MA-207 Differential Equations II

Ronnie Sebastian

Department of Mathematics
Indian Institute of Technology Bombay
Powai, Mumbai - 76
September 7, 2021

Let us write down some classical ODE's.

- (Euler equation) $\alpha x^{2} y^{\prime \prime}+\beta x y^{\prime}+\gamma y=0$
- (Bessel equation) $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0$. We will next look at this case more closely.
- (Laguerre equation) $\quad x y^{\prime \prime}+(1-x) y^{\prime}+\lambda y=0$

Gamma function

Define for all $p \geq 1$, the Gamma function

$$
\Gamma(p):=\int_{0}^{\infty} t^{p-1} e^{-t} d t
$$

There is a problem if $p<1$, since t^{p-1} is unbounded near 0 .
For $p>1$, there is no problem because e^{-t} is rapidly decreasing.

$$
\Gamma(1)=\int_{0}^{\infty} e^{-t} d t=1
$$

For any real number $p \geq 1$,

$$
\Gamma(p+1)=\lim _{x \rightarrow \infty} \int_{0}^{x} t^{p} e^{-t} d t=p\left(\lim _{x \rightarrow \infty} \int_{0}^{x} t^{p-1} e^{-t} d t\right)=p \Gamma(p)
$$

Gamma function

$$
\begin{equation*}
\Gamma(p+1)=p \Gamma(p) \Longrightarrow \Gamma(p)=\frac{\Gamma(p+1)}{p} \tag{*}
\end{equation*}
$$

We use (*) to extend the gamma function to all real numbers except non-positive integers $0,-1,-2, \ldots$
Note $0<p<1 \Longrightarrow 1<p+1<2$, hence $\Gamma(p+1)$ is defined.
We use ($*$) to define $\Gamma(p)$.
Next, $-1<p<0 \Longrightarrow 0<p+1<1$. Since $\Gamma(p+1)$ is defined above; use (*) to define $\Gamma(p)$. Proceed like this
For example, $\quad \Gamma\left(-\frac{5}{2}\right)=\frac{\Gamma\left(-\frac{3}{2}\right)}{-\frac{5}{2}}=\frac{\Gamma\left(-\frac{1}{2}\right)}{\left(-\frac{5}{2}\right)\left(-\frac{3}{2}\right)}=\frac{\Gamma\left(\frac{1}{2}\right)(=\sqrt{\pi})}{\left(-\frac{5}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{1}{2}\right)}$

Gamma function

Further

$$
\lim _{p \rightarrow 0} \Gamma(p)=\lim _{p \rightarrow 0} \frac{\Gamma(p+1)}{p}= \pm \infty
$$

according as $p \rightarrow 0$ from right or left.
The graph of Gamma function is shown below.

Gamma Iunction

Gamma function

Though the gamma function is now defined for all real numbers (except the non positive integers), the integral representation is valid only for $p>0$.
It is useful to rewrite

$$
\frac{1}{\Gamma(p)}=\frac{p}{\Gamma(p+1)}
$$

This holds for all p if we impose the natural condition that the reciprocal of Γ evaluated at a non positive integer is 0 .

$$
\begin{aligned}
\Gamma(1 / 2) & =\int_{0}^{\infty} t^{-1 / 2} e^{-t} d t \\
& =2 \int_{0}^{\infty} e^{-s^{2}} d s \quad \text { (use the substitution } t=s^{2} \text {) } \\
& =\sqrt{\pi}
\end{aligned}
$$

Gamma function

By translating,

$$
\begin{aligned}
& \Gamma(1 / 2) \quad=\sqrt{\pi} \quad \approx 1.772 \\
& \Gamma(-1 / 2)=\frac{\Gamma(1 / 2)}{-1 / 2}=-2 \sqrt{\pi} \approx-3.545 \\
& \Gamma(-3 / 2)=\frac{\Gamma(-1 / 2)}{-3 / 2}=\frac{4}{3} \sqrt{\pi} \quad \approx 2.363 \\
& \Gamma(3 / 2) \quad=\frac{1}{2} \Gamma(1 / 2) \quad=\frac{1}{2} \sqrt{\pi} \quad \approx 0.886 \\
& \Gamma(5 / 2)=\frac{3}{2} \Gamma(3 / 2) \quad=\frac{3}{4} \sqrt{\pi} \quad \approx 1.329 \\
& \Gamma(7 / 2)=\frac{5}{2} \Gamma(5 / 2)=\frac{15}{8} \sqrt{\pi} \quad \approx 3.323
\end{aligned}
$$

Bessel equation is the second-order linear ODE

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0 \quad p \geq 0 \tag{*}
\end{equation*}
$$

Its solutions are called Bessel functions.
Bessel functions have applications in physics and engineering.
Since $x=0$ is a regular singular point of $(*)$, we get a Frobenius solution, called Bessel function of first kind.
The second linearly independent solution of $(*)$ is called Bessel function of second kind.
For Frobenius solution, put $y(x)=x^{r} \sum_{n=0}^{\infty} a_{n}(r) x^{n} \quad a_{0}=1$.

Bessel equation: First solution

The indicial equation, that is, coefficient of x^{r}, for Bessel equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0 \quad$ is

$$
I(r)=r(r-1)+r-p^{2}=r^{2}-p^{2}=0
$$

The roots are $r_{1}=p$ and $r_{2}=-p$.
For recurrence relations, equating coefficient of x^{n+r} to 0 (for $n \geq 1$) we get

$$
\begin{aligned}
& {\left[(r+n)^{2}-p^{2}\right] a_{n}(r)+a_{n-2}(r)=0 \quad n \geq 2} \\
& \left((r+1)^{2}-p^{2}\right) a_{1}(r)=0 \Longrightarrow a_{1}(r)=0
\end{aligned}
$$

So all odd terms $a_{2 n+1}(r)=0$.

$$
\begin{aligned}
a_{2 n}(r) & =\frac{-1}{(r+2 n)^{2}-p^{2}} a_{2 n-2} \\
& =\frac{(-1)^{n}}{\left((r+2)^{2}-p^{2}\right)\left((r+4)^{2}-p^{2}\right) \ldots\left((r+2 n)^{2}-p^{2}\right)}
\end{aligned}
$$

Bessel equation: First solution

For Frobenius solution, set $r=p$ the larger root.

$$
\begin{aligned}
a_{2 n}(p) & =\frac{(-1)^{n}}{\left((p+2)^{2}-p^{2}\right)\left((p+4)^{2}-p^{2}\right) \ldots\left((p+2 n)^{2}-p^{2}\right)} \\
& =\frac{(-1)^{n}}{(2(2 p+2))(4(2 p+4)) \ldots(2 n(2 p+2 n))} \\
& =\frac{(-1)^{n}}{2^{2 n} n!(1+p) \ldots(n+p)}
\end{aligned}
$$

The solution

$$
y_{1}(x)=x^{p} \sum_{n \geq 0} \frac{(-1)^{n}}{2^{2 n} n!(1+p) \ldots(n+p)} x^{2 n}
$$

converges on $(0, \infty)$.
Multiply $y_{1}(x)$ by $\frac{1}{2^{p} \Gamma(1+p)}$ to get to the convenient form

$$
J_{p}(x):=\left(\frac{x}{2}\right)^{p} \sum_{n \geq 0} \frac{(-1)^{n}}{n!\Gamma(n+p+1)}\left(\frac{x}{2}\right)^{2 n} \quad x>0 .
$$

Bessel equation: First solution

This is called the Bessel function of first kind of order p.

$$
J_{p}(x):=\sum_{n \geq 0} \frac{(-1)^{n}}{n!\Gamma(n+p+1)}\left(\frac{x}{2}\right)^{2 n+p} \quad x>0
$$

The Bessel function of order 0 is

$$
\begin{aligned}
J_{0}(x) & =\sum_{n \geq 0} \frac{(-1)^{n}}{n!n!}\left(\frac{x}{2}\right)^{2 n} \\
& =1-\left(\frac{x}{2}\right)^{2}+\frac{1}{2!2!}\left(\frac{x}{2}\right)^{4}-\frac{1}{3!3!}\left(\frac{x}{2}\right)^{6}+\ldots
\end{aligned}
$$

The Bessel function of order 1 is

$$
\begin{aligned}
J_{1}(x) & =\sum_{n \geq 0} \frac{(-1)^{n}}{n!(n+1)!}\left(\frac{x}{2}\right)^{2 n+1} \\
& =\frac{x}{2}-\frac{1}{1!2!}\left(\frac{x}{2}\right)^{3}+\frac{1}{2!3!}\left(\frac{x}{2}\right)^{5}+\ldots
\end{aligned}
$$

Bessel equation: First solution

Both $J_{0}(x)$ and $J_{1}(x)$ have a damped oscillatory behavior having an infinite number of zeros.

Further, they satisfy derivative identities similar to $\cos x$ and $\sin x$.

$$
J_{0}^{\prime}(x)=-J_{1}(x) \quad\left[x J_{1}(x)\right]^{\prime}=x J_{0}(x)
$$

Second independent solution of Bessel equation

Recall $r_{1}=p$ and $r_{2}=-p$ are roots of indicial equation.
So that $r_{1}-r_{2}=2 p$.
The analysis to get a second independent solution of the Bessel equation splits into the following cases

- $2 p$ is not an integer
- $2 p$ is an odd positive integer
- $2 p$ is an even positive integer
- $p=0$

Second independent solution of Bessel equation

Case 1: $2 p$ is not an integer
Solving the recursion

$$
\left[(r+n)^{2}-p^{2}\right] a_{n}(r)+a_{n-2}(r)=0 \quad n \geq 2 \quad a_{1}(r)=0
$$

for $r=-p$, we obtain

$$
y_{2}(x)=x^{-p} \sum_{n \geq 0} \frac{(-1)^{n}}{2^{2 n} n!(1-p) \ldots(n-p)} x^{2 n}
$$

Multiplying by $\frac{1}{2^{-p} \Gamma(1-p)}$ (Caution: This should be a nonzero real number!)

$$
J_{-p}(x):=\left(\frac{x}{2}\right)^{-p} \sum_{n \geq 0} \frac{(-1)^{n}}{n!\Gamma(n-p+1)}\left(\frac{x}{2}\right)^{2 n} \quad x>0
$$

This is a second solution of the Bessel equation linearly independent of $J_{p}(x)$.
It is unbounded near $x=0$.

Second independent solution of Bessel equation

Case 1: $2 p$ is not an integer

Recall that the second solution is given by

$$
y_{2}(x)=\sum_{n \geq 0} A_{n}^{\prime}(-p) x^{n-p}+\sum_{n \geq 0} A_{n}(-p) x^{n-p} \log x
$$

where

$$
A_{n}(r):=(r+p) a_{n}(r)
$$

Second independent solution of Bessel equation

Case 2(a): $2 p$ is an odd positive integer
$2 p$ is an odd positive integer, that is, $p=\frac{2 l+1}{2}$ for some $l>0$.
We have seen that $A_{2 n+1}(r)=(r+p) a_{2 n+1}(r)=0$

$$
a_{2 n}(r)=\frac{(-1)^{n}}{\prod_{i=1}^{n}\left((r+2 i)^{2}-p^{2}\right)} .
$$

Second independent solution of Bessel equation

Case 2(a): $2 p$ is an odd positive integer
Since the polynomial $\prod_{i=1}^{n}\left((r+2 i)^{2}-p^{2}\right)$ evaluated at $r=-p$, is $\prod_{i=1}^{n} 4 i(i-p) \neq 0$,
the function $a_{2 n}(r)$ is analytic in a neighborhood of $-p$.
Thus, $A_{2 n}(-p)=0$ and $A_{2 n}^{\prime}(-p)=a_{2 n}(-p)$.
Thus, in this case we obtain that the second solution is

$$
y_{2}(x)=\sum_{n \geq 0} \frac{(-1)^{n}}{2^{2 n} n!(1-p) \ldots(n-p)} x^{2 n-p}
$$

Multiplying by $\frac{1}{2^{-p} \Gamma(1-p)}$ (Caution: This should be a nonzero real number!)

$$
J_{-p}(x):=\left(\frac{x}{2}\right)^{-p} \sum_{n \geq 0} \frac{(-1)^{n}}{n!\Gamma(n-p+1)}\left(\frac{x}{2}\right)^{2 n} \quad x>0
$$

Second independent solution of Bessel equation

Case 2(b): $2 p$ is an even positive integer
In this case p is a positive integer. As before, $A_{2 n+1}(r)=0$.
The polynomial $\prod_{i=1}^{n}\left((r+2 i)^{2}-p^{2}\right)$ evaluated at $r=-p$, is
$\prod_{i=1}^{n} 4 i(i-p)$,
Thus, if $n<p$, then $a_{2 n}(r)$ is analytic in a neighborhood of $-p$.
Thus, if $n<p$, then $A_{2 n}(-p)=0$ and

$$
A_{2 n}^{\prime}(-p)=a_{2 n}(-p)=\frac{(-1)^{n}}{2^{2 n} n!(1-p) \ldots(n-p)}=\frac{1}{2^{2 n} n!(p-n)!}
$$

If $n \geq p$, then

$$
\begin{aligned}
A_{2 n}(-p) & =\frac{2(-1)^{n}}{2^{2 n} n!(1-p) \ldots(-1) \cdot 1 \cdot 2 \cdots(n-p)} \\
& =\frac{-2(-1)^{n-p}}{2^{2 n} n!(p-1)!(n-p)!}
\end{aligned}
$$

Define

$$
\begin{equation*}
f(r):=\left(\prod_{i=1}^{p-1}\left((r+2 i)^{2}-p^{2}\right)\right)(r+3 p)\left(\prod_{i=p+1}^{n}\left((r+2 i)^{2}-p^{2}\right)\right) \tag{*}
\end{equation*}
$$

Second independent solution of Bessel equation

Case 2(b): $2 p$ is an even positive integer

Then

$$
A_{2 n}(r) f(r)=(-1)^{n}
$$

Differentiating the above and setting $r=-p$ we get

$$
A_{2 n}^{\prime}(-p) f(-p)+A_{2 n}(-p) f^{\prime}(-p)=0
$$

Taking log and differentiating (*) we get

$$
\begin{aligned}
f^{\prime}(-p) & =f(-p)\left(\frac{1}{2 p}+\sum_{i \in\{1,2, \ldots, n\} \backslash p} \frac{1}{2 i}+\frac{1}{2(i-p)}\right) \\
& =f(-p)\left(\frac{H_{n}}{2}-\frac{H_{p-1}}{2}+\frac{H_{n-p}}{2}\right)
\end{aligned}
$$

where

$$
H_{0}=0, \quad H_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}
$$

Second independent solution of Bessel equation

Case 2(b): $2 p$ is an even positive integer

Thus,

$$
\begin{aligned}
A_{2 n}^{\prime}(-p) & =-A_{2 n}(-p)\left(\frac{H_{n}}{2}-\frac{H_{p-1}}{2}+\frac{H_{n-p}}{2}\right) \\
& =\frac{2(-1)^{n-p}}{2^{2 n} n!(p-1)!(n-p)!}\left(\frac{H_{n}}{2}-\frac{H_{p-1}}{2}+\frac{H_{n-p}}{2}\right)
\end{aligned}
$$

Thus, we get

$$
\begin{aligned}
& y_{2}(x)=\sum_{n=0}^{p-1} \frac{1}{2^{2 n} n!(p-n)!} x^{2 n-p}+ \\
& \sum_{n \geq p} \frac{(-1)^{n-p}}{2^{2 n} n!(p-1)!(n-p)!}\left(H_{n}-H_{p-1}+H_{n-p}\right) x^{2 n-p}+ \\
& \quad-\sum_{n \geq p} \frac{2(-1)^{n-p}}{2^{2 n} n!(p-1)!(n-p)!} x^{2 n-p} \log x
\end{aligned}
$$

is a second solution.

Second independent solution of Bessel equation

Case 3: $p=0$ (Repeated root case)
The indicial equation has a repeated root $r_{1}=r_{2}=0$,

$$
a_{2 n}(r)=\frac{(-1)^{n}}{(r+2)^{2}(r+4)^{2} \ldots(r+2 n)^{2}} \quad a_{2 n+1}(r)=0
$$

Differentiating $a_{2 n}(r)$ with respect to r, we get

$$
\begin{gathered}
a_{2 n}(r)^{\prime}=-2 a_{2 n}(r)\left(\frac{1}{r+2}+\frac{1}{r+4}+\cdots+\frac{1}{r+2 n}\right) \\
a_{2 n}^{\prime}(0)=\frac{(-1)^{n-1} H_{n}}{2^{2 n}(n!)^{2}}, \quad H_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}
\end{gathered}
$$

By theorem stated earlier, the second solution is

$$
y_{2}(x)=J_{0}(x) \ln x-\sum_{n \geq 1} \frac{(-1)^{n} H_{n}}{2^{2 n}(n!)^{2}} x^{2 n} \quad x>0
$$

where $y_{1}(x)=J_{0}(x)=\sum_{n \geq 0} \frac{(-1)^{n}}{2^{2 n}(n!)^{2}} x^{2 n}$ is Frobenius solution.

For real p, define

$$
J_{p}(x):=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(p+n+1)}\left(\frac{x}{2}\right)^{2 n+p}
$$

(1) The above is a well defined power series once we know that the Gamma function never vanishes.
(2) If $p \notin\{0,1,2, \ldots\} J_{p}(x)$ and $J_{-p}(x)$ are the two independent solutions of the Bessel equation.
(3) If $p \in\{0,1,2, \ldots\}$ then $J_{-p}(x)=(-1)^{p} J_{p}(x)$. Thus, in this case the second solution is not $J_{-p}(x)$.

Bessel identities

(1) $\frac{d}{d x}\left[x^{p} J_{p}(x)\right]=x^{p} J_{p-1}(x)$
(2) $\frac{d}{d x}\left[x^{-p} J_{p}(x)\right]=-x^{-p} J_{p+1}(x)$

The above two can be obtained by formally differentiating the power series.
(3) $J_{p}^{\prime}(x)+\frac{p}{x} J_{p}(x)=J_{p-1}(x)$
(4) $J_{p}^{\prime}(x)-\frac{p}{x} J_{p}(x)=-J_{p+1}(x)$

These follow from (1) and (2). Expand LHS and divide by $x^{ \pm p}$;
(6) $J_{p-1}(x)-J_{p+1}(x)=2 J_{p}^{\prime}(x)$
(0) $J_{p-1}(x)+J_{p+1}(x)=\frac{2 p}{x} J_{p}(x)$

Add and subtract (3) and (4) to get (5) and (6).

Consequences of Bessel identities

Problem: Let $p>0$. Show that between any two consecutive positive zeros of $J_{p}(x)$, there exists precisely one zero of $J_{p-1}(x)$ and precisely one zero of $J_{p+1}(x)$
Solution: Let $0<c<d$ be two consecutive zeros of $J_{p}(x)$.
So $x^{p} J_{p}(x)$ vanishes at c and d. By Rolle's theorem,

$$
\left[x^{p} J_{p}(x)\right]^{\prime}(b)=0 \quad \text { for some } b \in(c, d)
$$

As

$$
\left[x^{p} J_{p}(x)\right]^{\prime}=x^{p} J_{p-1}(x)
$$

we get $J_{p-1}(b)=0$.
Repeating the above argument with the identity $\left[x^{-p} J_{p}(x)\right]^{\prime}=-x^{-p} J_{p+1}(x)$, we get that $J_{p+1}(x)$ has a root in (c, d).

Consequences of Bessel identities

Thus, we have proved that both $J_{p-1}(x)$ and $J_{p+1}(x)$ have at least one root in (c, d).
If $J_{p-1}(x)$ had two roots in (c, d), then from above, we conclude that $J_{p}(x)$ would have a root in (c, d). However, this contradicts the assumption that c and d are consecutive roots. Thus, J_{p-1} has exactly one root in (c, d).
Similarly, $J_{p+1}(x)$ has exactly one root in (c, d).
Problem: Find a and c so that $J_{2}(x)-J_{0}(x)=a J_{c}^{\prime \prime}(x)$.
Solution: Using $J_{p-1}(x)-J_{p+1}(x)=2 J_{p}^{\prime}(x)$ for $p=1$, we get $J_{0}(x)-J_{2}(x)=2 J_{1}^{\prime}(x)$
Now using $\left[x^{-p} J_{p}(x)\right]^{\prime}=-x^{-p} J_{p+1}$ for $p=0$, we get $J_{0}^{\prime}(x)=-J_{1}(x)$.
Therefore, $J_{2}(x)-J_{0}(x)=-2 J_{1}^{\prime}(x)=2 J_{0}^{\prime \prime}(x)$.
Hence $a=2$ and $c=0$.

Consequences of Bessel identities

We can use

$$
\begin{aligned}
& J_{p-1}(x)+J_{p+1}(x)=\frac{2 p}{x} J_{p}(x) \\
& J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x \quad \quad J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cos x
\end{aligned}
$$

to see that $J_{p}(x)$ are elementary functions for $p \in \mathbb{Z}+\frac{1}{2}$.
For example,

$$
\text { - } J_{3 / 2}(x)=\frac{1}{x} J_{1 / 2}(x)-J_{-1 / 2}(x)
$$

$$
=\sqrt{\frac{2}{\pi x}}\left(\frac{\sin x}{x}-\cos x\right)
$$

- $J_{-3 / 2}(x)=-\frac{1}{x} J_{-1 / 2}(x)-J_{1 / 2}(x)$

$$
=-\sqrt{\frac{2}{\pi x}}\left(\frac{\cos x}{x}+\sin x\right)
$$

Consequences of Bessel identities

- $J_{\frac{5}{2}}(x)=\frac{3}{x} J_{\frac{3}{2}}(x)-J_{\frac{1}{2}}(x)$

$$
=\sqrt{\frac{2}{\pi x}}\left(\frac{3 \sin x}{x^{2}}-\frac{3 \cos x}{x}-\sin x\right)
$$

These functions are called spherical Bessel functions as they arise in solving wave equations in spherical coordinates.

An interesting theorem

An algebraic function is any function $y=f(x)$ that satisfies an equation of the form

$$
P_{n}(x) y^{n}+P_{n-1}(x) y^{n-1}+\ldots+P_{1}(x) y+P_{0}(x)=0
$$

for some n, where each $P_{i}(x)$ is a polynomial.
Take algebraic functions, trigonometric functions (example $\sin x, \cos x, \tan x$), inverse trigonometric functions (example $\sin ^{-1} x, \cos ^{-1} x, \tan ^{-1} x$), exponential and logarithmic functions, (example $e^{x^{2}}, \log \left(x^{2}+x+1\right)$) and all other functions that can be constructed from these functions by adding, subtracting, multiplying, dividing and composition of functions. Any function which can be constructed like this will be called an elementary function. Thus

$$
y=\tan \left[\frac{x e^{1 / x^{2}}+\tan ^{-1}\left(1+x^{2}\right)+\sqrt{x^{2}+3}}{\sin x \cos 2 x-\sqrt{\log x}+x^{3 / 2}}\right]^{1 / 3}
$$

is an elementary function.

An interesting theorem

Theorem (Liouville)

$J_{m+\frac{1}{2}}(x)$'s are the only Bessel functions which are elementary functions.

Qualitative properties of solutions

It is rarely possible to solve 2nd order linear ODE

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

in terms of familiar elementary functions.
Then how do we understand the nature and properties of solutions.

It is surprising that we can obtain quite a bit of information about the solution from the ODE itself.

Qualitative properties of solutions

Theorem (Sturm separation theorem)

If $y_{1}(x)$ and $y_{2}(x)$ are linearly independent solutions of

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

P, Q continuous on (a, b). Then
(1) $y_{1}(x)$ and $y_{2}(x)$ have no common zero in (a, b).
(2) Between any two successive zeros of $y_{1}(x)$, there is exactly one zero of $y_{2}(x)$ and vice versa.

Proof of (1). Consider the Wronskian

$$
W(x):=W\left(y_{1}, y_{2}\right)=y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x)
$$

It satisfies the differential equation $W^{\prime}=-P(x) W$ and so is given by

$$
W(x)=C \exp \left(\int_{a_{0}}^{x}-P(t) d t\right) \quad a_{0} \in(a, b)
$$

Qualitative properties of solutions

In particular, since y_{1} and y_{2} are linearly independent, the Wronskian is nonzero and so it never vanishes. This proves (1).

Proof of (2). Let x_{1} and x_{2} be successive zeros of $y_{1}(x)$.
First let us show y_{2} has a zero in $\left(x_{1}, x_{2}\right)$.
The Wronskian $W(x)$ has the same sign in the interval (a, b) as it never vanishes. Thus, $W\left(x_{1}\right)$ and $W\left(x_{2}\right)$ have the same sign.
$0 \neq W\left(x_{1}\right)=-y_{1}^{\prime}\left(x_{1}\right) y_{2}\left(x_{1}\right)$
$0 \neq W\left(x_{2}\right)=-y_{1}^{\prime}\left(x_{2}\right) y_{2}\left(x_{2}\right)$

We conclude that $y_{1}^{\prime}\left(x_{1}\right)$ and $y_{1}^{\prime}\left(x_{2}\right)$ are nonzero.
It follows that $y_{1}^{\prime}\left(x_{1}\right)$ and $y_{1}^{\prime}\left(x_{2}\right)$ have opposite signs since x_{1} and x_{2} are consecutive zeros of y_{1}.

It follows that $y_{2}\left(x_{1}\right)$ and $y_{2}\left(x_{2}\right)$ have opposite signs. Thus, $y_{2}(x)$ has a zero in $\left(x_{1}, x_{2}\right)$.

Qualitative properties of solutions

If $y_{2}(x)$ had two zeros in the interval $x_{1}<\alpha<\beta<x_{2}$, then by the same reasoning, y_{1} will have a zero in (α, β), which contradicts the assumption that x_{1} and x_{2} are successive zeros of y_{1}. This completes the proof of the theorem.

As a consequence, if y_{1} and y_{2} are linearly independent solution of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0, P, Q$ continuous on (a, b) then the number of zeros of y_{1} and y_{2} on (a, b) differ by at most 1 .

In particular, either both have finite number of zeros or both have infinite number of zeros in (a, b).

Qualitative properties of solutions

For further discussion, we need that any ODE in the "standard" form $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ can be written in the "normal" form $u^{\prime \prime}+q(x) u=0$.
Define $v(x):=\exp \left(\int_{a_{0}}^{x}-\frac{1}{2} P(t) d t\right)$ and set $u(x)=\frac{y(x)}{v(x)}$.
One easily checks that $u(x)$ satisfies the differential equation

$$
u^{\prime \prime}+q(x) u=0 \quad q(x):=Q(x)-\frac{1}{4} P(x)^{2}-\frac{1}{2} P^{\prime}(x)
$$

It is clear that the zeros of u are the same as those of y.
Also note that we need $P(x)$ to be once differentiable.

Qualitative properties of solutions

Theorem

Let $q(x)$ be continuous on the interval (α, β). Let $u(x)$ be a non-trivial solution of $u^{\prime \prime}+q(x) u=0$ on finite interval $[a, b] \subset(\alpha, \beta)$. Then $u(x)$ has at most finite number of zeros in $[a, b]$.
Hence if $u(x)$ has infinitely many zeros on $(0, \infty)$, then the set of zeros of $u(x)$ are not bounded.

Proof. Assume $u(x)$ has infinitely many zeros in $[a, b]$. Then $\exists x_{0} \in[a, b]$ and a sequence of zeros $x_{n} \neq x_{0}$ such that $x_{n} \rightarrow x_{0}$ as $n \rightarrow \infty$.
$u\left(x_{0}\right)=\lim _{x_{n} \rightarrow x_{0}} u\left(x_{n}\right)=0(u$ is continuous) and

$$
u^{\prime}\left(x_{0}\right)=\lim _{x_{n} \rightarrow x_{0}} \frac{u\left(x_{n}\right)-u\left(x_{0}\right)}{x_{n}-x_{0}}=0 .
$$

Since $u\left(x_{0}\right)$ and $u^{\prime}\left(x_{0}\right)$ are both 0 , it follows that the Wronskian at x_{0} is 0 . But this is a contradiction as the Wronskian at x_{0} is nonzero.

Qualitative properties of solutions

Theorem

Let $u(x)$ be a non-trivial solution of $u^{\prime \prime}+q(x) u=0$. If $q(x)<0$ in (a, b) and continuous then $u(x)$ has atmost one zero in (a, b).

Proof. Assume $u\left(x_{0}\right)=0$. Then $u^{\prime}\left(x_{0}\right) \neq 0$, since Wronskian $W\left(x_{0}\right) \neq 0$.

Assume x_{1} is next zero of $u(x)$ after x_{0}.
If necessary, multiply by -1 and assume that $u^{\prime}\left(x_{0}\right)>0$.
Then $u(x)>0$ on $\left(x_{0}, x_{1}\right)$.
Since $u^{\prime \prime}(x)=-q(x) u(x)>0$ on $\left(x_{0}, x_{1}\right), u^{\prime}(x)$ is an increasing function on (x_{0}, x_{1}).

By Rolle's theorem u^{\prime} has a zero in $\left(x_{0}, x_{1}\right)$.
But this is not possible as u^{\prime} is increasing on $\left(x_{0}, x_{1}\right)$.

Qualitative properties of solutions

Theorem

Let $u(x)$ be a non-trivial solution of $u^{\prime \prime}+q(x) u=0$ Let $q(x)$ be continuous and $q(x)>0$ for all $x>x_{0}>0$.
If $\int_{x_{0}}^{\infty} q(x) d x=\infty$,
then $u(x)$ has infinitely many zeros on $(0, \infty)$.
Proof. Assume $u(x)$ has only finitely many zeros on $(0, \infty)$.
Then there is $x_{1}>x_{0}$ such that $u(x) \neq 0$ for $x \geq x_{1}$. Assume $u(x)>0$ for $x \geq x_{1}$.
Then $u^{\prime \prime}(x)=-q(x) u(x)<0$ for $x \geq x_{1}$. Hence $u^{\prime}(x)$ is decreasing for $x \geq x_{1}$.
If we show that $u^{\prime}\left(x_{2}\right)<0$ for some $x_{2}>x_{1}$, then we get for $x>x_{2}$

$$
\begin{aligned}
u(x) & =\int_{x_{2}}^{x} u^{\prime}(t) d t+u\left(x_{2}\right) \leq \int_{x_{2}}^{x} u^{\prime}\left(x_{2}\right) d t+u\left(x_{2}\right) \\
& \leq u^{\prime}\left(x_{2}\right)\left(x-x_{2}\right)+u\left(x_{2}\right)
\end{aligned}
$$

Qualitative properties of solutions

Thus if x is sufficiently large, then $u(x)<0$, a contradiction.
To show that $u^{\prime}(x)<0$ for some $x>x_{1}$. Put

$$
\begin{gathered}
v(x)=-\frac{u^{\prime}(x)}{u(x)}, \quad \text { for } x \geq x_{1} \\
v^{\prime}=\frac{-u^{\prime \prime} u+u^{\prime 2}}{u^{2}}=\frac{q(x) u^{2}+u^{\prime 2}}{u^{2}}=q(x)+v(x)^{2}
\end{gathered}
$$

Integrating we get

$$
v(x)-v\left(x_{1}\right)=\int_{x_{1}}^{x} q(x) d x+\int_{x_{1}}^{x} v(x)^{2} d x
$$

$\int_{x_{0}}^{\infty} q(x) d x=\infty \Longrightarrow v(x)>0$ for large x.
Thus, $u^{\prime}(x)=-u(x) v(x)$ and this shows that $u^{\prime}(x)<0$ for x large.

Qualitative properties of solutions

Theorem

In Bessel equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0$ Substituting $u(x)=\sqrt{x} y(x)$, we get

$$
u^{\prime \prime}+\left[1+\frac{1-4 p^{2}}{4 x^{2}}\right] u=0
$$

$q(x)=1+\frac{1-4 p^{2}}{4 x^{2}}$ is continuous and $q(x)>0$ for $x>x_{0}>0$.
Further,

$$
\int_{x_{0}}^{\infty}\left(1+\frac{1-4 p^{2}}{4 x^{2}}\right) d x=\infty
$$

By previous theorem, $u(x)$, hence any Bessel function has infinitely many zeros on $(0, \infty)$.

Qualitative properties of solutions

Corollary

Let $Z^{(p)}$ be the set of zeros of Bessel function $J_{p}(x)$ on $(0, \infty)$. Since $Z^{(p)}$ is an infinite set, it is not bounded.

We will conside the following question.
Write $Z^{(p)}=\left\{x_{1}, x_{2}, \ldots\right\}$ as increasing sequence $x_{n}<x_{n+1}$.
Question. What is the limit of $x_{n+1}-x_{n}$ as $n \rightarrow \infty$?
We will need the Sturm comparison theorem.

Qualitative properties of solutions

Theorem (Sturm Comparison theorem)

Let $y(x)$ be a non-trivial solutions of

$$
y^{\prime \prime}+q(x) y=0
$$

and $z(x)$ be a non-trivial solutions of

$$
z^{\prime \prime}+r(x) z=0
$$

where $q(x)>r(x)>0$ are continuous.
Then $y(x)$ vanishes at least once between any two consecutive zeros of $z(x)$.

Compare $y^{\prime \prime}+4 y=0$ and $z^{\prime \prime}+z=0$.
Here $(q(x)=) 4>(r(x)=) 1>0$
Zeros of $y(x)$ are $\pi / 2$ apart and that of $z(x)$ are π apart.

Qualitative properties of solutions

Proof of Sturm Comparison theorem.
Let $x_{1}<x_{2}$ be consecutive zeros of $z(x)$.
Assume $y(x)$ has no zero in $\left(x_{1}, x_{2}\right)$.
We may assume $z(x)>0$ and $y(x)>0$ on $\left(x_{1}, x_{2}\right)$. Hence $z^{\prime}\left(x_{1}\right)>0$ and $z^{\prime}\left(x_{2}\right)<0$.
Consider the function $W(x)=y(x) z^{\prime}(x)-y^{\prime}(x) z(x)$

$$
W^{\prime}(x)=y z^{\prime \prime}-y^{\prime \prime} z=y(-r z)-(-q y) z=(q-r) y z>0
$$

on $\left(x_{1}, x_{2}\right)$.
Integrating from x_{1} to x_{2}, we get

$$
W\left(x_{2}\right)-W\left(x_{1}\right)>0 \Longrightarrow W\left(x_{2}\right)>W\left(x_{1}\right)
$$

But $W\left(x_{1}\right)=y\left(x_{1}\right) z^{\prime}\left(x_{1}\right)>0$ and $W\left(x_{2}\right)=y\left(x_{2}\right) z^{\prime}\left(x_{2}\right)<0$, a contradiction.

Qualitative properties of solutions

Theorem

Substituting $u(x)=\sqrt{x} y(x)$ in Bessel equation, we get Bessel equation in normal form ($p \geq 0$)

$$
u^{\prime \prime}+q(x) u=0, \quad q(x)=1+\frac{1-4 p^{2}}{4 x^{2}}
$$

- $p<1 / 2 \Longrightarrow q(x)>1$
- $p=1 / 2 \Longrightarrow q(x)=1$ (Well known, hence, uninteresting)
- $p>1 / 2 \Longrightarrow q(x)<1$

Use $z^{\prime \prime}+z=0$ and Sturm comparison theorem.
Let $y_{p}(x)$ be a non-trivial solution of Bessel equation. Then we get

Qualitative properties of solutions

Theorem

- $p<1 / 2 \Longrightarrow$ Between any two roots of $\alpha \cos x+\beta \sin x$ there is a root of $y_{p}(x)$.
- $p=1 / 2 \Longrightarrow x_{2}-x_{1}=\pi$
- $p>1 / 2 \Longrightarrow$ Between any two roots of $y_{p}(x)$ there is a root of $\alpha \cos x+\beta \sin x$.

We can say more than the above.
Claim: Suppose $p<1 / 2$ and $a<b<c$ are consecutive roots of $u(x)$. Then $b-a<c-b$. That is, the difference between the successive roots keeps increasing.
To see this, consider the function $f:=u(x-b+a)$ defined on the interval (b, ∞).
It is a trivial check that f satisfies the differential equation

$$
f^{\prime \prime}+r(x) f=0 \quad r(x):=q(x-b+a)
$$

Qualitative properties of solutions

Since $p<1 / 2$ the function q is strictly decreasing. Thus, on (b, ∞) we have $r(x)>q(x)>0$.
Applying Sturm's comparison theorem we get that there is a $b<x_{0}<c$ such that $f\left(x_{0}\right)=u\left(x_{0}-b+a\right)=0$.
Clearly,

- $b<x_{0} \Longrightarrow a<x_{0}-b+a$
- $a<b \Longrightarrow x_{0}-b+a<x_{0}$

Thus,

$$
a<x_{0}-b+a<x_{0}<c
$$

However, $a<b<c$ are successive roots of $u(x)$. This forces that

$$
x_{0}-b+a=b \quad \text { that is } \quad x_{0}=2 b-a
$$

As $x_{0}<c$ we get that $2 b-a<c$, that is, $b-a<c-b$.
Next we claim that the difference between any two successive roots of u is strictly less than π.

Qualitative properties of solutions

If not, then let $a<b$ be successive roots such that $b-a \geq \pi$
Since u has infinitely many roots, and their difference is strictly increasing, we may assume that $b-a>\pi$.

But now we can choose $\alpha, \beta \in \mathbb{R}$ such that $\alpha \cos x+\beta \sin x$ has two roots in (a, b), which contradicts Sturm's comparison theorem.

Thus, we have proved that if $\left\{x_{n}\right\}$ are the roots of u in increasing order, then the difference $x_{n+1}-x_{n}$ is strictly increasing and bounded above by π.

Next let us show that these differences converge to π. If not, then $\left(x_{n+1}-x_{n}\right) \rightarrow \gamma<\pi$. Choose $1<\delta$, sufficiently close to 1 such that $\gamma<\frac{\pi}{\delta}<\pi$.

Qualitative properties of solutions

The function $q(x)$ is decreasing to 1 . Therefore, there is a $x_{0} \in \mathbb{R}$, sufficiently large, such that $q\left(x_{0}\right)<\delta^{2}$. Apply Sturm's comparison on the interval $\left(x_{0}, \infty\right)$ to the differential equations
$u^{\prime \prime}+q(x) u=0$ and $z^{\prime \prime}+\delta^{2} z=0$.
Thus, between any two roots of u there is a root of z. Let a and b be two consecutive roots of u such that $x_{0}<a<b$. Since $b-a<\gamma<\frac{\pi}{\delta}$, find a^{\prime} and b^{\prime} such that $x_{0}<a^{\prime}<a<b<b^{\prime}$ and $b^{\prime}-a^{\prime}=\frac{\pi}{\delta}$.
Find α and β such that the function $\alpha \cos \delta x+\beta \sin \delta x$ vanishes at a^{\prime}. This function is a solution to the ODE $z^{\prime \prime}+\delta^{2} z=0$. The next root of this function is at $a^{\prime}+\frac{\pi}{\delta}=b^{\prime}$. Thus, we get a contradiction to Sturm's theorem which says that there is a root of this function in the interval (a, b).

Qualitative properties of solutions

Thus, we have proved

Theorem

If $p<1 / 2$ then the sequence of differences of roots of u, $x_{n+1}-x_{n}$ is increasing and tends to π.

Similarly, we can prove that if $p>1 / 2$ then the sequence of difference of roots of u is decreasing and tends to π.

Expansion in terms of Bessel functions

The first few zeroes of Bessel functions are tabulated below.

	$J_{0}(x)$	$J_{1}(x)$	$J_{2}(x)$	$J_{3}(x)$	$J_{4}(x)$	$J_{5}(x)$
1	2.4048	3.8317	5.1356	6.3802	7.5883	8.7715
2	5.5201	7.0156	8.4172	9.7610	11.0647	12.3386
3	8.6537	10.1735	11.6198	13.0152	14.3725	15.7002
4	11.7915	13.3237	14.7960	16.2235	17.6160	18.9801
5	14.9309	16.4706	17.9598	19.4094	20.8269	22.2178

Question. Why are we concerned with zeros of Bessel function $J_{p}(x)$?

It is often required in mathematical physics to expand a given function in terms of Bessel functions.

Expansion in terms of Bessel functions

Definition

For a scalar a, the scaled Bessel functions $J_{p}(a x)$ are solutions of

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(a^{2} x^{2}-p^{2}\right) y=0
$$

known as scaled Bessel equation.
Simplest and most useful expansions are of the form

$$
f(x)=\sum_{n=1}^{\infty} a_{n} J_{p}\left(\lambda_{p, n} x\right)=a_{1} J_{p}\left(\lambda_{p, 1} x\right)+a_{2} J_{p}\left(\lambda_{p, 2} x\right)+\ldots
$$

where $f(x)$ is defined on, (say) $[0,1]$, and $\lambda_{p, n}$'s are zeros of Bessel function $J_{p}(x), p \geq 0$.
Qn. How to compute the coefficients a_{n} ?

Orthogonality

Define an inner product on functions on $[0,1]$ by

$$
\langle f, g\rangle:=\int_{0}^{1} x f(x) g(x) d x
$$

This is similar to the previous inner product except that $f(x) g(x)$ is now multiplied by x and the interval of integration is from 0 to 1 .

We call a function on $[0,1]$ square integrable with respect to this inner product if

$$
\int_{0}^{1} x f(x)^{2} d x<\infty
$$

The multiplying factor x is called a weight function.

Orthogonality

Fix $p \geq 0$. Let $Z^{(p)}=\left\{\lambda_{p, 1}, \lambda_{p, 2}, \ldots\right\}$ denote the set of zeros of $J_{p}(x)$ on $(0, \infty)$.

Theorem

The set of scaled Bessel functions

$$
\left\{J_{p}\left(\lambda_{p, 1} x\right), J_{p}\left(\lambda_{p, 2} x\right), \ldots\right\}
$$

form an orthogonal family w.r.t. above inner product, i.e. $\left\langle J_{p}\left(\lambda_{p, k} x\right), J_{p}\left(\lambda_{p, l} x\right)\right\rangle:=$

$$
\int_{0}^{1} x J_{p}\left(\lambda_{p, k} x\right) J_{p}\left(\lambda_{p, l} x\right) d x= \begin{cases}\frac{1}{2}\left[J_{p+1}\left(\lambda_{p, k}\right)\right]^{2} & \text { if } k=l \\ 0 & \text { if } k \neq l\end{cases}
$$

Orthogonality

Proof of orthogonality of scaled Bessel functions
If a, b are positive scalars, then $u(x)=J_{p}(a x)$ and $v(x)=J_{p}(b x)$ satisfies

$$
\begin{aligned}
& u^{\prime \prime}+\frac{1}{x} u^{\prime}+\left(a^{2}-\frac{p^{2}}{x^{2}}\right) u=0 \\
& v^{\prime \prime}+\frac{1}{x} v^{\prime}+\left(b^{2}-\frac{p^{2}}{x^{2}}\right) v=0
\end{aligned}
$$

Multiply by v and u resp. and subtract, we get

$$
\begin{aligned}
& \left(v u^{\prime \prime}-u v^{\prime \prime}\right)+\frac{1}{x}\left(v u^{\prime}-u v^{\prime}\right)+\left(a^{2}-b^{2}\right) u v=0 \\
& \left(u^{\prime} v-v^{\prime} u\right)^{\prime}+\frac{1}{x}\left(u^{\prime} v-v^{\prime} u\right)=\left(b^{2}-a^{2}\right) u v \\
& \left(x\left(u^{\prime} v-v^{\prime} u\right)\right)^{\prime}=\left(b^{2}-a^{2}\right) x u v
\end{aligned}
$$

Orthogonality

$$
\begin{aligned}
& \left(b^{2}-a^{2}\right) \int_{0}^{1} x u v d x=\left.\left[x\left(u^{\prime} v-v^{\prime} u\right)\right]\right|_{0} ^{1}=\left(u^{\prime} v-v^{\prime} u\right)(1) \\
& \left(b^{2}-a^{2}\right) \int_{0}^{1} x J_{p}(a x) J_{p}(b x) d x=J_{p}^{\prime}(a) J_{p}(b)-J_{p}^{\prime}(b) J_{p}(a)
\end{aligned}
$$

So if $a=\lambda_{p, k}$ and $b=\lambda_{p, l}$ are distinct (RHS is 0 since these are roots of $J_{p}(x)$), then

$$
\int_{0}^{1} x J_{p}\left(\lambda_{p, k} x\right) J_{p}\left(\lambda_{p, l} x\right) d x=0
$$

To compute the norm of $J_{p}\left(\lambda_{p, k} x\right)$, consider

$$
\begin{aligned}
& 2 x^{2} u^{\prime}\left[u^{\prime \prime}+\frac{1}{x} u^{\prime}+\left(a^{2}-\frac{p^{2}}{x^{2}}\right) u\right]=0 \\
& \quad=\left[x^{2} u^{\prime 2}+\left(a^{2} x^{2}-p^{2}\right) u^{2}\right]^{\prime}-2 a^{2} x u^{2}
\end{aligned}
$$

Orthogonality

Integrate on $[0,1]$,

$$
2 a^{2} \int_{0}^{1} x u^{2} d x=\left.\left[x^{2} u^{\prime 2}+\left(a^{2} x^{2}-p^{2}\right) u^{2}\right]\right|_{0} ^{1}
$$

Since $p \geq 0,(p u(0))^{2}=\left(p J_{p}(0)\right)^{2}=0$.
Thus, $\left(x^{2} u^{\prime 2}+\left(a^{2} x^{2}-p^{2}\right) u^{2}\right)(0)=0$.
Further, $u^{\prime}(1)=a J_{p}^{\prime}(a)$, so we get

$$
\left(x^{2} u^{\prime 2}+\left(a^{2} x^{2}-p^{2}\right) u^{2}\right)(1)=a^{2} J_{p}^{\prime}(a)^{2}+\left(a^{2}-p^{2}\right) J_{p}(a)^{2}
$$

Put $a=\lambda_{p, k}$ to get

$$
2 \lambda_{p, k}^{2} \int_{0}^{1} x J_{p}\left(\lambda_{p, k} x\right)^{2} d x=\lambda_{p, k}^{2} J_{p}^{\prime}\left(\lambda_{p, k}\right)^{2}
$$

Thus,

$$
\int_{0}^{1} x J_{p}\left(\lambda_{p, k} x\right)^{2} d x=\frac{1}{2} J_{p}^{\prime}\left(\lambda_{p, k}\right)^{2}=\frac{1}{2} J_{p+1}\left(\lambda_{p, k}\right)^{2}
$$

for last equality, use $x=\lambda_{p, k}$ in $J_{p}^{\prime}(x)-\frac{p}{x} J_{p}(x)=J_{p+1}(x)$

Expansion in terms of Bessel functions

Theorem

Fix $p \geq 0$ and $Z^{(p)}=\left\{\lambda_{p, 1}, \lambda_{p, 2}, \ldots\right\}$: zeros of $J_{p}(x)$ on $(0, \infty)$. Any square-integrable function $f(x)$ on $[0,1]$ can be expanded in a series of scaled Bessel functions $J_{p}\left(\lambda_{p, n} x\right)$ as

$$
f(x)=\sum_{n \geq 1} c_{n} J_{p}\left(\lambda_{p, n} x\right)
$$

where

$$
c_{n}=\frac{2}{\left[J_{p+1}\left(\lambda_{p, n}\right)\right]^{2}} \int_{0}^{1} x f(x) J_{p}\left(\lambda_{p, n} x\right) d x
$$

This is Fourier-Bessel series of $f(x)$ for parameter p.

Expansion in terms of Bessel functions

Example. Let us compute the Fourier-Bessel series (for $p=0$) of $f(x)=1$ in the interval $0 \leq x \leq 1$.
Use $\frac{d}{d x}\left(x^{p} J_{p}(x)\right)=x^{p} J_{p-1}(x)$ for $p=1$.

$$
\begin{gathered}
\int_{0}^{1} x J_{0}\left(\lambda_{0, n} x\right) d x=\left.\frac{1}{\lambda_{0, n}} x J_{1}\left(\lambda_{0, n} x\right)\right|_{0} ^{1}=\frac{J_{1}\left(\lambda_{0, n}\right)}{\lambda_{0, n}} \\
c_{n}=\frac{2}{\left[J_{1}\left(\lambda_{0, n}\right)\right]^{2}} \int_{0}^{1} x f(x) J_{0}\left(\lambda_{0, n} x\right) d x=\frac{2}{\lambda_{0, n} J_{1}\left(\lambda_{0, n}\right)}
\end{gathered}
$$

Thus, the Fourier-Bessel series of $f(x)$ is

$$
\sum_{n \geq 1} \frac{2}{\lambda_{0, n} J_{1}\left(\lambda_{0, n}\right)} J_{0}\left(\lambda_{0, n} x\right)
$$

By next theorem, this converges to 1 for $0<x<1$.

Expansion in terms of Bessel functions

Convergence in norm
Fourier-Bessel series converges to $f(x)$ in norm, i.e.

$$
\left\|f(x)-\sum_{n=1}^{m} c_{n} J_{p}\left(\lambda_{p, n} x\right)\right\| \text { converges to } 0 \text { as } m \rightarrow \infty
$$

For pointwise convergence, we have
Bessel expansion theorem
Assume f and f^{\prime} have at most a finite number of jump discontinuities in $[0,1]$, then the Bessel series converges for $0<x<1$ to

$$
\frac{f\left(x_{-}\right)+f\left(x_{+}\right)}{2}
$$

At $x=1$, the series always converges to 0 for all f, at $x=0$, if $p=0$ then it converges to $f\left(0_{+}\right)$. at $x=0$, if $p>0$ then it converges to 0 .

