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Ordinary and singular points

Definition

Consider the second-order linear ODE in standard form

y′′ + p(x)y′ + q(x)y = 0 (∗)
1 x0 ∈ R is called an ordinary point of (∗) if p(x) and q(x) are

analytic at x0
2 x0 ∈ R is called regular singular point if x0 is not an ordinary

point and both (x− x0)p(x) and (x− x0)2q(x) are analytic at
x0.
If x0 is regular singular then there are functions b(x) and c(x)
which are analytic at x0 such that

p(x) =
b(x)

(x− x0)
q(x) =

c(x)

(x− x0)2

3 If x0 ∈ R is not ordinary or regular singular, then we call it
irregular singular.
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Ordinary and singular points

Thus,

The best possible situation is when x0 is an ordinary point.

If x0 is not ordinary, then the next best possible situation is
when it is regular singular. We will next learn how to deal
with this situation.

Finally, we have the situation when x0 is not regular singular,
that is, it is irregular singular. We will not deal with this case
in this course.
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Ordinary and singular points

Example

x = 0 is an irregular singular point of x3y′′ + xy′ + y = 0

Let us write the ODE in standard form

y′′ +
1

x2
y′ +

1

x3
y = 0

Then

p(x) =
1

x2
q(x) =

1

x3

Clearly,

xp(x) =
1

x
x2q(x) =

1

x

are not analytic at 0. Thus, x = 0 is an irregular singular point.
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Solutions in the regular singular case

Example

Consider the Cauchy-Euler equation

x2y′′ + b0xy
′ + c0y = 0 b0, c0 ∈ R

x = 0 is a regular singular point, since we can write the ODE as

y′′ +
b0
x
y′ +

c0
x2
y = 0

All x 6= 0 are ordinary points.

Assume x > 0

Note that y = xr solves the equation iff

r(r − 1) + b0r + c0 = 0

⇐⇒ r2 + (b0 − 1)r + c0 = 0

Let r1 and r2 denote the roots of this quadratic equation.
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Solutions in the regular singular case

Example (continues . . .)

If the roots r1 6= r2 are real, then

xr1 and xr2

are two independent solutions.

If the roots r1 = r2 are real, then

xr1 and (log x)xr1

are two independent solutions.

If the roots are complex (written as a± ib), then

xa cos(b log x) and xa sin(b log x)

are two independent solutions.

This example motivates us to look for solutions which involve xr.
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First solution in regular singular case

Consider x2y′′ + xb(x)y′ + c(x)y = 0 with

b(x) =
∑
i≥0

bix
i c(x) =

∑
i≥0

cix
i

analytic functions in a small neighborhood of 0.

x = 0 is a regular singular point.

Define the indicial equation

I(r) := r(r − 1) + b0r + c0

Look for solution of the type

y(x) =
∑
n≥0

anx
n+r

by substituting this into the differential equation and setting the
coefficient of xn+r to 0.
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First solution in regular singular case

We get the following
1 The coefficient of xr is I(r)a0, thus we need I(r)a0 = 0
2 The coefficient of xn+r, for n ≥ 1, is

I(n+ r)an +

n−1∑
i=0

bn−i(i+ r)ai +

n−1∑
i=0

cn−iai

We need this to be 0

Let r1 and r2 be roots of I(r) = 0. Assume r1 and r2 are real and
r1 ≥ r2.

Define a0 = 1.

Set r = r1 in the above equation and define an, for n ≥ 1,
inductively by the equation

an(r1) = −
∑n−1

i=0 bn−i(i+ r1)ai +
∑n−1

i=0 cn−iai
I(n+ r1)
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First solution in regular singular case

Since I(n+ r1) 6= 0 for n ≥ 1, an(r1) is a well defined real number.

Thus,
y1(x) =

∑
n≥0

an(r1)x
n+r1

is a possible solution to the above differential equation.
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First solution in regular singular case

Theorem

Consider the ODE x2y′′ + xb(x) y′ + c(x) y = 0 (∗)
where b(x) and c(x) are analytic at 0. Then x = 0 is a regular
singular point of ODE.
Then (∗) has a solution of the form

y(x) = xr
∑
n≥0

anx
n a0 6= 0, r ∈ C (∗∗)

The solution (∗∗) is called Frobenius solution or fractional power
series solution.

The power series
∑
n≥0

anx
n converges on (−ρ, ρ), where ρ is the

minimum of the radius of convergence of b(x) and c(x). We will
consider the solution y(x) in the open interval (0, ρ).
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Second solution in regular singular case

The analysis now breaks into the following three cases

r1 − r2 /∈ Z
r1 = r2

0 6= r1 − r2 ∈ Z

11 / 33



Second solution: r1 − r2 /∈ Z
In this case, because of the assumption that r1 − r2 /∈ Z, it follows
that I(n+ r2) 6= 0 for any n ≥ 1.

Thus, as before, the second solution is given by

y2(x) =
∑
n≥0

an(r2)x
n+r2

Example

Consider the ODE x2y′′ − x
2y
′ + (1+x)

2 y = 0

Observe that x = 0 is a regular singular point.

I(r) = r(r − 1)− 1
2r +

1
2

= (2r(r − 1)− r + 1)/2

= (2r2 − 3r + 1)/2

= (r − 1)(2r − 1)/2

Roots of I(r) = 0 are r1 = 1 and r2 = 1/2
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Second solution: r1 − r2 /∈ Z

Example (continues . . . 2x2y′′ − xy′ + (1 + x)y = 0)

Their difference r1 − r2 = 1/2 is not an integer.

The equation defining an, for n ≥ 1, is

I(n+ r)an +
1

2
an−1 = 0

Thus,

an(r) = −
an−1(r)

(n+ r − 1)(2n+ 2r − 1)

Thus, an(r1) = an(1) = −
an−1

n(2n+ 1)

= (−1)n 1

n!((2n+ 1)(2n− 1) . . . 3
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Second solution: r1 − r2 /∈ Z

Example (continues . . . 2x2y′′ − xy′ + (1 + x)y = 0)

y1(x) = x

1 +
∑
n≥1

(−1)nxn

n!(2n+ 1)(2n− 1) . . . 3


an(r2) = −

an−1
n(2n− 1)

= (−1)n 1

n!(2n− 1)(2n− 3) . . . 1

y2(x) = x1/2

1 +
∑
n≥1

(−1)nxn

n!(2n− 1)(2n− 3) . . . 1


Since |an| are smaller that 1

n! , it is clear that both solutions
converge on (0,∞).
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Second solution: r1 = r2

Consider the differential operator

L := x2
d2

dx2
+ xb(x)

d

dx
+ c(x)

Consider the function of two variables

ψ(r, x) :=
∑
n≥0

an(r)x
n+r

Then one checks easily that

Lψ(r, x) =
∑
n≥0

E(n)xn+r

where

E(0) := I(r)a0, and for n ≥ 1

E(n) := I(n+ r)an(r) +

n−1∑
i=0

(i+ r)bn−iai(r) +

n−1∑
i=0

cn−iai(r)
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Second solution: r1 = r2

I(r) is the indicial equation, given by r(r − 1) + b0r + c0. The
roots are r1 ≥ r2.

Setting a0(r) = 1 and E(n) = 0 allows us to inductively define
functions an(r).

Note that each an(r) is a rational function in r, in fact, the
denominator of an(r) is

∏n
i=1 I(i+ r).

The functions an(r) are analytic at r1. They are analytic at r2 if
r1 − r2 /∈ Z.

In particular, if we put r = r1, then it gives a solution since

Lψ(r1, x) = I(r1)x
r1 = 0

Explicitly this solution is

y1(x) = xr1
∑
n≥0

an(r1)x
n
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Second solution: r1 = r2

If r1 − r2 /∈ Z then the second solution is given by

y2(x) = xr2
∑
n≥0

an(r2)x
n

Now let us consider the case when I has repeated roots

Since I has repeated roots r1 = r2, it follows that, for every n ≥ 1,
the polynomial

∏n
i=1 I(i+ r) does not vanish at r = r1

Consequently, it is clear that the an(r) are analytic in a small
neighborhood around r = r1 = r2.
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Second solution: r1 = r2

Now let us apply the differential operator d
dr on both sides of the

equation Lψ(r, x) = I(r)xr. Clearly the operators L and d
dr

commute with each other, and so we get

d

dr
Lψ(r, x) = L

d

dr
ψ(r, x)

= L
∑
n≥0

(
a′n(r)x

n+r + an(r)x
n+r log x

)
=

d

dr
I(r)xr

= I ′(r)xr + I(r)xr log x

Thus, if we plug in r = r1 = r2 in the above, then we get

L
(∑

n≥0
a′n(r2)x

n+r2 + an(r2)x
n+r2 log x

)
= 0
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Second solution: r1 = r2

Theorem (Second solution: r1 = r2)

A second solution to the differential equation is given by∑
n≥0

a′n(r2)x
n+r2 +

∑
n≥0

an(r2)x
n+r2 log x
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Second solution: r1 = r2

Example

Consider the ODE

x2y′′ + 3xy′ + (1− 2x)y = 0

This has a regular singularity at x = 0.

I(r) = r(r − 1) + 3r + 1

= r2 + 2r + 1

has a repeated roots −1,−1.

Let us find the Frobenius solution directly by putting

y = xr
∑
n≥0

an(r)x
n a0 = 1

y′ =
∑
n≥0

(n+ r)an(r)x
n+r−1

y′′ =

∞∑
n≥0

(n+ r)(n+ r − 1)an(r)x
n+r−2
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Second solution: r1 = r2

Example (continues . . .)

x2y(x, r)′′ + 3xy(x, r)′ + (1− 2x)y(x, r)

=

∞∑
n=0

[(n+ r)(n+ r − 1) + 3(n+ r) + 1] an(r)x
n+r

−
∞∑
n=0

2an(r)x
n+r+1

Recursion relations for n ≥ 1 are

an(r) =
2an−1(r)

(n+ r)(n+ r − 1) + 3(n+ r) + 1

=
2an−1(r)

(n+ r + 1)2

=
2n

[(n+ r + 1)(n+ r) . . . (r + 2)]2
a0
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Second solution: r1 = r2

Example (continues . . .)

Setting r = −1 (and a0 = 1) yields the fractional power series
solution

y1(x) =
1

x

∑
n≥0

2n

(n!)2
xn

The power series converges on (0,∞).

The second solution is

y2(x) = y1(x) log x+ x−1
∑
n≥1

a′n(−1)xn

where

an(r) =
2n

[(n+ r + 1)(n+ r) . . . (r + 2)]2

a′n(r) =
−2.2n [(n+ r + 1)(n+ r) . . . (r + 2)]′

[(n+ r + 1)(n+ r) . . . (r + 2)]3
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Second solution: r1 = r2

Example (continued)

= −2an(r)
(

1

n+ r + 1
+

1

n+ r
+ · · ·+ 1

r + 2

)
Putting r = −1, we get

a′n(−1) = −
2n+1Hn

(n!)2

where

Hn = 1 +
1

2
+ · · ·+ 1

n
(These are the partial sums of the harmonic series.)

So the second solution is

y2(x) = y1(x)log x−
1

x

∑
n≥1

2n+1Hn

(n!)2
xn

It is clear that this series converges on (0,∞).
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Second solution: 0 6= r1 − r2 ∈ Z

Define
N := r1 − r2

Note that each an(r) is a rational function in r, in fact, the
denominator is exactly

∏n
i=1 I(i+ r).

The polynomial
∏n

i=1 I(i+ r) evaluated at r2 vanishes iff n ≥ N .
For n ≥ N it vanishes to order exactly 1.

Thus, if we define

An(r) := an(r)(r − r2)

then it is clear that for every n ≥ 0, the function An(r) is analytic
in a neighborhood of r2.
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Second solution: 0 6= r1 − r2 ∈ Z

In particular, An(r2) and A′n(r2) are well defined real numbers.

Multiplying the equation Lψ(r, x) = I(r)xr with r − r2 we get

(r − r2)Lψ(r, x) = L(r − r2)ψ(r, x) = (r − r2)I(r)xr

Note that
(r − r2)ψ(r, x) =

∑
n≥0

An(r)x
n+r
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Second solution: 0 6= r1 − r2 ∈ Z
Now let us apply the differential operator d

dr on both sides of the
equation L(r − r2)ψ(r, x) = (r − r2)I(r)xr to get

d

dr
L(r − r2)ψ(r, x) = L

d

dr
(r − r2)ψ(r, x)

=
d

dr
(r − r2)I(r)xr

= I(r)xr + (r − r2)I ′(r)xr + (r − r2)I(r)xr log x

Thus we get

L
d

dr

(∑
n≥0

An(r)x
n+r
)
= L

d

dr

(∑
n≥0

An(r)x
n+r
)

= L
(∑

n≥0
A′n(r)x

n+r +An(r)x
n+r log x

)
= I(r)xr + (r − r2)I ′(r)xr+

(r − r2)I(r)xr log x
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Second solution: 0 6= r1 − r2 ∈ Z
If we set r = r2 into the equation

L
(∑

n≥0
A′n(r)x

n+r +An(r)x
n+r log x

)
= I(r)xr + (r − r2)I ′(r)xr+

(r − r2)I(r)xr log x

we get the second solution

L
(∑

n≥0
A′n(r2)x

n+r2 +An(r2)x
n+r2 log x

)
= 0

Theorem (Second solution: 0 6= r1 − r2 ∈ Z)

A second solution to the differential equation is given by∑
n≥0

A′n(r2)x
n+r2 +

∑
n≥0

An(r2)x
n+r2 log x
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Second solution: 0 6= r1 − r2 ∈ Z

Example

Consider the ODE xy′′ − (4 + x)y′ + 2y = 0 (∗)
Multiplying (∗) with x, we get x = 0 is a regular singular point.

I(r) = r(r − 1)− 4r + 0 = r(r − 5) = 0

with the roots differing by a positive integer.

Put y(x, r) = xr
∞∑
n=0

an(r)x
n, a0(r) = 1, into the ODE to get

x
∑
n≥0

(n+ r)(n+ r − 1)an(r)x
n+r−2

−(4 + x)
∑
n≥0

(n+ r)an(r)x
n+r−1 + 2

∑
n≥0

an(r)x
n+r = 0

the coefficient of xn+r−1 for n ≥ 1 gives
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Second solution: 0 6= r1 − r2 ∈ Z

Example (continues . . .)

(n+ r)(n+ r − 1)an(r)− 4(n+ r)an(r)− (n+ r − 1)an−1(r)
+2an−1(r) = 0

For n ≥ 1,
(n+ r)(n+ r − 5)an = (n+ r − 3)an−1

an(r) =
(n+ r − 3)

(n+ r)(n+ r − 5)
an−1

=
(n+ r − 3) . . . (r − 2)

(n+ r) . . . (1 + r)(n+ r − 5) . . . (r − 4)
a0

For the first solution, set r = r1 = 5 (and a0 = 1), we get

an(5) =
(n+ 2) . . . (3)

(n+ 5) . . . 6(n) . . . 1

=
(n+ 2)!/2

(n!)(n+ 5)!/5!
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Second solution: 0 6= r1 − r2 ∈ Z

Example (continues . . .)

=
60

n!(n+ 5)(n+ 4)(n+ 3)
Thus

y1(x) =
∑
n≥0

60

n!(n+ 5)(n+ 4)(n+ 3)
xn+5

Recall N = r1 − r2 = 5− 0 is integer, so the second solution is

y2(x) =
∑
n≥0

A′n(r2)x
n+r2 +

∑
n≥0

An(r2)x
n+r2 log x

where, for n ≥ 0

An(r) = (r − r2)an(r)
Since r2 = 0, the above becomes

An(r) = ran(r)
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Second solution: 0 6= r1 − r2 ∈ Z

Example

In this example, we can easily check that none of the an(r) have a
singularity at r = 0.

Thus, An(0) = 0 for all n ≥ 0; and A′n(0) = an(0) for all n ≥ 0.

a1(0) =
1
2 ; a2(0) =

1
12 ;

It is easily checked that for n ≥ 3

an(r) =
(n+ r − 3)(n+ r − 4)

n!12

Thus, a3(0) = a4(0) = 0.
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Second solution: 0 6= r1 − r2 ∈ Z

Example

Therefore a second solution is

y2(x) = 1 +
x

2
+
x2

12
+
∑
n≥5

(n− 3)(n− 4)

n!12
xn

= 1 +
x

2
+
x2

12
+
∑
k≥0

1

k!(k + 5)(k + 4)(k + 3)12
xk+5

Since ∑
k≥0

1

k!(k + 5)(k + 4)(k + 3)12
xk+5

is a multiple of y1(x),
we get that a second solution is

y2(x) = 1 +
x

2
+
x2

12
.
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Summary

While solving an ODE around a regular singular point by the
Frobenius method, the cases encountered are

roots not differing by an integer

repeated roots

roots differing by a positive integer

The larger root always yields a fractional power series solution.

In the first case, the smaller root also yields a fractional power
series solution.

In the second and third cases, the second solution may involve a
log term.
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