MA-207 Differential Equations II

Ronnie Sebastian

Department of Mathematics
Indian Institute of Technology Bombay
Powai, Mumbai - 76
September 7, 2021

One-dimensional wave equation

Consider the following differential equation

$$
u_{t t}=k^{2} u_{x x}, \quad 0<x<L, t>0
$$

called one-dimensional wave equation. Here k^{2} is a positive constant, x is the space variable and t is the time variable.

We wish to find solutions of the above PDE which satisfy the following initial and boundary conditions.
The initial conditions are

$$
u(x, 0)=f(x) \quad \text { and } \quad u_{t}(x, 0)=g(x)
$$

The (Dirichlet) boundary conditions are

$$
u(0, t)=u(L, t)=0
$$

Dirichlet boundary conditions: Getting some solutions

We will use the method of separation of variables to first find some solutions to the wave equation with boundary conditions. That is, we forget about the initial conditions for now.
Assume we have a solution of the type

$$
u(x, t)=A(x) B(t)
$$

Substituting this in wave equation $u_{t t}=k^{2} u_{x x}$ we get

$$
A(x) B^{\prime \prime}(t)=k^{2} A^{\prime \prime}(x) B(t)
$$

We can now separate the variables:

$$
\frac{A^{\prime \prime}(x)}{A(x)}=\frac{B^{\prime \prime}(t)}{k^{2} B(t)}
$$

The equality is between a function of x and a function of t, so both must be constant, say $-\lambda$.

Dirichlet boundary conditions: Getting some solutions

Thus, we get the conditions

$$
A^{\prime \prime}(x)+\lambda A(x)=0 \quad \text { and } \quad B^{\prime \prime}(t)+k^{2} \lambda B(t)=0
$$

We also have the boundary conditions

$$
u(0, t)=A(0) B(t)=0 \quad \text { and } \quad u(L, t)=A(L) B(t)=0
$$

Since we don't want $B(t)$ to be identically zero, we get

$$
A(0)=0 \quad \text { and } \quad A(L)=0
$$

First let us solve the eigenvalue problem

$$
\begin{array}{r}
A^{\prime \prime}(x)+\lambda A(x)=0 \\
A(0)=A(L)=0
\end{array}
$$

The eigenvalues and eigenfunctions are

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}} \quad A_{n}(x)=\sin \frac{n \pi x}{L}, n \geq 1
$$

Dirichlet boundary conditions: Getting some solutions

For each λ_{n} we consider the equation in the t variable

$$
B^{\prime \prime}(t)+k^{2} \lambda B(t)=0 .
$$

Thus, for each λ_{n} we get a solution for B given by

$$
B_{n}(t)=\alpha_{n} \cos \left(\frac{k n \pi}{L} t\right)+\frac{\beta_{n} L}{k n \pi} \sin \left(\frac{k n \pi}{L} t\right)
$$

where α_{n} and β_{n} are real numbers.
Thus, we get a solution for each $n \geq 1$
$u_{n}(x, t)=B_{n}(t) A_{n}(x)=\left(\alpha_{n} \cos \left(\frac{k n \pi}{L} t\right)+\frac{\beta_{n} L}{k n \pi} \sin \left(\frac{k n \pi}{L} t\right)\right) \sin \frac{n \pi x}{L}$

Dirichlet boundary conditions: Formal solution

From the above we conclude that one possible solution of the wave equation with boundary conditions is,

$$
u(x, t)=\sum_{n \geq 1}\left(\alpha_{n} \cos \left(\frac{k n \pi}{L} t\right)+\frac{\beta_{n} L}{k n \pi} \sin \left(\frac{k n \pi}{L} t\right)\right) \sin \frac{n \pi x}{L} .
$$

This function satisfies

$$
\begin{gathered}
u(x, 0)=\sum_{n \geq 1} \alpha_{n} \sin \frac{n \pi x}{L} \quad \text { and } \\
u_{t}(x, 0)=\sum_{n \geq 1} \beta_{n} \sin \frac{n \pi x}{L} .
\end{gathered}
$$

Dirichlet boundary conditions: Formal solution

Thus, if $f(x)$ and $g(x)$ have Fourier expansions given by

$$
\begin{gathered}
f(x)=\sum_{n \geq 1} \alpha_{n} \sin \frac{n \pi x}{L} \text { and } \\
g(x)=\sum_{n \geq 1} \beta_{n} \sin \frac{n \pi x}{L} .
\end{gathered}
$$

then we will have solved our wave equation with the given boundary and initial conditions.

Definition

Consider the wave equation with initial and boundary values given by

$$
\begin{array}{lcc}
u_{t t}=k^{2} u_{x x} & 0<x<L, & t>0 \\
u(0, t)=u(L, t)=0 & t>0 \\
u(x, 0)=f(x) & 0 \leq x \leq L & \\
u_{t}(x, 0)=g(x) \quad 0 \leq x \leq L &
\end{array}
$$

Dirichlet boundary conditions: Formal solution

Definition (continued)

The formal solution of the above problem is

$$
u(x, t)=\sum_{n \geq 1}\left(\alpha_{n} \cos \left(\frac{k n \pi}{L} t\right)+\frac{\beta_{n} L}{k n \pi} \sin \left(\frac{k n \pi}{L} t\right)\right) \sin \frac{n \pi x}{L}
$$

where

$$
\begin{aligned}
\alpha_{n}= & \frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x \quad \text { and } \\
& \beta_{n}=\frac{2}{L} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x
\end{aligned}
$$

We say $u(x, t)$ is a formal solution, since the series for $u(x, t)$ may NOT make sense, or it may not make sense to differentiate it term wise.

Dirichlet boundary conditions: Actual solution

Theorem

Let f and g be continuous and piecewise smooth functions on $[0, L]$ such that $f(0)=f(L)=0$. Then the problem given by

$$
\begin{array}{lcc}
u_{t t}=k^{2} u_{x x} & 0<x<L, & t>0 \\
u(0, t)=u(L, t)=0 & t \geq 0 \\
u(x, 0)=f(x) & 0 \leq x \leq L & \\
u_{t}(x, 0)=g(x) \quad 0 \leq x \leq L &
\end{array}
$$

has an actual solution, which is given by

$$
u(x, t)=\sum_{n \geq 1}\left(\alpha_{n} \cos \left(\frac{k n \pi}{L} t\right)+\frac{\beta_{n} L}{k n \pi} \sin \left(\frac{k n \pi}{L} t\right)\right) \sin \frac{n \pi x}{L}
$$

where
$\alpha_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x \quad$ and $\quad \beta_{n}=\frac{2}{L} \int_{0}^{L} g(x) \sin \frac{n \pi x}{L} d x$.

Dirichlet boundary conditions: Example

Example

Consider the wave equation with initial and boundary value given by

$$
\begin{array}{lr}
u_{t t}=5 u_{x x} \quad 0<x<1, & t>0 \\
u(0, t)=u(L, t)=0 & t>0 \\
u(x, 0)=\sin \pi x+3 \sin 5 \pi x & 0 \leq x \leq 1 \\
u_{t}(x, 0)=\sin 5 \pi x-26 \sin 9 \pi x & 0 \leq x \leq 1
\end{array}
$$

Since both f and g are given by their Fourier series in the above example, it is clear that

$$
\begin{array}{ll}
\alpha_{1}=1 & \beta_{1}=0 \\
\alpha_{5}=3 & \beta_{5}=1 \\
\alpha_{9}=0 & \beta_{9}=-26
\end{array}
$$

Dirichlet boundary conditions: Example

Example (continued)

Thus, the solution to the above problem is given by

$$
\begin{aligned}
u(x, t)= & \cos (\sqrt{5} \pi t) \sin (\pi x)+(3 \cos (\sqrt{5} \pi t)+ \\
& \left.\frac{1}{5 \pi \sqrt{5}} \sin (\sqrt{5} \pi t)\right) \sin (5 \pi x)+\frac{-26}{9 \pi \sqrt{5}} \sin (\sqrt{9} \pi t) \sin (9 \pi x)
\end{aligned}
$$

Neumann boundary condition

Consider the following differential equation

$$
u_{t t}=k^{2} u_{x x}, \quad 0<x<L, t>0
$$

We wish to find solutions of the above PDE which satisfy the following initial and boundary conditions.
The initial conditions are

$$
u(x, 0)=f(x) \quad \text { and } \quad u_{t}(x, 0)=g(x)
$$

The (Neumann) boundary conditions are

$$
u_{x}(0, t)=u_{x}(L, t)=0 .
$$

Neumann boundary conditions: Getting some solutions

We will use the method of separation of variables to first find some solutions to the wave equation with boundary conditions. That is, we forget about the initial conditions for now.
Assume we have a solution of the type

$$
u(x, t)=A(x) B(t) .
$$

Substituting this in wave equation $u_{t t}=k^{2} u_{x x}$ we get

$$
A(x) B^{\prime \prime}(t)=k^{2} A^{\prime \prime}(x) B(t)
$$

We can now separate the variables:

$$
\frac{A^{\prime \prime}(x)}{A(x)}=\frac{B^{\prime \prime}(t)}{k^{2} B(t)}
$$

The equality is between a function of x and a function of t, so both must be constant, say $-\lambda$.

Neumann boundary conditions: Getting some solutions

Thus, we get the conditions

$$
A^{\prime \prime}(x)+\lambda A(x)=0 \quad \text { and } \quad B^{\prime \prime}(t)+k^{2} \lambda B(t)=0
$$

We also have the boundary conditions

$$
u_{x}(0, t)=A^{\prime}(0) B(t)=0 \quad \text { and } \quad u_{x}(L, t)=A^{\prime}(L) B(t)=0 .
$$

Since we don't want $B(t)$ to be identically zero, we get

$$
A^{\prime}(0)=0 \quad \text { and } \quad A^{\prime}(L)=0
$$

First let us solve the eigenvalue problem

$$
\begin{gathered}
A^{\prime \prime}(x)+\lambda A(x)=0 \\
A^{\prime}(0)=A^{\prime}(L)=0
\end{gathered}
$$

Recall from the section on eigenvalue problems, that we need that $\lambda \geq 0$. The solutions to this problem are given by

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}} \quad n \geq 0 \quad A_{n}(x)=\cos \frac{n \pi x}{L}, n \geq 0
$$

Neumann boundary conditions: Getting some solutions

For each λ_{n} we consider the equation in the t variable

$$
B^{\prime \prime}(t)+k^{2} \lambda_{n} B(t)=0
$$

For $n=0$ we get $B_{0}(t)=\beta_{0} t+\alpha_{0}$.
For each $n \geq 1$ we get a solution for $B(t)$ given by

$$
B_{n}(t)=\alpha_{n} \cos \left(\frac{k n \pi}{L} t\right)+\frac{\beta_{n} L}{k n \pi} \sin \left(\frac{k n \pi}{L} t\right)
$$

where α_{n} and β_{n} are real numbers.
Thus, we get a solution for each $n \geq 1$
$u_{n}(x, t)=B_{n}(t) A_{n}(x)=\left(\alpha_{n} \cos \left(\frac{k n \pi}{L} t\right)+\frac{\beta_{n} L}{k n \pi} \sin \left(\frac{k n \pi}{L} t\right)\right) \cos \frac{n \pi x}{L}$

Neumann boundary conditions: Formal solution

For $n=0$ we get

$$
u_{0}(x, t)=B_{0}(t) A_{0}(x)=\beta_{0} t+\alpha_{0}
$$

From the above we conclude that one possible solution of the wave equation with boundary conditions is,
$u(x, t)=\beta_{0} t+\alpha_{0}+\sum_{n \geq 1}\left(\alpha_{n} \cos \left(\frac{k n \pi}{L} t\right)+\frac{\beta_{n} L}{k n \pi} \sin \left(\frac{k n \pi}{L} t\right)\right) \cos \frac{n \pi x}{L}$.

This function satisfies

$$
\begin{gathered}
u(x, 0)=\alpha_{0}+\sum_{n \geq 1} \alpha_{n} \cos \frac{n \pi x}{L} \text { and } \\
u_{t}(x, 0)=\beta_{0}+\sum_{n \geq 1} \beta_{n} \cos \frac{n \pi x}{L}
\end{gathered}
$$

Neumann boundary conditions: Formal solution

Thus, if $f(x)$ and $g(x)$ have Fourier expansions given by

$$
\begin{gathered}
f(x)=\alpha_{0}+\sum_{n \geq 1} \alpha_{n} \cos \frac{n \pi x}{L} \quad \text { and } \\
g(x)=\beta_{0}+\sum_{n \geq 1} \beta_{n} \cos \frac{n \pi x}{L}
\end{gathered}
$$

then we will have solved our wave equation with the given boundary and initial conditions.

Definition

Consider the wave equation with initial and boundary values given by

$$
\begin{array}{lcc}
u_{t t}=k^{2} u_{x x} & 0<x<L, & t>0 \\
u_{x}(0, t)=u_{x}(L, t)=0 & t>0 \\
u(x, 0)=f(x) & 0 \leq x \leq L & \\
u_{t}(x, 0)=g(x) & 0 \leq x \leq L &
\end{array}
$$

Neumann boundary conditions: Formal solution

Definition (continued)

The formal solution of the above problem is

$$
\begin{aligned}
& u(x, t)=\beta_{0} t+\alpha_{0}+ \\
& \quad \sum_{n \geq 1}\left(\alpha_{n} \cos \left(\frac{k n \pi}{L} t\right)+\frac{\beta_{n} L}{k n \pi} \sin \left(\frac{k n \pi}{L} t\right)\right) \cos \frac{n \pi x}{L}
\end{aligned}
$$

where

$$
\begin{array}{ll}
\alpha_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x & \alpha_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \text { and } \\
\beta_{0}=\frac{1}{L} \int_{0}^{L} g(x) d x & \beta_{n}=\frac{2}{L} \int_{0}^{L} g(x) \cos \frac{n \pi x}{L} d x
\end{array}
$$

We say $u(x, t)$ is a formal solution, since the series for $u(x, t)$ may NOT make sense, or it may not make sense to differentiate it term wise.

Neumann boundary conditions: Actual solution

Theorem

Let f and g be continuous and piecewise smooth functions on $[0, L]$. Then the problem given by

$$
\begin{array}{lcc}
u_{t t}=k^{2} u_{x x} & 0<x<L, & t>0 \\
u_{x}(0, t)=u_{x}(L, t)=0 & t \geq 0 \\
u(x, 0)=f(x) & 0 \leq x \leq L & \\
u_{t}(x, 0)=g(x) & 0 \leq x \leq L &
\end{array}
$$

has an actual solution, which is given by

$$
\begin{aligned}
& u(x, t)=\beta_{0} t+\alpha_{0}+ \\
& \quad \sum_{n \geq 1}\left(\alpha_{n} \cos \left(\frac{k n \pi}{L} t\right)+\frac{\beta_{n} L}{k n \pi} \sin \left(\frac{k n \pi}{L} t\right)\right) \cos \frac{n \pi x}{L} .
\end{aligned}
$$

where

$$
\begin{array}{ll}
\alpha_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x & \alpha_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \quad \text { and } \\
\beta_{0}=\frac{1}{L} \int_{0}^{L} g(x) d x & \beta_{n}=\frac{2}{L} \int_{0}^{L} g(x) \cos \frac{n \pi x}{L} d x .
\end{array}
$$

Neumann boundary conditions: Example

Example

Consider the wave equation with initial and boundary value given by

$$
\begin{aligned}
& u_{t t}=5 u_{x x} \quad 0<x<1, \quad t>0 \\
& u_{x}(0, t)=u_{x}(L, t)=0 \quad t>0 \\
& u(x, 0)=34+\cos \pi x+3 \cos 5 \pi x \quad 0 \leq x \leq 1 \\
& u_{t}(x, 0)=23+\cos 5 \pi x-26 \cos 9 \pi x
\end{aligned} \quad 0 \leq x \leq 1 .
$$

Since both f and g are given by their Fourier series in the above example, it is clear that

$$
\begin{array}{ll}
\alpha_{0}=34 & \beta_{0}=23 \\
\alpha_{1}=1 & \beta_{1}=0 \\
\alpha_{5}=3 & \beta_{5}=1 \\
\alpha_{9}=0 & \beta_{9}=-26
\end{array}
$$

Neumann boundary conditions: Example

Example (continued)

Thus, the solution to the above problem is given by

$$
\begin{aligned}
u(x, t) & =23 t+34+\cos (\sqrt{5} \pi t) \cos (\pi x) \\
& +\left(3 \cos (\sqrt{5} \pi t)+\frac{1}{5 \pi \sqrt{5}} \sin (\sqrt{5} \pi t)\right) \cos (5 \pi x) \\
& \frac{-26}{9 \pi \sqrt{5}} \sin (\sqrt{9} \pi t) \cos (9 \pi x)
\end{aligned}
$$

Non homogeneous wave equation:Dirichlet boundary cond.

Let us now consider the following PDE

$$
\begin{array}{lc}
u_{t t}-k^{2} u_{x x}=F(x, t) & 0<x<L, \quad t>0 \\
u(0, t)=f_{1}(t) & t>0 \\
u(L, t)=f_{2}(t) & t>0 \\
u(x, 0)=f(x) & 0 \leq x \leq L \\
u_{t}(x, 0)=g(x) & 0 \leq x \leq L
\end{array}
$$

How do we solve this?
Let us first make the substitution

$$
z(x, t)=u(x, t)-\left(1-\frac{x}{L}\right) f_{1}(t)-\frac{x}{L} f_{2}(t)
$$

Then clearly

- $z_{t t}-k^{2} z_{x x}=G(x, t)$
- $z(0, t)=0$
- $z(L, t)=0$
- $z(x, 0)=v(x)$
- $z_{t}(x, 0)=w(x)$

Non homogeneous wave equation:Dirichlet boundary cond.

It is clear that we would have solved for u iff we have solved for z. In view of this observation, let us try and solve the problem for z.

By observing the boundary conditions, we guess that we should try and look for a solution of the type

$$
z(x, t)=\sum_{n \geq 1} Z_{n}(t) \sin \left(\frac{n \pi x}{L}\right)
$$

Differentiating the above term by term we get that is satisfies the equation

$$
z_{t t}-k^{2} z_{x x}=\sum_{n \geq 1}\left(Z_{n}^{\prime \prime}(t)+\frac{k^{2} n^{2} \pi^{2}}{L^{2}} Z_{n}(t)\right) \sin \left(\frac{n \pi x}{L}\right)
$$

Let us write

$$
G(x, t)=\sum_{n \geq 1} G_{n}(t) \sin \left(\frac{n \pi x}{L}\right)
$$

Non homogeneous PDE: Dirichlet boundary condition

Thus, if we need $z_{t t}-k^{2} z_{x x}=G(x, t)$ then we should have that

$$
\begin{equation*}
G_{n}(t)=Z_{n}^{\prime \prime}(t)+\frac{k^{2} n^{2} \pi^{2}}{L^{2}} Z_{n}(t) \tag{*}
\end{equation*}
$$

We also need that $z(x, 0)=v(x)$ and $z_{t}(x, 0)=w(x)$.
If

$$
v(x)=\sum_{n \geq 1} b_{n} \sin \frac{n \pi x}{L} \quad w(x)=\sum_{n \geq 1} c_{n} \sin \frac{n \pi x}{L}
$$

then we should have that

$$
\begin{equation*}
Z_{n}(0)=b_{n} \quad Z_{n}^{\prime}(0)=c_{n} \tag{!}
\end{equation*}
$$

Clearly, there is a unique solution to the differential equation $(*)$ with initial condition (!).

Non homogeneous wave equation:Dirichlet boundary cond.

Thus, we let $Z_{n}(t)$ be this unique solution, then the series

$$
z(x, t)=\sum_{n \geq 1} Z_{n}(t) \sin \left(\frac{n \pi x}{L}\right)
$$

solves our non homogeneous PDE with Dirichlet boundary conditions for z.

Non homogeneous wave equation:Dirichlet boundary cond.

Example

Let us now consider the following PDE

$$
\begin{array}{lc}
u_{t t}-u_{x x}=e^{t} & 0<x<1, \quad t>0 \\
u(0, t)=0 & t>0 \\
u(1, t)=0 & t>0 \\
u(x, 0)=x(x-1) & 0 \leq x \leq 1 \\
u_{t}(x, 0)=0 & 0 \leq x \leq 1
\end{array}
$$

From the boundary conditions $u(0, t)=u(1, t)=0$ it is clear that we should look for solution in terms of Fourier sine series.

The Fourier sine series of $F(x, t)$ is given by (for $n \geq 1$)

$$
\begin{aligned}
F_{n}(t) & =2 \int_{0}^{1} F(x, t) \sin n \pi x d x \\
& =2 \int_{0}^{1} e^{t} \sin n \pi x d x=\frac{2\left(1-(-1)^{n}\right) e^{t}}{n \pi}
\end{aligned}
$$

Non homogeneous wave equation:Dirichlet boundary cond.

Example (continued ...)

Thus, the Fourier series for e^{t} is given by

$$
e^{t}=\sum_{n \geq 1} \frac{2\left(1-(-1)^{n}\right)}{n \pi} e^{t} \sin n \pi x
$$

The Fourier sine series for $f(x)=x(x-1)$ is given by

$$
x(x-1)=\sum_{n \geq 1} \frac{4\left((-1)^{n}-1\right)}{(n \pi)^{3}} \sin n \pi x
$$

Substitute $u(x, t)=\sum_{n \geq 1} u_{n}(t) \sin n \pi x$ into the equation $u_{t t}-u_{x x}=e^{t}$

$$
\sum_{n \geq 1}\left(u_{n}^{\prime \prime}(t)+n^{2} \pi^{2} u_{n}(t)\right) \sin n \pi x=\sum_{n \geq 1} \frac{2\left(1-(-1)^{n}\right)}{n \pi} e^{t} \sin n \pi x
$$

Non homogeneous wave equation:Dirichlet boundary cond.

Example (continued ...)

Thus, for $n \geq 1$ and even we get

$$
u_{n}^{\prime \prime}(t)+n^{2} \pi^{2} u_{n}(t)=0
$$

that is,

$$
u_{n}(t)=C_{n} \cos n \pi t+D_{n} \sin n \pi t
$$

Since n is even, the nth Fourier coefficient of $f(x)$ is 0 . Thus, we get that $C_{n}=0$. Further, since $g(x)=0$, the nth Fourier coefficient is 0 . Thus, we get that $D_{n}=0$.

We conclude that $u_{n}(t)=0$ for $n \geq 1$ and even.

Non homogeneous wave equation:Dirichlet boundary cond.

Example

For $n \geq 1$ and odd we get

$$
u_{n}^{\prime \prime}(t)+n^{2} \pi^{2} u_{n}(t)=\frac{4}{n \pi} e^{t}
$$

If we put $u_{n}(t)=c e^{t}$ then we get

$$
c e^{t}+n^{2} c e^{t}=\frac{4}{n \pi} e^{t}
$$

Solving the above we get that $\frac{4}{n\left(n^{2}+1\right) \pi} e^{t}$ is a solution.
The general solution is given by

$$
u_{n}(t)=\frac{4}{n\left(n^{2}+1\right) \pi} e^{t}+C_{n} \cos n \pi t+D_{n} \sin n \pi t
$$

Let us now use the initial condition to determine the constants.

Non homogeneous wave equation:Dirichlet boundary cond.

Example (continued ...)

In the case $n \geq 1$ odd, we have the Fourier coefficient of $x(x-1)$ is $\frac{-8}{(n \pi)^{3}}$. Thus, we get

$$
C_{n}+\frac{4}{n\left(n^{2}+1\right) \pi}=\frac{-8}{(n \pi)^{3}}
$$

The nth Fourier coefficient of g is 0 , and so we get

$$
u_{n}^{\prime}(0)=\frac{4}{n\left(n^{2}+1\right) \pi}+n D_{n}=0
$$

Thus, the solution we are looking for is given by

$$
u(x, t)=\sum_{n \geq 0} u_{2 n+1}(t) \sin (2 n+1) \pi x
$$

where $u_{n}(t), C_{n}$ and D_{n} are given as above.

Non homogeneous wave equation:Neumann boundary con.

Let us now consider the following PDE

$$
\begin{array}{lc}
u_{t t}-k^{2} u_{x x}=F(x, t) & 0<x<L, \quad t>0 \\
u_{x}(0, t)=f_{1}(t) & t>0 \\
u_{x}(L, t)=f_{2}(t) & t>0 \\
u(x, 0)=f(x) & 0 \leq x \leq L \\
u_{t}(x, 0)=g(x) & 0 \leq x \leq L
\end{array}
$$

How do we solve this?
Let us first make the substitution

$$
z(x, t)=u(x, t)-\left(x-\frac{x^{2}}{2 L}\right) f_{1}(t)-\frac{x^{2}}{2 L} f_{2}(t)
$$

Then clearly

- $z_{t t}-k^{2} z_{x x}=G(x, t)$
- $z_{x}(0, t)=0$
- $z_{x}(L, t)=0$
- $z(x, 0)=v(x)$
- $z_{t}(x, 0)=w(x)$

Non homogeneous wave equation:Neumann boundary con.

It is clear that we would have solved for u iff we have solved for z. In view of this observation, let us try and solve the problem for z.

By observing the boundary conditions, we guess that we should try and look for a solution of the type

$$
z(x, t)=\sum_{n \geq 0} Z_{n}(t) \cos \left(\frac{n \pi x}{L}\right)
$$

Differentiating the above term by term we get that is satisfies the equation

$$
z_{t t}-k^{2} z_{x x}=\sum_{n \geq 0}\left(Z_{n}^{\prime \prime}(t)+\frac{k^{2} n^{2} \pi^{2}}{L^{2}} Z_{n}(t)\right) \cos \left(\frac{n \pi x}{L}\right)
$$

Let us write

$$
G(x, t)=\sum_{n \geq 0} G_{n}(t) \cos \left(\frac{n \pi x}{L}\right)
$$

Non homogeneous wave equation:Neumann boundary con.

Thus, if we need $z_{t t}-k^{2} z_{x x}=G(x, t)$ then we should have that

$$
\begin{equation*}
G_{n}(t)=Z_{n}^{\prime \prime}(t)+\frac{k^{2} n^{2} \pi^{2}}{L^{2}} Z_{n}(t) \tag{*}
\end{equation*}
$$

We also need that $z(x, 0)=v(x)$ and $z_{t}(x, 0)=w(x)$.
If

$$
v(x)=\sum_{n \geq 0} b_{n} \cos \frac{n \pi x}{L} \quad w(x)=\sum_{n \geq 0} c_{n} \cos \frac{n \pi x}{L}
$$

then we should have that

$$
\begin{equation*}
Z_{n}(0)=b_{n} \quad Z_{n}^{\prime}(0)=c_{n} \tag{!}
\end{equation*}
$$

Clearly, there is a unique solution to the differential equation $(*)$ with initial condition (!).

Non homogeneous wave equation:Neumann boundary con.

Thus, we let $Z_{n}(t)$ be this unique solution, then the series

$$
z(x, t)=\sum_{n \geq 0} Z_{n}(t) \cos \left(\frac{n \pi x}{L}\right)
$$

solves our non homogeneous PDE with Dirichlet boundary conditions for z.

Non homogeneous wave equation:Neumann boundary con.

Example

Let us now consider the following PDE

$$
\begin{array}{lc}
u_{t t}-u_{x x}=e^{t} & 0<x<1, \quad t>0 \\
u_{x}(0, t)=0 & t>0 \\
u_{x}(1, t)=0 & t>0 \\
u(x, 0)=x(x-1) & 0 \leq x \leq 1 \\
u_{t}(x, 0)=0 & 0 \leq x \leq 1
\end{array}
$$

From the boundary conditions $u_{x}(0, t)=u_{x}(1, t)=0$ it is clear that we should look for solution in terms of Fourier cosine series.

The Fourier cosine series of $F(x, t)$ is given by (for $n \geq 0$)

$$
\begin{aligned}
F_{0}(t) & =\int_{0}^{1} F(x, t) d x=\int_{0}^{1} e^{t} d x=e^{t} \\
F_{n}(t) & =2 \int_{0}^{1} F(x, t) \cos n \pi x d x=2 \int_{0}^{1} e^{t} \cos n \pi x d x=0 \quad n>0
\end{aligned}
$$

Non homogeneous wave equation:Neumann boundary con.

Example (continued ...)

Thus, the Fourier series for e^{t} is simply e^{t}.
The Fourier cosine series for $f(x)=x(x-1)$ is given by

$$
x(x-1)=-\frac{1}{6}+\sum_{n \geq 1} \frac{2\left((-1)^{n}+1\right)}{(n \pi)^{2}} \cos n \pi x
$$

Substitute $u(x, t)=\sum_{n \geq 0} u_{n}(t) \cos n \pi x$ into the equation $u_{t t}-u_{x x}=e^{t}$

$$
\sum_{n \geq 0}\left(u_{n}^{\prime \prime}(t)+n^{2} \pi^{2} u_{n}(t)\right) \cos n \pi x=e^{t}
$$

Non homogeneous wave equation:Neumann boundary con.

Example (continued ...)

Thus, for $n=0$ we get

$$
u_{0}^{\prime \prime}(t)=e^{t}
$$

that is,

$$
u_{0}(t)=e^{t}+C t+D
$$

Let us now use the initial condition to determine the constants.
In the case $n=0$, we have that the Fourier coefficient of $x(x-1)$ is $\frac{-1}{6}$. Thus, when we put $u_{0}(0)=-\frac{1}{6}$ we get $1+D=-\frac{1}{6}$.
We also have $u_{0}^{\prime}(0)=0$, that is, $1+C=0$.
Thus,

$$
u_{0}(t)=e^{t}-t-\frac{7}{6}
$$

Non homogeneous wave equation:Neumann boundary con.

Example (continued ...)

For $n \geq 1$

$$
u_{n}^{\prime \prime}(t)+n^{2} \pi^{2} u_{n}(t)=0
$$

that is,

$$
u_{n}(t)=C_{n} \cos n \pi t+D_{n} \sin n \pi t
$$

In the case $n \geq 1$ odd, we have that the Fourier coefficient of $x(x-1)$ is 0 . Thus, when we put $u_{n}(0)=0$ we get $C_{n}=0$.

We also have $u_{n}^{\prime}(0)=0$, that is, $D_{n}=0$. Thus, if n is odd then $u_{n}(t)=0$.
In the case $n \geq 1$ even, we have the Fourier coefficient of $x(x-1)$ is $\frac{4}{(n \pi)^{2}}$. Thus, we get

$$
C_{n}=\frac{4}{(n \pi)^{2}}
$$

We also have $u_{n}^{\prime}(0)=0$, that is, $D_{n}=0$.

Non homogeneous wave equation:Neumann boundary con.

Example (continued ...)

Thus, when n is even we get

$$
u_{n}(t)=\frac{4}{(n \pi)^{2}} \cos n \pi t
$$

The solution we are looking for is

$$
u(x, t)=e^{t}-t-\frac{7}{6}+\sum_{n \geq 1} \frac{4}{4(n \pi)^{2}} \cos 2 n \pi t \cos 2 n \pi x
$$

