \log x-\frac{1}{x} \sum_{n \geq 1} \frac{2^{n+1} H_{n}}{(n!)^{2}} x^{n}
$$

It is clear that this series converges on $(0, \infty)$.

Second solution: $0 \neq r_{1}-r_{2} \in \mathbb{Z}$

Define

$$
N:=r_{1}-r_{2}
$$

Note that each $a_{n}(r)$ is a rational function in r, in fact, the denominator is exactly $\prod_{i=1}^{n} I(i+r)$.

The polynomial $\prod_{i=1}^{n} I(i+r)$ evaluated at r_{2} vanishes iff $n \geq N$. For $n \geq N$ it vanishes to order exactly 1 .

Thus, if we define

$$
A_{n}(r):=a_{n}(r)\left(r-r_{2}\right)
$$

then it is clear that for every $n \geq 0$, the function $A_{n}(r)$ is analytic in a neighborhood of r_{2}.

Second solution: $0 \neq r_{1}-r_{2} \in \mathbb{Z}$

In particular, $A_{n}\left(r_{2}\right)$ and $A_{n}^{\prime}\left(r_{2}\right)$ are well defined real numbers. Multiplying the equation $L \psi(r, x)=I(r) x^{r}$ with $r-r_{2}$ we get

$$
\left(r-r_{2}\right) L \psi(r, x)=L\left(r-r_{2}\right) \psi(r, x)=\left(r-r_{2}\right) I(r) x^{r}
$$

Note that

$$
\left(r-r_{2}\right) \psi(r, x)=\sum_{n \geq 0} A_{n}(r) x^{n+r}
$$

Now let us apply the differential operator $\frac{d}{d r}$ on both sides of the equation $L\left(r-r_{2}\right) \psi(r, x)=\left(r-r_{2}\right) I(r) x^{r}$ to get

$$
\begin{aligned}
\frac{d}{d r} L\left(r-r_{2}\right) \psi(r, x) & =L \frac{d}{d r}\left(r-r_{2}\right) \psi(r, x) \\
& =\frac{d}{d r}\left(r-r_{2}\right) I(r) x^{r} \\
& =I(r) x^{r}+\left(r-r_{2}\right) I^{\prime}(r) x^{r}+\left(r-r_{2}\right) I(r) x^{r} \log x
\end{aligned}
$$

Thus we get

$$
\begin{aligned}
L \frac{d}{d r}\left(\sum_{n \geq 0} A_{n}(r) x^{n+r}\right)= & L \frac{d}{d r}\left(\sum_{n \geq 0} A_{n}(r) x^{n+r}\right) \\
= & L\left(\sum_{n \geq 0} A_{n}^{\prime}(r) x^{n+r}+A_{n}(r) x^{n+r} \log x\right) \\
= & I(r) x^{r}+\left(r-r_{2}\right) I^{\prime}(r) x^{r}+ \\
& \left(r-r_{2}\right) I(r) x^{r} \log x
\end{aligned}
$$

Second solution: $0 \neq r_{1}-r_{2} \in \mathbb{Z}$

If we set $r=r_{2}$ into the equation

$$
\begin{aligned}
L\left(\sum_{n \geq 0} A_{n}^{\prime}(r) x^{n+r}+A_{n}(r) x^{n+r} \log x\right)= & I(r) x^{r}+\left(r-r_{2}\right) I^{\prime}(r) x^{r}+ \\
& \left(r-r_{2}\right) I(r) x^{r} \log x
\end{aligned}
$$

we get the second solution

$$
L\left(\sum_{n \geq 0} A_{n}^{\prime}\left(r_{2}\right) x^{n+r_{2}}+A_{n}\left(r_{2}\right) x^{n+r_{2}} \log x\right)=0
$$

Theorem (Second solution: $0 \neq r_{1}-r_{2} \in \mathbb{Z}$)

A second solution to the differential equation is given by

$$
\sum_{n \geq 0} A_{n}^{\prime}\left(r_{2}\right) x^{n+r_{2}}+\sum_{n \geq 0} A_{n}\left(r_{2}\right) x^{n+r_{2}} \log x
$$

Example

Consider the ODE $\quad x y^{\prime \prime}-(4+x) y^{\prime}+2 y=0 \quad(*)$
Multiplying $(*)$ with x, we get $x=0$ is a regular singular point.

$$
I(r)=r(r-1)-4 r+0=r(r-5)=0
$$

with the roots differing by a positive integer.
Put $y(x, r)=x^{r} \sum_{n=0}^{\infty} a_{n}(r) x^{n}, \quad a_{0}(r)=1$, into the ODE to get
$x \sum_{n \geq 0}(n+r)(n+r-1) a_{n}(r) x^{n+r-2}$

$$
-(4+x) \sum_{n \geq 0}(n+r) a_{n}(r) x^{n+r-1}+2 \sum_{n \geq 0} a_{n}(r) x^{n+r}=0
$$

the coefficient of x^{n+r-1} for $n \geq 1$ gives

Example (continues ...)

$$
\begin{aligned}
& (n+r)(n+r-1) a_{n}(r)-4(n+r) a_{n}(r)-(n+r-1) a_{n-1}(r) \\
& \quad+2 a_{n-1}(r)=0
\end{aligned}
$$

For $n \geq 1$,

$$
\begin{aligned}
& (n+r)(n+r-5) a_{n}=(n+r-3) a_{n-1} \\
& a_{n}(r)=\frac{(n+r-3)}{(n+r)(n+r-5)} a_{n-1} \\
& \quad=\frac{(n+r-3) \ldots(r-2)}{(n+r) \ldots(1+r)(n+r-5) \ldots(r-4)} a_{0}
\end{aligned}
$$

For the first solution, set $r=r_{1}=5$ (and $a_{0}=1$), we get

$$
\begin{aligned}
a_{n}(5) & =\frac{(n+2) \ldots(3)}{(n+5) \ldots 6(n) \ldots 1} \\
& =\frac{(n+2)!/ 2}{(n!)(n+5)!/ 5!}
\end{aligned}
$$

Second solution: $0 \neq r_{1}-r_{2} \in \mathbb{Z}$

Example (continues ...)

$$
=\frac{60}{n!(n+5)(n+4)(n+3)}
$$

Thus

$$
y_{1}(x)=\sum_{n \geq 0} \frac{60}{n!(n+5)(n+4)(n+3)} x^{n+5}
$$

Recall $N=r_{1}-r_{2}=5-0$ is integer, so the second solution is

$$
y_{2}(x)=\sum_{n \geq 0} A_{n}^{\prime}\left(r_{2}\right) x^{n+r_{2}}+\sum_{n \geq 0} A_{n}\left(r_{2}\right) x^{n+r_{2}} \log x
$$

where, for $n \geq 0$

$$
A_{n}(r)=\left(r-r_{2}\right) a_{n}(r)
$$

Since $r_{2}=0$, the above becomes

$$
A_{n}(r)=r a_{n}(r)
$$

Second solution: $0 \neq r_{1}-r_{2} \in \mathbb{Z}$

Example

In this example, we can easily check that none of the $a_{n}(r)$ have a singularity at $r=0$.
Thus, $A_{n}(0)=0$ for all $n \geq 0$; and $A_{n}^{\prime}(0)=a_{n}(0)$ for all $n \geq 0$.
$a_{1}(0)=\frac{1}{2} ; a_{2}(0)=\frac{1}{12}$;
It is easily checked that for $n \geq 3$

$$
a_{n}(r)=\frac{(n+r-3)(n+r-4)}{n!12}
$$

Thus, $a_{3}(0)=a_{4}(0)=0$.

Second solution: $0 \neq r_{1}-r_{2} \in \mathbb{Z}$

Example

Therefore a second solution is

$$
\begin{aligned}
& y_{2}(x)=1+\frac{x}{2}+\frac{x^{2}}{12}+\sum_{n \geq 5} \frac{(n-3)(n-4)}{n!12} x^{n} \\
& \quad=1+\frac{x}{2}+\frac{x^{2}}{12}+\sum_{k \geq 0} \frac{1}{k!(k+5)(k+4)(k+3) 12} x^{k+5}
\end{aligned}
$$

Since

$$
\sum_{k \geq 0} \frac{1}{k!(k+5)(k+4)(k+3) 12} x^{k+5}
$$

is a multiple of $y_{1}(x)$,
we get that a second solution is

$$
y_{2}(x)=1+\frac{x}{2}+\frac{x^{2}}{12}
$$

While solving an ODE around a regular singular point by the Frobenius method, the cases encountered are

- roots not differing by an integer
- repeated roots
- roots differing by a positive integer

The larger root always yields a fractional power series solution.
In the first case, the smaller root also yields a fractional power series solution.
In the second and third cases, the second solution may involve a log term.

