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Eigen Value problems y′′ + λy = 0

We will develop Fourier series representation of functions that will
be used to solve PDE considered later.

Consider the following Boundary Value Problems (BVP), where
λ ∈ R and L > 0.

1 Problem 1. y′′ + λy = 0 y(0) = 0, y(L) = 0.

2 Problem 2. y′′ + λy = 0 y′(0) = 0, y′(L) = 0.

3 Problem 3. y′′ + λy = 0 y(0) = 0, y′(L) = 0.

4 Problem 4. y′′ + λy = 0 y′(0) = 0, y(L) = 0.

5 Problem 5. y′′ + λy = 0 y(−L) = y(L), y′(−L) = y′(L).

The boundary condition in problem 5 is called periodic.
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Eigen Value problems y′′ + λy = 0

Questions. Let us fix any one of the above problems, say Problem
1.

1 For what values of λ does problem 1 have a non-trivial
solutions?

2 If it has solutions, what are the solutions?

Any λ for which problem 1 has a non-trivial solution is called an
eigenvalue of problem 1.

Given an eigenvalue, if we take the space of all functions which
satisfy the problem with respect to this eigenvalue, then it is a
trivial check that this space forms a vector space.

Nonzero solutions for an eigenvalue λ are called λ-eigenfunction, or
eigenfunction associated with λ.

Problems 1− 5 are called eigenvalue problems. Solving an
eigenvalue problem means finding all its eigenvalues and associated
eigenfunctions.
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Eigen Value problems y′′ + λy = 0

Theorem

1 Problems 1− 5 have no negative eigenvalues.

2 λ = 0 is an eigenvalue of Problems 2 and 5 with associated
eigenfunctions y0 = 1.

3 λ = 0 is not an eigenvalue of Problems 1, 3 and 4.

Proof.

Let us prove the first two; the third is left as an exercise.

Suppose λ < 0 is an eigenvalue. Let us write λ = −a2.

Rewrite the differential equation as y′′ = a2y. The general solution
to this is y(x) = Ceax +De−ax. In problem 1 we have the
condition y(0) = y(L) = 0. This forces that C +D = 0 and
CeaL+De−aL = 0. One checks easily that this forces C = D = 0.

In problem 2 we have the condition that y′(0) = y′(L) = 0. This
gives aC − aD = 0 and aCeaL − aDe−aL = 0. Since a 6= 0, this
forces C = D = 0.

4 / 48



Eigen Value problems y′′ + λy = 0

Theorem

1 Problems 1− 5 have no negative eigenvalues.

2 λ = 0 is an eigenvalue of Problems 2 and 5 with associated
eigenfunctions y0 = 1.

3 λ = 0 is not an eigenvalue of Problems 1, 3 and 4.

Proof.

Let us prove the first two; the third is left as an exercise.

Suppose λ < 0 is an eigenvalue. Let us write λ = −a2.

Rewrite the differential equation as y′′ = a2y. The general solution
to this is y(x) = Ceax +De−ax. In problem 1 we have the
condition y(0) = y(L) = 0. This forces that C +D = 0 and
CeaL+De−aL = 0. One checks easily that this forces C = D = 0.

In problem 2 we have the condition that y′(0) = y′(L) = 0. This
gives aC − aD = 0 and aCeaL − aDe−aL = 0. Since a 6= 0, this
forces C = D = 0.

4 / 48



Eigen Value problems y′′ + λy = 0

Theorem

1 Problems 1− 5 have no negative eigenvalues.

2 λ = 0 is an eigenvalue of Problems 2 and 5 with associated
eigenfunctions y0 = 1.

3 λ = 0 is not an eigenvalue of Problems 1, 3 and 4.

Proof.

Let us prove the first two; the third is left as an exercise.

Suppose λ < 0 is an eigenvalue. Let us write λ = −a2.

Rewrite the differential equation as y′′ = a2y. The general solution
to this is y(x) = Ceax +De−ax. In problem 1 we have the
condition y(0) = y(L) = 0. This forces that C +D = 0 and
CeaL+De−aL = 0. One checks easily that this forces C = D = 0.

In problem 2 we have the condition that y′(0) = y′(L) = 0. This
gives aC − aD = 0 and aCeaL − aDe−aL = 0. Since a 6= 0, this
forces C = D = 0.

4 / 48



Eigen Value problems y′′ + λy = 0

Theorem

1 Problems 1− 5 have no negative eigenvalues.

2 λ = 0 is an eigenvalue of Problems 2 and 5 with associated
eigenfunctions y0 = 1.

3 λ = 0 is not an eigenvalue of Problems 1, 3 and 4.

Proof.

Let us prove the first two; the third is left as an exercise.

Suppose λ < 0 is an eigenvalue. Let us write λ = −a2.

Rewrite the differential equation as y′′ = a2y. The general solution
to this is y(x) = Ceax +De−ax. In problem 1 we have the
condition y(0) = y(L) = 0. This forces that C +D = 0 and
CeaL+De−aL = 0. One checks easily that this forces C = D = 0.

In problem 2 we have the condition that y′(0) = y′(L) = 0. This
gives aC − aD = 0 and aCeaL − aDe−aL = 0. Since a 6= 0, this
forces C = D = 0.

4 / 48



Eigen Value problems y′′ + λy = 0

Theorem

1 Problems 1− 5 have no negative eigenvalues.

2 λ = 0 is an eigenvalue of Problems 2 and 5 with associated
eigenfunctions y0 = 1.

3 λ = 0 is not an eigenvalue of Problems 1, 3 and 4.

Proof.

Let us prove the first two; the third is left as an exercise.

Suppose λ < 0 is an eigenvalue. Let us write λ = −a2.

Rewrite the differential equation as y′′ = a2y. The general solution
to this is y(x) = Ceax +De−ax. In problem 1 we have the
condition y(0) = y(L) = 0. This forces that C +D = 0 and
CeaL+De−aL = 0. One checks easily that this forces C = D = 0.

In problem 2 we have the condition that y′(0) = y′(L) = 0. This
gives aC − aD = 0 and aCeaL − aDe−aL = 0. Since a 6= 0, this
forces C = D = 0.

4 / 48



Eigen Value problems y′′ + λy = 0

Theorem

1 Problems 1− 5 have no negative eigenvalues.

2 λ = 0 is an eigenvalue of Problems 2 and 5 with associated
eigenfunctions y0 = 1.

3 λ = 0 is not an eigenvalue of Problems 1, 3 and 4.

Proof.

Let us prove the first two; the third is left as an exercise.

Suppose λ < 0 is an eigenvalue. Let us write λ = −a2.

Rewrite the differential equation as y′′ = a2y. The general solution
to this is y(x) = Ceax +De−ax. In problem 1 we have the
condition y(0) = y(L) = 0. This forces that C +D = 0 and
CeaL+De−aL = 0. One checks easily that this forces C = D = 0.

In problem 2 we have the condition that y′(0) = y′(L) = 0. This
gives aC − aD = 0 and aCeaL − aDe−aL = 0. Since a 6= 0, this
forces C = D = 0.

4 / 48



Eigen Value problems y′′ + λy = 0

continued . . ..

In problem 3 we have the conditions y(0) = y′(L) = 0. This gives
C +D = 0 and aCeaL − aDe−aL = 0. Again this forces
C = D = 0.

Similarly, do the other problems.

Now consider the second statement in the theorem. If λ = 0, the
clearly, the solution has to be of the form y(x) = ax+ b.

In problem 2 we have y′(0) = y′(L) = 0, and so a = 0. Thus,
y(x) = constant is the solution in this case.

In problem 5, we have y(−L) = y(L), that is, −aL+ b = aL+ b.
This forces that a = 0. Thus, in this case too y(x) = const.
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EVP 1 y′′ + λy = 0; y(0) = 0, y(L) = 0

Theorem

The eigenvalue problem

y′′ + λy = 0 y(0) = 0, y(L) = 0

has infinitely many positive eigenvalues

λn =
n2π2

L2
, n = 1, 2, . . . ,

with associated eigenfunctions

yn(x) = sin
nπx

L
, n = 1, 2, . . . .

There are no other eigenvalues.
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EVP 1 y′′ + λy = 0; y(0) = 0, y(L) = 0

Proof.

Any eigen value must be positive (by previous theorem).

If y(x) is a solution of y′′ + λy = 0 with λ > 0, then

y(x) = c1 cos
√
λx+ c2 sin

√
λx

y(0) = 0 =⇒ c1 = 0

=⇒ y(x) = c2 sin
√
λx with c2 6= 0

y(L) = 0 =⇒ sin
√
λL = 0 =⇒

√
λL = nπ

=⇒ λn =
n2π2

L2

is an eigenvalue with an associated eigenfunction

yn = sin
nπx

L
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y(x) = c1 cos
√
λx+ c2 sin

√
λx

y(0) = 0 =⇒ c1 = 0

=⇒ y(x) = c2 sin
√
λx with c2 6= 0

y(L) = 0 =⇒ sin
√
λL = 0 =⇒

√
λL = nπ

=⇒ λn =
n2π2

L2

is an eigenvalue with an associated eigenfunction
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nπx

L
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EVP 2 y′′ + λy = 0; y′(0) = 0, y′(L) = 0

Theorem

The eigenvalue problem

y′′ + λy = 0 y′(0) = 0, y′(L) = 0

has an eigenvalue λ0 = 0 with eigenfunction y0 = 1

and infinitely many positive eigenvalues

λn =
n2π2

L2

with associated eigenfunctions

yn = cos
nπx

L
n = 1, 2, . . . .

There are no other eigenvalues.

Proof. Similar to the proof of Problem 1, hence is left as an
exercise.
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EVP 3 y′′ + λy = 0; y(0) = 0, y′(L) = 0

Theorem

The eigenvalue problem

y′′ + λy = 0 y(0) = 0, y′(L) = 0

has infinitely many positive eigenvalues

λn =
(2n+ 1)2π2

4L2

with associated eigenfunctions

yn = sin
(2n+ 1)πx

2L
, n = 0, 1, 2, . . . .

There are no other eigenvalues.
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EVP 4 and EVP 5

Left as exercises.

Note that in EVP 5 every positive eigenvalue has two dimensional
space of associated eigen functions.
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Orthogonality

Definition

We say two integrable functions f and g are orthogonal on an
interval [a, b] if ∫ b

a
f(x)g(x) dx = 0

More generally, we say functions φ1, φ2, . . . , φn, . . . (finite or
infinitely many) are orthogonal on [a, b] if∫ b

a
φi(x)φj(x) dx = 0 whenever i 6= j

We have already seen orthogonality of Legendre function.
We will study Fourier series w.r.t. different orthogonal systems.
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Exercise

Consider the eigenfunctions

1 sin
πx

L
, sin

2πx

L
, . . . , sin

nπx

L
, . . .

2 1, cos
πx

L
, cos

2πx

L
, . . . , cos

nπx

L
, . . .

3 sin
πx

2L
, sin

3πx

2L
, . . . , sin

(2n− 1)πx

2L
, . . .

4 cos
πx

2L
, cos

3πx

2L
, . . . , cos

(2n− 1)πx

2L
, . . .

5 1, cos
πx

L
, sin

πx

L
, cos

2πx

L
, sin

2πx

L
, . . . , cos

nπx

L
, sin

nπx

L
, . . .

Show directly that eigenfunctions of (1-4) are orthogonal on [0, L]
and of (5) is orthogonal on [−L,L].
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The space of square integral functions

We will study series expansions in terms of eigenfunctions. It is
used to solve PDEs.

For this we consider the vector space of functions on [a, b] and
define an inner product on it

〈f, g〉 :=
∫ b

a
f(x)g(x)dx

Denote by L2[a, b] the subspace of those functions satisfying
〈f, f〉 <∞.

To say this is a subspace, one needs to check that if f, g ∈ L2[a, b]
then f + g ∈ L2[a, b]. We shall assume this fact.

From now on, we will always be working with functions in some
inner product space of the type L2[a, b]. In such a space, the norm
of a function is defined to be ‖f‖ := 〈f, f〉1/2.
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Fourier Series

Theorem

Let f ∈ L2[−L,L]. Consider the series

Ff (x) = a0 +
∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
which is called the Fourier series of f on [−L,L]. Here

a0 =
1

2L

∫ L

−L
f(x)dx and for n > 0

an =
1

L

∫ L

−L
f(x) cos

nπx

L
dx bn =

1

L

∫ L

−L
f(x) sin

nπx

L
dx

The above series converges to f in the L2-norm, that is,

lim
N−→∞

∣∣∣∣∣∣f − a0 − N∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

) ∣∣∣∣∣∣ = 0
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Fourier Series

The above means that the function defined by the series Ff (x) is
equal to f(x) in a reasonably strong sense.

We started with a function f(x) and cooked up a sequence of
numbers an’s and bn’s. Using these we cooked up a function
Ff (x). Although this function is “equal” to f(x) in a reasonably
strong sense, as we remarked above, it may not be equal to f(x)
pointwise. We now make some remarks about when Ff (x) will be
equal to f(x).
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Pointwise convergence of Fourier series

Definition

A function f on [a, b] is said to be piecewise smooth if

1 f has atmost finitely many points of discontinuity.

2 f ′ exists and has atmost finitely many points of discontinuity.

3 f(x0+) := limx→x+0
f(x) and f ′(x0+) := limx→x+0

f ′(x)

exists if a ≤ x0 < b.

4 f(x0−) = limx→x−0
f(x) and f ′(x0−) = limx→x−0

f ′(x)

exists if a < x0 ≤ b.
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Pointwise convergence of Fourier series

Theorem

Let f(x) be a piecewise smooth function on [−L,L].

Then the
Fourier series

Ff (x) = a0 +
∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
of f converges to

Ff (x) =

{
1
2 [f((−L)+) + f(L−)] x = −L,L
1
2 [f(x+) + f(x−)] x ∈ (−L,L)

Therefore, at every point x of continuity of f , the Fourier series
converges to f(x).

If we re-define f(x) at every point of discontinuity x as
1
2 [f(x+) + f(x−)] then the Fourier series represents the function
everywhere. Thus two functions can have same Fourier series.
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Example

Let us find the Fourier series of the piecewise smooth function

f(x) =

{
−x, −2 < x < 0

1/2, 0 < x < 2

on [−2, 2].

a0 =
1

4

∫ 2

−2
f(x) dx =

1

4

[∫ 0

−2
(−x) dx+

∫ 2

0

1

2
dx

]
=

3

4

If n ≥ 1, then

an =
1

2

∫ 2

−2
f(x) cos

nπx

2
dx

=
1

2

[∫ 0

−2
(−x) cos nπx

2
dx+

∫ 2

0

1

2
cos

nπx

2
dx

]
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Example (continued . . .)

=
1

2

[
−x 2

nπ
sin

nπx

2

∣∣∣0
−2

+

∫ 0

−2

2

nπ
sin

nπx

2
dx+ 0

]

=
1

2

4

n2π2

(
− cos

nπx

2

) ∣∣∣0
−2

=
2

n2π2
(cosnπ − 1)

bn =
1

2

∫ 2

−2
f(x) sin

nπx

2
dx

=
1

2

[∫ 0

−2
(−x) sin nπx

2
dx+

∫ 2

0

1

2
sin

nπx

2
dx

]
=

1

2nπ
(1 + 3 cosnπ)
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Example (continued ...)

Thus, the Fourier series of f(x) is

F (x) =
3

4
+

2

π2

∞∑
n=1

cosnπ − 1

n2
cos

nπx

2
+

1

2π

∞∑
n=1

1 + 3 cosnπ

n
sin

nπx

2

�
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Let us compute F (x) at discontinuous points.

Example (continued . . .)

F (−2) = F (2) =
1

2
(f(−2+) + f(2−)) = 1

2

(
2 +

1

2

)
=

5

4

F (0) =
1

2
(f(0−) + f(0+)) =

1

2

(
0 +

1

2

)
=

1

4

To summarize,

F (x) =


5/4, x = ±2
−x, −2 < x < 0

1/4, x = 0

1/2, 0 < x < 2
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Recall

Let V be a vector space along with an inner product. For example,
L2[−1, 1] or L2[0, 1] with the standard inner products.

Suppose we have an orthogonal set {φ1, φ2, . . .} which has the
following property. For every function f we have a series∑

i≥1 aiφi which converges to f , that is,

lim
n→∞

‖f −
n∑
i=1

aiφi‖ = 0 .

Then we say that set {φ1, φ2, . . .} is a normed basis for V .

Note that this is different from the notion of basis, where we need
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Eigen functions as normed basis

In this situation, we will loosely write

f =
∑
n≥1

anφn .

The theorem on existence of Fourier series for elements in
L2[−1, 1] can be rephrased as saying that the set

{1} ∪ {cos nπx
L
} ∪ {sin nπx

L
}

is a normed basis for L2[−1, 1]. Notice that these functions are
precisely the eigen functions to EVP 5.

Next we shall use the above to find normed basis for some other
vector spaces. We will see that, just as in the case of basis, a
normed basis need not be unique.

24 / 48



Eigen functions as normed basis

In this situation, we will loosely write

f =
∑
n≥1

anφn .

The theorem on existence of Fourier series for elements in
L2[−1, 1] can be rephrased as saying that the set

{1} ∪ {cos nπx
L
} ∪ {sin nπx

L
}

is a normed basis for L2[−1, 1]. Notice that these functions are
precisely the eigen functions to EVP 5.

Next we shall use the above to find normed basis for some other
vector spaces. We will see that, just as in the case of basis, a
normed basis need not be unique.

24 / 48



Eigen functions as normed basis

In this situation, we will loosely write

f =
∑
n≥1

anφn .

The theorem on existence of Fourier series for elements in
L2[−1, 1] can be rephrased as saying that the set

{1} ∪ {cos nπx
L
} ∪ {sin nπx

L
}

is a normed basis for L2[−1, 1]. Notice that these functions are
precisely the eigen functions to EVP 5.

Next we shall use the above to find normed basis for some other
vector spaces.

We will see that, just as in the case of basis, a
normed basis need not be unique.

24 / 48



Eigen functions as normed basis

In this situation, we will loosely write

f =
∑
n≥1

anφn .

The theorem on existence of Fourier series for elements in
L2[−1, 1] can be rephrased as saying that the set

{1} ∪ {cos nπx
L
} ∪ {sin nπx

L
}

is a normed basis for L2[−1, 1]. Notice that these functions are
precisely the eigen functions to EVP 5.

Next we shall use the above to find normed basis for some other
vector spaces. We will see that, just as in the case of basis, a
normed basis need not be unique.

24 / 48



Eigen functions of EVP 1 as normed basis for L2[0, 1]

Let f be an element of L2[0, L]. Then we claim that f can be
written as a series

f(x) =
∑
n≥1

bn sin
nπx

L
.

To see this, let us first extend f to [−L,L] by defining
f(x) = −f(−x) for x ∈ [−L, 0). Denote the extension by f̃ .

Then we know that f̃ has a Fourier expansion

f̃(x) = a0 +
∑
n≥1

an cos
nπx

L
+ bn sin

nπx

L

where

a0 =
1

2L

∫ L

−L
f̃(x)dx an =

1

L

∫ L

−L
f̃(x) cos

nπx

L
dx n > 0

bn =
1

L

∫ L

−L
f̃(x) sin

nπx

L
dx
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Eigen functions of EVP 1 as normed basis for L2[0, 1]

Now note that by the way f̃ has been defined, it is an odd
function. Thus, a0 = 0.

Since cos nπxL is an even function and f̃ is odd, it follows

f̃(x) cos nπxL is an odd function. Thus, an = 0.

This proves that

f̃(x) =
∑
n≥1

bn sin
nπx

L
bn =

2

L

∫ L

0
f(x) sin

nπx

L
dx

Restricting this expansion to [0, L] we get the required expansion
of f .

The functions {sin nπx
L }n≥1 are the eigen functions for EVP 1.

Thus, we have proved

Theorem

The eigen functions for EVP 1 form a normed basis for L2[0, 1].
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Eigen functions of EVP 2 as normed basis for L2[0, 1]

Let f be a function on [0, L]. Then we claim that f can be written
as a series

f(x) = a0 +
∑
n≥1

an cos
nπx

L

To see this, let us first extend f to [−L,L] by defining
f(x) = f(−x) for x ∈ [−L, 0). Denote the extension by f̃ . Then

we know that f̃ has a Fourier expansion

f̃(x) = a0 +
∑
n≥1

an cos
nπx

L
+ bn sin

nπx

L

where

a0 =
1

2L

∫ L

−L
f̃(x)dx an =

1

L

∫ L

−L
f̃(x) cos

nπx

L
dx n > 0

bn =
1

L

∫ L

−L
f̃(x) sin

nπx

L
dx
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Eigen functions of EVP 2 as normed basis for L2[0, 1]

Now note that by the way f̃ has been defined, it is an even
function.

Since sin nπx
L is an odd function and f̃ is even, it follows

f̃(x) sin nπx
L is an odd function. Thus, bn = 0.

This proves that

f̃(x) = a0 +
∑
n≥1

an cos
nπx

L

a0 =
1

L

∫ L

0
f(x)dx an =

2

L

∫ L

0
f(x) cos

nπx

L
dx

Restricting this expansion to [0, L] we get the required expansion
of f .

The functions {cos nπxL }n≥1 are the eigen functions for EVP 2.
Thus, we have proved

Theorem

The eigen functions for EVP 2 form a normed basis for L2[0, 1].
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Eigen functions of EVP 3 as normed basis for L2[0, 1]

Let f be a function on [0, L]. Then we claim that f can be written
as a series

f(x) =
∑
n≥1

an sin
(2n− 1)πx

2L

Let f ∈ L2([0, L]). Extend f to f1 on [0, 2L] as
f1(x) = f(2L− x) for x ∈ (L, 2L).

From what we saw earlier, we can expand f1 as a series in the
eigen functions for EVP 1, that is,

f1(x) =
∑
n≥1

bn sin
nπx

2L

We claim that b2n = 0. This is easily checked using the definition:

bn =
2

2L

∫ 2L

0
f1(x) sin

nπx

2L
dx

=
1

L

∫ L

0
f(x) sin

nπx

2L
dx+

1

L

∫ 2L

L
f(2L− x) sin nπx

2L
dx
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Eigen functions of EVP 3 as normed basis for L2[0, 1]

Let us rewrite the second integral in the sum

∫ 2L

L
f(2L− x) sin nπx

2L
dx

(x′ = 2L− x), =

∫ 0

L
f(x′) sin(nπ − nπx′

2L
)(−dx′)

=

∫ L

0
(−1)n+1f(x) sin

nπx

2L
dx

Putting this back we get

bn =
1

L

∫ L

0
f(x) sin

nπx

2L
dx+

1

L

∫ L

0
(−1)n+1f(x) sin

nπx

2L
dx

So b2n = 0.
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Eigen functions of EVP 3 as normed basis for L2[0, 1]

Thus

f1(x) =
∑
n≥1

b2n−1 sin
(2n− 1)πx

2L

b2n−1 =
2

L

∫ L

0
f(x) sin

(2n− 1)πx

2L
dx

Restricting this expansion to [0, L] we get the required expansion
of f .

The functions {sin (2n−1)πx
2L }n≥1 are the eigen functions for EVP 3.

Thus, we have proved

Theorem

The eigen functions for EVP 3 form a normed basis for L2[0, 1].
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Eigen functions of EVP 4 as normed basis for L2[0, 1]

Let f be a function on [0, L]. Then we claim that f can be written
as a series

f(x) =
∑
n≥1

an cos
(2n− 1)πx

2L

Let f ∈ L2([0, L]). Extend f to f1 on [0, 2L] as
f1(x) = −f(2L− x) for x ∈ (L, 2L).

From what we saw earlier, we can expand f1 as a series in the
eigen functions for EVP 2, that is,

f1(x) = b0 +
∑
n≥1

bn cos
nπx

2L

We claim that b2n = 0. This is easily checked using the definition:

b0 =
1

2L

∫ 2L

0
f1(x) dx = 0

32 / 48



Eigen functions of EVP 4 as normed basis for L2[0, 1]

Let f be a function on [0, L]. Then we claim that f can be written
as a series

f(x) =
∑
n≥1

an cos
(2n− 1)πx

2L

Let f ∈ L2([0, L]). Extend f to f1 on [0, 2L] as
f1(x) = −f(2L− x) for x ∈ (L, 2L).

From what we saw earlier, we can expand f1 as a series in the
eigen functions for EVP 2, that is,

f1(x) = b0 +
∑
n≥1

bn cos
nπx

2L

We claim that b2n = 0. This is easily checked using the definition:

b0 =
1

2L

∫ 2L

0
f1(x) dx = 0

32 / 48



Eigen functions of EVP 4 as normed basis for L2[0, 1]

Let f be a function on [0, L]. Then we claim that f can be written
as a series

f(x) =
∑
n≥1

an cos
(2n− 1)πx

2L

Let f ∈ L2([0, L]). Extend f to f1 on [0, 2L] as
f1(x) = −f(2L− x) for x ∈ (L, 2L).

From what we saw earlier, we can expand f1 as a series in the
eigen functions for EVP 2, that is,

f1(x) = b0 +
∑
n≥1

bn cos
nπx

2L

We claim that b2n = 0. This is easily checked using the definition:

b0 =
1

2L

∫ 2L

0
f1(x) dx = 0

32 / 48



Eigen functions of EVP 4 as normed basis for L2[0, 1]

Let f be a function on [0, L]. Then we claim that f can be written
as a series

f(x) =
∑
n≥1

an cos
(2n− 1)πx

2L

Let f ∈ L2([0, L]). Extend f to f1 on [0, 2L] as
f1(x) = −f(2L− x) for x ∈ (L, 2L).

From what we saw earlier, we can expand f1 as a series in the
eigen functions for EVP 2, that is,

f1(x) = b0 +
∑
n≥1

bn cos
nπx

2L

We claim that b2n = 0.

This is easily checked using the definition:

b0 =
1

2L

∫ 2L

0
f1(x) dx = 0

32 / 48



Eigen functions of EVP 4 as normed basis for L2[0, 1]

Let f be a function on [0, L]. Then we claim that f can be written
as a series

f(x) =
∑
n≥1

an cos
(2n− 1)πx

2L

Let f ∈ L2([0, L]). Extend f to f1 on [0, 2L] as
f1(x) = −f(2L− x) for x ∈ (L, 2L).

From what we saw earlier, we can expand f1 as a series in the
eigen functions for EVP 2, that is,

f1(x) = b0 +
∑
n≥1

bn cos
nπx

2L

We claim that b2n = 0. This is easily checked using the definition:

b0 =
1

2L

∫ 2L

0
f1(x) dx = 0

32 / 48



Eigen functions of EVP 4 as normed basis for L2[0, 1]

Let f be a function on [0, L]. Then we claim that f can be written
as a series

f(x) =
∑
n≥1

an cos
(2n− 1)πx

2L

Let f ∈ L2([0, L]). Extend f to f1 on [0, 2L] as
f1(x) = −f(2L− x) for x ∈ (L, 2L).

From what we saw earlier, we can expand f1 as a series in the
eigen functions for EVP 2, that is,

f1(x) = b0 +
∑
n≥1

bn cos
nπx

2L

We claim that b2n = 0. This is easily checked using the definition:

b0 =
1

2L

∫ 2L

0
f1(x) dx = 0

32 / 48



Eigen functions of EVP 4 as normed basis for L2[0, 1]

bn =
2

2L

∫ 2L

0
f1(x) cos

nπx

2L
dx

=
1

L

∫ L

0
f(x) cos

nπx

2L
dx+

1

L

∫ 2L

L
−f(2L− x) cos nπx

2L
dx

Let us rewrite the second integral in the sum∫ 2L

L
−f(2L− x) cos nπx

2L
dx

(x′ = 2L− x), = −
∫ 0

L
f(x′) cos(nπ − nπx′

2L
)(−dx′)

=

∫ L

0
(−1)n+1f(x) cos

nπx

2L
dx

Putting this back we get

bn =
1

L

∫ L

0
f(x) cos

nπx

2L
dx+

1

L
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Eigen functions of EVP 4 as normed basis for L2[0, 1]

So b2n = 0.

Thus

f1(x) =
∑
n≥1

b2n−1 cos
(2n− 1)πx

2L

.

b2n−1 =
2

L

∫ L

0
f(x) cos

(2n− 1)πx

2L
dx

Restricting this expansion to [0, L] we get the required expansion
of f .

The functions {cos (2n−1)πx
2L }n≥1 are the eigen functions for EVP

4. Thus, we have proved

Theorem

The eigen functions for EVP 4 form a normed basis for L2[0, 1].

34 / 48



Eigen functions of EVP 4 as normed basis for L2[0, 1]

So b2n = 0.

Thus

f1(x) =
∑
n≥1

b2n−1 cos
(2n− 1)πx

2L

.

b2n−1 =
2

L

∫ L

0
f(x) cos

(2n− 1)πx

2L
dx

Restricting this expansion to [0, L] we get the required expansion
of f .

The functions {cos (2n−1)πx
2L }n≥1 are the eigen functions for EVP

4. Thus, we have proved

Theorem

The eigen functions for EVP 4 form a normed basis for L2[0, 1].

34 / 48



Eigen functions of EVP 4 as normed basis for L2[0, 1]

So b2n = 0.

Thus

f1(x) =
∑
n≥1

b2n−1 cos
(2n− 1)πx

2L

.

b2n−1 =
2

L

∫ L

0
f(x) cos

(2n− 1)πx

2L
dx

Restricting this expansion to [0, L] we get the required expansion
of f .

The functions {cos (2n−1)πx
2L }n≥1 are the eigen functions for EVP

4. Thus, we have proved

Theorem

The eigen functions for EVP 4 form a normed basis for L2[0, 1].

34 / 48



Eigen functions of EVP 4 as normed basis for L2[0, 1]

So b2n = 0.

Thus

f1(x) =
∑
n≥1

b2n−1 cos
(2n− 1)πx

2L

.

b2n−1 =
2

L

∫ L

0
f(x) cos

(2n− 1)πx

2L
dx

Restricting this expansion to [0, L] we get the required expansion
of f .

The functions {cos (2n−1)πx
2L }n≥1 are the eigen functions for EVP

4. Thus, we have proved

Theorem

The eigen functions for EVP 4 form a normed basis for L2[0, 1].

34 / 48



What is the point of all this?

Ok! So we have seen five theorems now.

Each of these says that there is a certain normed linear space V ,
and that eigen functions of a certain problem form a normed basis
for V .

Also note that the four of the above theorems are easy
consequences of the main one.

Ok! So what! What is so interesting about this? Who cares?

The power of these theorems will be revealed when we use them to
solve PDE’s. Recall the PDE we saw in the first lecture.

ut = k2uxx 0 < x < L, t > 0

u(0, t) = 0 t ≥ 0

u(L, t) = 0, t ≥ 0

u(x, 0) = x(L− x), 0 ≤ x ≤ L
To solve this we will use the Fourier expansion in terms of EVP 1.
This will be done in the coming lectures.
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u(x, 0) = x(L− x), 0 ≤ x ≤ L
To solve this we will use the Fourier expansion in terms of EVP 1.
This will be done in the coming lectures.
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An observation: derivative transfer

Often we need to find Fourier expansion of polynomial functions in
terms of the eigenfunctions of Problems 1-4 satisfying the
boundary conditions.

We can use “derivative transfer principle” to find Fourier
coefficients. Recall what it means to integrate by parts.

d

dx
(fg) = g

df

dx
+ f

dg

dx
.

Thus, integrating this we get∫ b

a
f
dg

dx
dx = −

∫ b

a
g
df

dx
dx+ f(b)g(b)-f(a)g(a) .

In some situations, the term in the box will become 0, making the
above computation easy.
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An observation: derivative transfer

Consider the situation where f(x) is a polynomial with
f(0) = 0 = f(L).

We get Fourier series on [0, L] in terms of eigen
functions for EVP 1.

f(x) =
∑
n≥1

bn sin
nπx

L
dx

bn =
2

L

∫ L

0
f(x) sin

nπx

L
dx

=
2

nπ

∫ L

0
f ′(x) cos

nπx

L
dx

=
−2
L

(
L

nπ

)2 ∫ L

0
f ′′(x) sin

nπx

L
dx
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An observation: derivative transfer

Consider the situation where f(x) is a polynomial with
f ′(0) = 0 = f ′(L).

We get Fourier series on [0, L] in terms of
eigen functions for EVP 2.

f(x) = a0 +

∞∑
n=1

an cos
nπx

L
, 0 ≤ x ≤ L

an =
2

L

∫ L

0
f(x) cos

nπx

L
dx =

−2
nπ

∫ L

0
f ′(x) sin

nπx

L
dx

=
−2L
n2π2

∫ L

0
f ′′(x) cos

nπx

L

an =
2

L

(
L

nπ

)3 ∫ L

0
f ′′′(x) sin

nπx

L

a0 =
1

L

∫ L

0
f(x) dx
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An observation: derivative transfer

Consider the situation where f(x) is a polynomial with
f(0) = 0 = f ′(L).

We get Fourier series on [0, L] in terms of eigen
functions for EVP 3.

f(x) =
∑
n≥1

cn sin
(2n− 1)πx

2L
dx

cn =
2

L

∫ L

0
f(x) sin

(2n− 1)πx

2L
dx

=
4

(2n− 1)π

∫ L

0
f ′(x) cos

(2n− 1)πx

2L
dx

=
−2
L

(
2L

(2n− 1)π

)2 ∫ L

0
f ′′(x) sin

(2n− 1)πx

2L
dx
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An observation: derivative transfer

Consider the situation where f(x) is a polynomial with
f ′(0) = 0 = f(L).

We get Fourier series on [0, L] in terms of eigen
functions for EVP 4.

f(x) =
∑
n≥1

dn cos
(2n− 1)πx

2L
dx

dn =
2

L

∫ L

0
f(x) cos

(2n− 1)πx

2L
dx

=
−4

(2n− 1)π

∫ L

0
f ′(x) sin

(2n− 1)πx

2L
dx

=
−2
L

(
2L

(2n− 1)π

)2 ∫ L

0
f ′′(x) cos

(2n− 1)πx
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dx

40 / 48



An observation: derivative transfer

Consider the situation where f(x) is a polynomial with
f ′(0) = 0 = f(L). We get Fourier series on [0, L] in terms of eigen
functions for EVP 4.

f(x) =
∑
n≥1

dn cos
(2n− 1)πx

2L
dx

dn =
2

L

∫ L

0
f(x) cos

(2n− 1)πx

2L
dx

=
−4

(2n− 1)π

∫ L

0
f ′(x) sin

(2n− 1)πx

2L
dx

=
−2
L

(
2L

(2n− 1)π

)2 ∫ L

0
f ′′(x) cos

(2n− 1)πx

2L
dx

40 / 48



An observation: derivative transfer

Consider the situation where f(x) is a polynomial with
f ′(0) = 0 = f(L). We get Fourier series on [0, L] in terms of eigen
functions for EVP 4.

f(x) =
∑
n≥1

dn cos
(2n− 1)πx

2L
dx

dn =
2

L

∫ L

0
f(x) cos

(2n− 1)πx

2L
dx

=
−4

(2n− 1)π

∫ L

0
f ′(x) sin

(2n− 1)πx

2L
dx

=
−2
L

(
2L

(2n− 1)π

)2 ∫ L

0
f ′′(x) cos

(2n− 1)πx

2L
dx

40 / 48



An observation: derivative transfer

Consider the situation where f(x) is a polynomial with
f ′(0) = 0 = f(L). We get Fourier series on [0, L] in terms of eigen
functions for EVP 4.

f(x) =
∑
n≥1

dn cos
(2n− 1)πx

2L
dx

dn =
2

L

∫ L

0
f(x) cos

(2n− 1)πx

2L
dx

=
−4

(2n− 1)π

∫ L

0
f ′(x) sin

(2n− 1)πx

2L
dx

=
−2
L

(
2L

(2n− 1)π

)2 ∫ L

0
f ′′(x) cos

(2n− 1)πx

2L
dx

40 / 48



An observation: derivative transfer

Consider the situation where f(x) is a polynomial with
f ′(0) = 0 = f(L). We get Fourier series on [0, L] in terms of eigen
functions for EVP 4.

f(x) =
∑
n≥1

dn cos
(2n− 1)πx

2L
dx

dn =
2

L

∫ L

0
f(x) cos

(2n− 1)πx

2L
dx

=
−4

(2n− 1)π

∫ L

0
f ′(x) sin

(2n− 1)πx

2L
dx

=
−2
L

(
2L

(2n− 1)π

)2 ∫ L

0
f ′′(x) cos

(2n− 1)πx

2L
dx

40 / 48



Examples of Fourier series

Find the Fourier expansion of
f(x) = x(x2 − 3Lx+ 2L2) on [0, L] in terms of the eigen

functions for EVP 1.
Soln. Note f(0) = 0 = f(L), f ′′(x) = 6(x− L).

Thus, using
derivative transfer we see the Fourier coefficient is

bn =
−2
L

(
L

nπ

)2 ∫ L

0
f ′′(x) sin

nπx

L
dx

=
−12L
n2π2

∫ L

0
(x− L) sin nπx

L
dx

=
12L2

n3π3

[
(x− L) cos nπx

L

∣∣∣L
0
−
∫ L

0
cos

nπx

L
dx

]

=
12L2

n3π3

[
L− L

nπ
sin

nπx

L

∣∣∣L
0

]
=

12L3

n3π3

41 / 48
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Therefore, the required Fourier expansion of f(x) on [0, L] is

12L3

π3

∞∑
n=1

1

n3
sin

nπx

L
�
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Examples of Fourier series

Example. Find the Fourier expansion of

f(x) = x2(3L− 2x) on [0, L]

in terms of eigen functions for EVP 2.

Soln. a0 =
1

L

∫ L

0
(3Lx2 − 2x3) dx

=
1

L

(
Lx3 − x4

2

)L
0

=
L3

2

f ′(x) = 6Lx− 6x2 =⇒ f ′(0) = f ′(L) = 0.

Note f ′′′(x) = −12. Thus, using derivative transfer we get
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an =
2

L

(
L

nπ

)3 ∫ L

0
f ′′′(x) sin

nπx

L
dx

=
−24
L

(
L

nπ

)3 ∫ L

0
sin

nπx

L
dx

=
24

L

(
L

nπ

)4

cos
nπx

L

∣∣L
0
=

24L3

n4π4
[(−1)n − 1]

Thus a2n = 0 and a2n−1 =
−48L3

(2n− 1)4π4
.

Thus, the required Fourier expansion of f(x) on [0, L] is

L3

2
− 48L3

π4

∞∑
n=1

1

(2n− 1)4
cos

(2n− 1)πx

L
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Examples of Fourier series

Example Find the Fourier expansion of

f(x) = x(2x2 − 9Lx+ 12L2) on [0, L]

in terms of the eigen functions for EVP 3.

Soln. We again use derivative transfer. Since f(0) = 0 = f ′(L)
and f ′′(x) = 6(2x− 3L), we get

cn =
−2
L

(
2L

(2n− 1)π

)2 ∫ L

0
f ′′(x) sin

(2n− 1)πx

2L
dx

=
−48L

(2n− 1)2π2

∫ L

0
(2x− 3L) sin

(2n− 1)πx

2L
dx

=
96L2

(2n− 1)3π3

[
(2x− 3L) cos

(2n− 1)πx

2L

∣∣L
0

−2
∫ L

0
cos

(2n− 1)πx

2L
dx
]
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=
96L2

(2n− 1)3π3

[
3L− 4L

(2n− 1)π
sin

(2n− 1)πx

2L

∣∣L
0

]

=
96L3

(2n− 1)3π3

[
3 + (−1)n 4

(2n− 1)π

]
Therefore, the required Fourier expansion of f(x) on [0, L] is

c
∞∑
n=1

1

(2n− 1)3

[
3 + (−1)n 4

(2n− 1)π

]
sin

(2n− 1)πx

2L

with c =
96L3

π3
.
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Examples of Fourier series

Example. Find the mixed Fourier cosine expansion of
f(x) = 3x3 − 4Lx2 + L3 on [0, L] in terms of the eigen functions
of EVP 4.

Soln. As f ′(0) = 0 = f(L), we can use derivative transfer. As
f ′′(x) = 2(9x− 4L), we get

dn =
−2
L

(
2L

(2n− 1)π

)2 ∫ L

0
f ′′(x) cos

(2n− 1)πx

2L
dx

=
−16L

(2n− 1)2π2

∫ L

0
(9x− 4L) cos

(2n− 1)πx

2L
dx

=
−32L2

(2n− 1)3π3
[
(9x− 4L) sin

(2n− 1)πx

2L

∣∣L
0

−9
∫ L

0
sin

(2n− 1)πx

2L
dx
]
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(9x− 4L) cos

(2n− 1)πx

2L
dx

=
−32L2

(2n− 1)3π3
[
(9x− 4L) sin

(2n− 1)πx

2L

∣∣L
0

−9
∫ L

0
sin

(2n− 1)πx

2L
dx
]
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=
−32L2

(2n− 1)3π3

[
(−1)n+15L+

18L

(2n− 1)π
cos

(2n− 1)πx

2L

∣∣L
0

]

=
32L3

(2n− 1)3π3

[
(−1)n5 + 18

(2n− 1)π

]
Therefore, the required Fourier expansion of f(x) on [0, L] is

32L3

π3

∞∑
n=1

1

(2n− 1)3

[
(−1)n5 + 18

(2n− 1)π

]
cos

(2n− 1)πx

2L

�
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