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Now we will start the study of Partial Differential Equations.
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Partial Differential Equations: Some Basics

In the rest of this course u will denote either a function of two
variables or a function of three variables.

A partial differential equation (PDE) is an equation involving u
and the partial derivatives of u. Given such an equation, our aim
will be to find a function which satisfies this equation.

The order of the PDE is the order of the highest partial derivative
of u in the equation.
Examples of some famous PDEs.

1 ut − k2(uxx + uyy) = 0 two dimensional Heat equation, order
2. Here u is a function of three variables.

2 utt − c2(uxx + uyy) = 0 two dimensional wave equation, order
2. Here u is a function of three variables.

3 uxx + uyy = 0 two dimensional Laplace equation, order 2.
Here u is a function of two variables.

4 utt + uxxxx Beam equation, order 4. Here u is a function of
two variables.
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Partial Differential Equations: Some Basics

Let S denote a space of functions. For example, it could denote
the space of smooth functions in two variables, or the space of
smooth functions in three variables.

A differential operator is a map D : S → S .

For example, we could take

Du = u(x, y)2 + 2 sinx(ux)2 + (uyy)
3 .

Definition

A differential operator is said to be linear if it satisfies the condition

D(u+ v) = D(u) +D(v) .

Heat equation, Wave equation, Laplace equation and Beam
equation are linear PDEs. The example just before the definition is
clearly not linear.
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Linear Differential Operators

The general form of first order linear differential operator in two
variables x, y is

L(u) = A(x, y)ux +B(x, y)uy + C(x, y)u

The general form of first order linear differential operator in three
variables x, y, z is

L(u) = Aux +Buy + Cuz +Du

where coefficients A,B,C,D and f are functions of x, y and z.
The general form of second order linear PDE in two variables x, y is

L(u) = Auxx +Buxy + Cuyy +Dux + Euy + Fu

where coefficients A,B,C,D,E, F and f are functions of x and y.
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Linear Differential Operators: Classification

Classification of second order linear PDE

Consider the linear differential operator L on functions in two
variables.

L = A
∂2

∂x2
+ 2B

∂2

∂x∂y
+ C

∂2

∂y2
+D

∂

∂x
+ E

∂

∂y
+ F

where A, . . . , F are functions of x and y.
To the operator L we associate the discriminant D(x, y) given by

D(x, y) = A(x, y)C(x, y)−B2(x, y)

The operator L is said to be

elliptic at (x0, y0), if D(x0, y0) > 0,

parabolic at (x0, y0), if D(x0, y0) = 0.

hyperbolic at (x0, y0), if D(x0, y0) < 0,
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Linear Differential Operators: Classification

Two dimensional Laplace operator ∆ =
∂2

∂x2
+

∂2

∂y2
is elliptic

in R2, since D = 1.

One dimensional Heat operator (there are two variables, t and

x) H =
∂

∂t
− ∂2

∂x2
is parabolic in R2, since D = 0.

One dimensional Wave operator (there are two variables, t

and x) � =
∂2

∂t2
− ∂2

∂x2
is hyperbolic in R2, since D = −1.

When the coefficients of an operator L are not constant, the type
may vary from point to point. Consider the Tricomi operator

T =
∂2

∂x2
+ x

∂2

∂y2

The discriminant D = x. Hence T is elliptic in the half-plane
x > 0, parabolic on the y-axis and hyperbolic in the half-plane
x < 0.
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Solving PDE’s: A few observations

Finally we begin our analysis of how to solve PDE’s.

Given a general PDE there is no hope of solving it. However, some
of the important PDE’s that occur in nature are linear, and these
can be solved.

Given a linear differential operator L, our aim will be to solve the
equation Lu = f with some boundary conditions. Let us make
some observations which will help us breakdown this question into
simpler pieces.

Definition

Let L be a linear differential operator. The PDE Lu = 0 is called
homogeneous and the PDE Lu = f , (f 6= 0) is non-homogeneous.
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Solving PDE’s: A few observations

Principle 1. If u1, . . . , uN are solutions of Lu = 0 and c1, . . . , cN

are constants, then
N∑
i=1

ciui is also a solution of Lu = 0.

In general, space of solutions of Lu = 0 contains infinitely many
independent solutions and we may need to use infinite linear
combinations of them.
Principle 2. Let L be a differentiable operator of order n. Assume

1 u1, u2, . . . are infinitely many solutions of Lu = 0.

2 the series w =
∑
i≥1

ciui with c1, c2, . . . constants, converges to

a function, which is differentiable n times;

3 term by term partial differentiation is valid for the series, that

is, Dw =
∑
i≥1

ciDui, D is any partial differentiation of order

≤ order of L.

Then w is again a solution of Lu = 0.
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Solving PDE’s: A few observations

Principle 3 for non-homogeneous PDE.
If ui is a solution of Lu = fi, then

w =

N∑
i=1

ciui ,

with constants ci, is a solution of Lu =

N∑
i=1

cifi.
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One-dimensional heat equation

The one dimensional heat equation is the PDE

ut = k2uxx, 0 < x < L, t > 0 .

Here k is a positive constant.

Imagine a rod of length L whose ends are maintained at a fixed
temperature. We may think of x as the space variable and t is the
time variable. The function u(x, t) is supposed to give the
temperature of the rod at point x and time t.

We can ask to solve this differential equation with various
boundary conditions.
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Dirichlet boundary conditions u(0, t) = u(L, t) = 0

Initial-boundary value problem is

ut = k2uxx 0 < x < L, t > 0

u(0, t) = 0 t ≥ 0

u(L, t) = 0, t ≥ 0

u(x, 0) = f(x), 0 ≤ x ≤ L

We now introduce the method of separation of variables. Let us

assume that there is a solution of the form v(x, t) = A(x)B(t)

Putting in the initial conditions we get

v(0, t) = A(0)B(t) = 0 and v(L, t) = A(L)B(t) = 0

As we don’t want B to be identically zero, we get

A(0) = 0 and A(L) = 0.
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Dirichlet boundary conditions u(0, t) = u(L, t) = 0

We also have vt = k2vxx. Putting u(x, t) = A(x)B(t) into this we
get

A(x)B′(t) = k2A′′(x)B(t) .

We may rewrite this as

B′(t)

B(t)
= k2

A′′(x)

A(x)
.

The LHS is a function of t and the RHS is a function of x. The
only way both can be equal is if both are equal to the same
constant, which we denote by −λ.
We need to solve eigenvalue problem

1 A′′(x) + λA(x) = 0, A(0) = 0, A(L) = 0, (∗)
2 B′(t) = −k2λB(t)

The second problem clearly has solution B(t) = exp(−k2λt).

13 / 45



Dirichlet boundary conditions u(0, t) = u(L, t) = 0

We already saw that the first problem has non-trvial solutions only
when λ > 0.
The eigenvalues of (∗) are

λn =
n2π2

L2

with associated eigenfunctions

An(x) = sin
nπx

L
, n ≥ 1.

We get infinitely many solutions for IBVP, one for each n ≥ 1

vn(x, t) = Bn(t)An(x)

= exp

(
−n2π2k2

L2
t

)
sin

nπx

L

Note vn(x, 0) = sin
nπx

L
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Dirichlet boundary conditions u(0, t) = u(L, t) = 0

Therefore

vn(x, t) = exp

(
−n2π2k2

L2
t

)
sin

nπx

L
satisfies the IBVP

ut = k2uxx 0 < x < L, t > 0

u(0, t) = 0 t ≥ 0

u(L, t) = 0 t ≥ 0

u(x, 0) = sin
nπx

L
0 ≤ x ≤ L

More generally, if α1, . . . , αm are constants and

um(x, t) =

m∑
n=1

αn exp

(
−n2π2k2

L2
t

)
sin

nπx

L

then um(x, t) satisfies the IBVP with initial condition

um(x, 0) =

m∑
n=1

αn sin
nπx

L
.
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Dirichlet boundary conditions u(0, t) = u(L, t) = 0

Let us consider the formal series

u(x, t) =

∞∑
n=1

αn exp

(
−n2π2k2

L2
t

)
sin

nπx

L

Heuristically, u(0, t) = u(L, t) = 0 and the above series satisfies
the equation ut = k2uxx. Moreover, setting t = 0 we get

u(x, 0) =

∞∑
n=1

αn sin
nπx

L

Thus, for this series to be a solution to our IBVP we would like to
have

f(x) =

∞∑
n=1

αn sin
nπx

L
0 ≤ x ≤ L

Is it possible that f has such an expansion?

Given f on [0, L], it has a Fourier series

f(x) =
∑
n≥1

bn sin
nπx

L
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Dirichlet boundary conditions u(0, t) = u(L, t) = 0

Definition

The formal solution of IBVP

ut = k2uxx 0 < x < L, t > 0

u(0, t) = 0 t ≥ 0

u(L, t) = 0 t ≥ 0

u(x, 0) = f(x) 0 ≤ x ≤ L
is

u(x, t) =
∞∑
n=1

αn exp

(
−n2π2k2

L2
t

)
sin

nπx

L

where

f(x) =

∞∑
n=1

αn sin
nπx

L
is the Fourier series of f on [0, L],

that is,

αn =
2

L

∫ L

0
f(x) sin

nπx

L
dx.
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Dirichlet boundary conditions u(0, t) = u(L, t) = 0

Because of negative exponential in u(x, t), the series in u(x, t)
converges for all t > 0.

Thus, the series u(x, t) =

∞∑
n=1

αn exp

(
−n2π2k2

L2
t

)
sin

nπx

L
is a

candidate for the solution we are looking for.

However, we need the following conditions too

1 The function u is once differentiable in the variable t and
twice differentiable in the variable x.

2 The derivative can be computed by differentiating inside the
summation.

If these two conditions are satisfied then u(x, t) is an actual
solution of the IBVP.

Both these conditions are satisfied if f(x) is continuous and
piecewise smooth on [0, L]. Hence we get the next result.
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Dirichlet boundary conditions u(0, t) = u(L, t) = 0

Theorem

Let f(x) be continuous and piecewise smooth on [0, L]. Assume
f(0) = f(L) = 0. Let

f(x) =

∞∑
n=1

αn sin
nπx

L
with αn =

2

L

∫ L

0
f(x) sin

nπx

L
dx be the

Fourier series of f on [0, L]. Then the IBVP

ut = k2uxx 0 < x < L, t > 0

u(0, t) = 0 t ≥ 0

u(L, t) = 0 t ≥ 0

u(x, 0) = f(x) 0 ≤ x ≤ L

has a solution

u(x, t) =

∞∑
n=1

αnexp

(
−n2π2k2

L2
t

)
sin

nπx

L

Here ut and uxx can be obtained by term-wise differentiation for
t > 0.
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Dirichlet boundary conditions u(0, t) = u(L, t) = 0

Example

Let f(x) = x(x2 − 3Lx+ 2L2). Solve IBVP

ut = k2uxx 0 < x < L, t > 0

u(0, t) = 0 t > 0

u(L, t) = 0 t > 0

u(x, 0) = f(x) 0 ≤ x ≤ L
The Fourier sine expansion of f(x) is

f(x) =
12L3

π3

∞∑
n=1

1

n3
sin

nπx

L
.

Therefore, the solution of IBVP is

u(x, t) =
12L3

π3

∞∑
n=1

1

n3
exp

(
−n2π2k2

L2
t

)
sin

nπx

L
.
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Neumann boundary conditions ux(0, t) = ux(L, t) = 0

Initial-boundary value problem is

ut = k2uxx 0 < x < L, t > 0

ux(0, t) = 0 t > 0

ux(L, t) = 0, t > 0

u(x, 0) = f(x), 0 ≤ x ≤ L

We again use the method of separation of variables. Let us assume

that there is a solution of the form v(x, t) = A(x)B(t) Putting in

the initial conditions we get

vx(0, t) = A′(0)B(t) = 0 and vx(L, t) = A′(L)B(t) = 0

As we don’t want B to be identically zero, we get

A′(0) = 0 and A′(L) = 0.
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Neumann boundary conditions ux(0, t) = ux(L, t) = 0

We also have vt = k2vxx. Putting u(x, t) = A(x)B(t) into this we
get

A(x)B′(t) = k2A′′(x)B(t) .

We may rewrite this as

B′(t)

B(t)
= k2

A′′(x)

A(x)
.

The LHS is a function of t and the RHS is a function of x. The
only way both can be equal is if both are equal to the same
constant, which we denote by −λ.
We need to solve eigenvalue problem

1 A′′(x) + λA(x) = 0, A′(0) = 0, A′(L) = 0, (∗)
2 B′(t) = −k2λB(t)

The second problem clearly has solution B(t) = exp(−k2λt).
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Neumann boundary conditions ux(0, t) = ux(L, t) = 0

The eigenvalues of (∗) are

λn =
n2π2

L2

with associated eigenfunctions

An(x) = cos
nπx

L
, n ≥ 0.

We get infinitely many solutions for IBVP, one for each n ≥ 0

vn(x, t) = Bn(t)An(x)

= exp

(
−n2π2k2

L2
t

)
cos

nπx

L

Note vn(x, 0) = cos
nπx

L
Therefore

vn(x, t) = exp

(
−n2π2k2

L2
t

)
cos

nπx

L
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Neumann boundary conditions ux(0, t) = ux(L, t) = 0

satisfies the IBVP

ut = k2uxx 0 < x < L, t > 0

ux(0, t) = 0 t > 0

ux(L, t) = 0 t > 0

u(x, 0) = cos
nπx

L
0 ≤ x ≤ L

More generally, if α0, . . . , αm are constants and

um(x, t) =

m∑
n=0

αn exp

(
−n2π2k2

L2
t

)
cos

nπx

L

then um(x, t) satisfies the IBVP with initial condition

um(x, 0) =

m∑
n=0

αn cos
nπx

L
.
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Neumann boundary conditions ux(0, t) = ux(L, t) = 0

Let us consider the formal series

u(x, t) =

∞∑
n=0

αn exp

(
−n2π2k2

L2
t

)
cos

nπx

L

Heuristically, ux(0, t) = ux(L, t) = 0 and the above series satisfies
the equation ut = k2uxx. Moreover, setting t = 0 we get

u(x, 0) =

∞∑
n=0

αn cos
nπx

L

Thus, for this series to be a solution to our IBVP we would like to
have

f(x) =

∞∑
n=0

αn cos
nπx

L
0 ≤ x ≤ L

Is it possible that f has such an expansion?

Given f on [0, L], it has a Fourier cosine series

f(x) =
∑
n≥0

an cos
nπx

L
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Neumann boundary conditions ux(0, t) = ux(L, t) = 0

Definition

The formal solution of IBVP

ut = k2uxx 0 < x < L, t > 0

ux(0, t) = 0 t > 0

ux(L, t) = 0 t > 0

u(x, 0) = f(x) 0 ≤ x ≤ L
is

u(x, t) =

∞∑
n=0

αn exp

(
−n2π2k2

L2
t

)
cos

nπx

L

where

S(x) =

∞∑
n=0

αn cos
nπx

L

is the Fourier sine series of f on [0, L] i.e.

α0 =
1

L

∫ L

0
f(x) dx αn =

2

L

∫ L

0
f(x) cos

nπx

L
dx.
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Neumann boundary conditions ux(0, t) = ux(L, t) = 0

Because of negative exponential in u(x, t), the series in u(x, t)
converges for all t > 0.

Thus, the series u(x, t) =

∞∑
n=0

αn exp

(
−n2π2k2

L2
t

)
cos

nπx

L
is a

candidate for the solution we are looking for.

However, we need the following conditions too

1 The function u is once differentiable in the variable t and
twice differentiable in the variable x.

2 The derivative can be computed by differentiating inside the
summation.

If these two conditions are satisfied then u(x, t) is an actual
solution of the IBVP.

Both these conditions are satisfied if f(x) is continuous and
piecewise smooth on [0, L]. Hence we get the next result.
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Neumann boundary conditions ux(0, t) = ux(L, t) = 0

Theorem

f(x) is continuous, piecewise smooth on [0, L]; f ′(0) = f ′(L) = 0.

Let S(x) =

∞∑
n=0

αn cos
nπx

L
be the Fourier series of f on [0, L].

Then the IBVP

ut = k2uxx 0 < x < L, t > 0

ux(0, t) = 0 t > 0

ux(L, t) = 0 t > 0

u(x, 0) = f(x) 0 ≤ x ≤ L

has a solution

u(x, t) =

∞∑
n=0

αnexp

(
−n2π2k2

L2
t

)
cos

nπx

L

Here ut and uxx can be obtained by term-wise differentiation for
t > 0.
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Neumann boundary conditions ux(0, t) = ux(L, t) = 0

Example

Let f(x) = x on [0, L]. Solve IBVP

ut = k2uxx 0 < x < L, t > 0

ux(0, t) = 0 t > 0

ux(L, t) = 0 t > 0

u(x, 0) = f(x) 0 ≤ x ≤ L

The Fourier cosine expansion of f(x) is

C(x) =
L

2
− 4L

π2

∞∑
n=1

1

(2n− 1)2
cos

(2n− 1)πx

L
.

Therefore, the solution of IBVP is
u(x, t) =

L

2
− 4L

π2

∞∑
n=1

1

(2n− 1)2
exp

(
−(2n− 1)2π2k2

L2
t

)
cos

(2n− 1)nπx

L
.
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Non homogeneous heat equation: Dirichlet boundary cond.

Let us now consider the following PDE
ut − k2uxx = F (x, t) 0 < x < L, t > 0

u(0, t) = f1(t) t > 0

u(L, t) = f2(t) t > 0

u(x, 0) = f(x) 0 ≤ x ≤ L

How do we solve this?

Let us first make the substitution

z(x, t) = u(x, t)− (1− x

L
)f1(t)−

x

L
f2(t)

Then clearly

zt − k2zxx = G(x, t)

z(0, t) = 0

z(L, t) = 0

z(x, 0) = g(x)
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Non homogeneous heat equation: Dirichlet boundary cond.

It is clear that we would have solved for u iff we have solved for z.
In view of this observation, let us try and solve the problem for z.

By observing the boundary conditions, we guess that we should try
and look for a solution of the type

z(x, t) =
∑
n≥1

Zn(t) sin(
nπx

L
)

Differentiating the above term by term we get that is satisfies the
equation

zt − k2zxx =
∑
n≥1

(
Z ′n(t) +

k2n2π2

L2
Zn(t)

)
sin(

nπx

L
)

Let us write
G(x, t) =

∑
n≥1

Gn(t) sin(
nπx

L
)
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Non homogeneous heat equation: Dirichlet boundary cond.

Thus, if we need zt − k2zxx = G(x, t) then we should have that

Gn(t) = Z ′n(t) +
k2n2π2

L2
Zn(t) (∗)

We also need that z(x, 0) = g(x).
If

g(x) =
∑
n≥1

bn sin
nπx

L

then we should have that

Zn(0) = bn (!)

Clearly, there is a unique solution to the differential equation (∗)
with initial condition (!).
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Non homogeneous heat equation: Dirichlet boundary cond.

The solution to the above equation is given by

Zn(t) = Ce−
k2n2π2

L2 t + e−
k2n2π2

L2 t
∫ t

0
Gn(s)e

k2n2π2

L2 sds

We can find the constant using the initial condition.

Thus, we let Zn(t) be this unique solution, then the series

z(x, t) =
∑
n≥1

Zn(t) sin(
nπx

L
)

solves our non homogeneous PDE with Dirichlet boundary
conditions for z.
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Non homogeneous heat equation: Dirichlet boundary cond.

Example

Let us now consider the following PDE
ut − uxx = et 0 < x < 1, t > 0

u(0, t) = 0 t > 0

u(1, t) = 0 t > 0

u(x, 0) = x(x− 1) 0 ≤ x ≤ 1

From the boundary conditions u(0, t) = u(1, t) = 0 it is clear that
we should look for solution in terms of Fourier sine series.

The Fourier sine series of F (x, t) is given by (for n ≥ 1)

Fn(t) = 2

∫ 1

0
F (x, t) sinnπx dx

= 2

∫ 1

0
et sinnπx dx

=
2(1− (−1)n)et

nπ
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Non homogeneous heat equation: Dirichlet boundary cond.

Example (continued ...)

Thus, the Fourier series for et is given by

et =
∑
n≥1

2(1− (−1)n)

nπ
et sinnπx

The Fourier sine series for f(x) = x(x− 1) is given by

x(x− 1) =
∑
n≥1

4((−1)n − 1)

(nπ)3
sinnπx

Substitute u(x, t) =
∑

n≥1 un(t) sinnπx into the equation
ut − uxx = et∑
n≥1

(
u′n(t) + n2π2un(t)

)
sinnπx =

∑
n≥1

2(1− (−1)n)

nπ
et sinnπx
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Non homogeneous heat equation: Dirichlet boundary cond.

Example (continued ...)

Thus, for n ≥ 1 and even we get

u′n(t) + n2π2un(t) = 0

that is,
un(t) = Cne

−n2π2t

If n ≥ 1 and even, we have that the Fourier coefficient of x(x− 1)
is 0. Thus, when we put un(0) = 0 we get Cn = 0.

For n ≥ 1 odd we get

u′n(t) + n2π2un(t) =
4

nπ
et

that is,

un(t) = e−n
2π2t

∫ t

0

4

nπ
esen

2π2sds+ Cne
−n2π2t
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Non homogeneous heat equation: Dirichlet boundary cond.

Example (continued ...)

If n ≥ 1 and odd, we have the Fourier coefficient of x(x− 1) is
−8

(nπ)3
. Thus, we get

un(0) = Cn =
−8

(nπ)3

Thus, the solution we are looking for is

u(x, t) =
∑
n≥0

(
e−(2n+1)2π2t

∫ t

0

4

(2n+ 1)π
ese(2n+1)2π2sds+

−8

((2n+ 1)π)3
e−n

2π2t
)

sin(2n+ 1)πx

37 / 45



Non homogeneous heat equation:Neumann boundary cond.

Let us now consider the following PDE
ut − k2uxx = F (x, t) 0 < x < L, t > 0

ux(0, t) = f1(t) t > 0

ux(L, t) = f2(t) t > 0

u(x, 0) = f(x) 0 ≤ x ≤ L

How do we solve this?Let us first make the substitution

z(x, t) = u(x, t)− (x− x2

2L
)f1(t)−

x2

2L
f2(t)

Then clearly

zt − k2zxx = G(x, t)

zx(0, t) = 0

zx(L, t) = 0

z(x, 0) = g(x)
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Non homogeneous heat equation:Neumann boundary cond.

It is clear that we would have solved for u iff we have solved for z.
In view of this observation, let us try and solve the problem for z.

By observing the boundary conditions, we guess that we should try
and look for a solution of the type

z(x, t) =
∑
n≥0

Zn(t) cos(
nπx

L
)

Differentiating the above term by term we get that is satisfies the
equation

zt − k2zxx =
∑
n≥0

(
Z ′n(t) +

k2n2π2

L2
Zn(t)

)
cos(

nπx

L
)

Let us write
G(x, t) =

∑
n≥0

Gn(t) cos(
nπx

L
)
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Thus, if we need zt − k2zxx = G(x, t) then we should have that

Gn(t) = Z ′n(t) +
k2n2π2

L2
Zn(t) (∗)

We also need that z(x, 0) = g(x).
If

g(x) =
∑
n≥0

bn cos
nπx

L

then we should have that

Zn(0) = bn (!)

Clearly, there is a unique solution to the differential equation (∗)
with initial condition (!).
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The solution to the above equation is given by

Zn(t) = Ce−
k2n2π2

L2 t + e−
k2n2π2

L2 t
∫ t

0
Gn(s)e

k2n2π2

L2 sds

We can find the constant using the initial condition.

Thus, we let Zn(t) be this unique solution, then the series

z(x, t) =
∑
n≥0

Zn(t) cos(
nπx

L
)

solves our non homogeneous PDE with Dirichlet boundary
conditions for z.
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Example

Let us now consider the following PDE
ut − uxx = et 0 < x < 1, t > 0

ux(0, t) = 0 t > 0

ux(1, t) = 0 t > 0

u(x, 0) = x(x− 1) 0 ≤ x ≤ 1

From the boundary conditions ux(0, t) = ux(1, t) = 0 it is clear
that we should look for solution in terms of Fourier cosine series.

The Fourier cosine series of F (x, t) is given by (for n ≥ 0)

F0(t) =

∫ 1

0
F (x, t) dx =

∫ 1

0
etdx = et

Fn(t) = 2

∫ 1

0
F (x, t) cosnπx dx = 2

∫ 1

0
et cosnπx dx = 0 n > 0
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Example (continued ...)

Thus, the Fourier series for et is simply et.

The Fourier cosine series for f(x) = x(x− 1) is given by

x(x− 1) = −1

6
+
∑
n≥1

2((−1)n + 1)

(nπ)2
cosnπx

Substitute u(x, t) =
∑

n≥0 un(t) cosnπx into the equation
ut − uxx = et ∑

n≥0

(
u′n(t) + n2π2un(t)

)
cosnπx = et
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Example (continued ...)

Thus, for n = 0 we get
u′0(t) = et

that is,
u0(t) = et + C0

In the case n = 0, we have that the Fourier coefficient of x(x− 1)
is −16 . Thus, when we put u0(0) = −1

6 we get C = −7
6 .

For n ≥ 1
u′n(t) + n2π2un(t) = 0

that is,
un(t) = Cne

−n2π2t

Let us now use the initial condition to determine the constants.
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Example (continued ...)

In the case n ≥ 1 and odd, we have that the Fourier coefficient of
x(x− 1) is 0. Thus, when we put un(0) = 0 we get Cn = 0.

In the case n ≥ 1 even, we have the Fourier coefficient of x(x− 1)
is 4

(nπ)2
. Thus, we get

Cn =
4

(nπ)2

Thus, the solution we are looking for is

u(x, t) =et − 7

6
+
∑
n≥1

( 1

(nπ)2
e−4n

2π2t
)

cos(2nπx)

45 / 45


