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Two dimensional Laplace equation

Consider the following differential equation

uxx + uyy = 0, 0 < x < a, 0 < y < b,

called the Laplace equation in two variables.

We can can ask for solutions to the above equation, which satisfy
certain boundary conditions.

For example, we will work out the case where

u(x, 0) = f(x) u(x, b) = 0 0 ≤ x ≤ a
u(0, y) = 0 u(a, y) = 0 0 ≤ y ≤ b

Let us apply the method of separation of variables. Let
u(x, y) = A(x)B(y). Then the differential equation becomes

A′′(x)B(y) +A(x)B′′(y) = 0
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Dirichlet boundary conditions: Finding some solutions

Thus, we have

−A′′(x)

A(x)
=
B′′(y)

B(y)
= constant

Since u(0, y) = A(0)B(y) = 0, u(a, y) = A(a)B(y) = 0 and we do
not want B(y) to be identically zero, we get that A(0) = 0 and
A(a) = 0.

This boundary condition on A forces that the constant above
should be positive. Let us denote this positive constant by λ2.

For every n ≥ 1, let

λn =
nπ

a
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Dirichlet boundary conditions: Finding some solutions

For each n ≥ 1, we have a solution to

A′′(x) + λ2nA(x) = 0

A(0) = 0 = A(a)

given by

An(x) = sin
(nπx

a

)
Since we do not want A(x) to be identically 0 and
u(x, b) = A(x)B(b) = 0, this forces that Y (b) = 0. Let us also
impose the condition that Y (0) = 1.

Next consider for each λn the problem

B′′(y)− λ2nB(y) = 0

B(0) = 1

B(b) = 0

4 / 48



Dirichlet boundary conditions: Finding some solutions

The solutions to the above equation are given by

Bn(y) = sinh
(nπ(b− y)

a

)/
sinh

(nπb
a

)
.

Thus, for each n ≥ 1 we get a solution

un(x, y) = sin
(nπx

a

)
sinh

(nπ(b− y)

a

)/
sinh

(nπb
a

)
Now consider the series

u(x, y) =
∑
n≥1

αn sin
(nπx

a

)
sinh

(nπ(b− y)

a

)/
sinh

(nπb
a

)
,

where αn are real numbers.
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Dirichlet boundary conditions: Formal solutions

This gives that

u(x, 0) = f(x) =
∑
n≥1

αn sin
(nπx

a

)
,

Thus, if f(x) has the Fourier expansion

f(x) =
∑
n≥1

αn sin
nπx

a

then we will have solved our Laplace equation with the given
boundary conditions.
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Dirichlet boundary conditions: Formal solutions

Definition

Consider the Laplace equation with the boundary conditions
uxx + uyy = 0 0 < x < a, 0 < y < b
u(0, y) = 0 = u(a, y) = 0 0 ≤ y ≤ b
u(x, 0) = f(x) 0 ≤ x ≤ a
u(x, b) = 0

The formal solution of the above problem is

u(x, t) =
∑
n≥1

αn sin
(nπx

a

)
sinh

(nπ(b− y)

a

)/
sinh

(nπb
a

)
,

where

αn =
2

L

∫ L

0
f(x) sin

nπx

L
dx
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Dirichlet boundary conditions: Actual solution

Theorem

Let f be continuous and piecewise smooth on [0, a] such that
f(0) = f(a) = 0. Consider the Laplace equation with the
boundary conditions

uxx + uyy = 0 0 < x < a, 0 < y < b
u(0, y) = 0 = u(a, y) = 0 0 ≤ y ≤ b
u(x, 0) = f(x) 0 ≤ x ≤ a
u(x, b) = 0

The solution to the above problem is given by

u(x, t) =
∑
n≥1

αn sin
(nπx

a

)
sinh

(nπ(b− y)

a

)/
sinh

(nπb
a

)
,

where

αn =
2

L

∫ L

0
f(x) sin

nπx

L
dx
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Dirichlet boundary condition: Example

Example

Consider the Laplace equation with boundary conditions given by
uxx + uyy = 0 0 < x < a, 0 < y < b
u(0, y) = 0 = u(a, y) = 0 0 ≤ y ≤ b
u(x, 0) = sin

(5πx

a

)
− 3 sin

(9πx

a

)
0 ≤ x ≤ a

u(x, b) = 0
Since f is given by its Fourier series in the above example, it is
clear that

α5 = 1

α9 = −3
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Dirichlet boundary condition: Example

Example (continued)

Thus, the solution to the above problem is given by

u(x, t) = sin
(5πx

a

)
sinh

(5π(b− y)

a

)/
sinh

(5πb

a

)
− 3 sin

(9πx

a

)
sinh

(9π(b− y)

a

)/
sinh

(9πb

a

)
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Neumann boundary condition

Consider the following differential equation

uxx + uyy = 0, 0 < x < a, 0 < y < b,

called the Laplace equation in two variables.

Consider the boundary conditions

u(x, 0) = f(x) u(x, b) = 0 0 ≤ x ≤ a
ux(0, y) = 0 ux(a, y) = 0 0 ≤ y ≤ b

Let u(x, y) = A(x)B(y). Then the differential equation becomes

A′′(x)B(y) +A(x)B′′(y) = 0
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Neumann boundary conditions: Finding some solutions

Thus, we have

−A′′(x)

A(x)
=
B′′(y)

B(y)
= constant

Since ux(0, y) = A′(0)B(y) = 0, ux(a, y) = A′(a)B(y) = 0 and
we do not want Y to be identically zero, we get that A′(0) = 0
and A′(a) = 0.

This boundary condition on A forces that the constant above
should be positive. Let us denote this positive constant by λ2.

For every n ≥ 0, let

λn =
nπ

a
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Neumann boundary conditions: Finding some solutions

For each n ≥ 0, we have a solution to

A′′(x) + λ2nA(x) = 0

A′(0) = 0 = A′(a)

given by

An(x) = cos
(nπx

a

)
Since we do not want A(x) to be identically 0 and
u(x, b) = A(x)B(b) = 0, this forces that B(b) = 0. Let us also
impose the condition that B(0) = 1.

Next consider for each λn the problem

B′′(y)− λ2nB(y) = 0

B(0) = 1

B(b) = 0
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Neumann boundary conditions: Finding some solutions

The solutions to the above equation are given by

For n ≥ 0

B0(y) =
−1

b
y + 1

and for n ≥ 1

Bn(y) = sinh
(nπ(b− y)

a

)/
sinh

(nπb
a

)
.

Thus, for each n ≥ 0 we get a solution

un(x, y) = cos
(nπx

a

)
Bn(y)

Now consider the series

u(x, y) =
∑
n≥0

αn cos
(nπx

a

)
Bn(y),

where αn are real numbers.
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Neumann boundary conditions: Formal solution

This gives that

u(x, 0) = f(x) = α0 +
∑
n≥1

αn cos
(nπx

a

)
,

Thus, if f(x) has the Fourier expansion

f(x) = α0 +
∑
n≥1

αn cos
(nπx

a

)
then we will have solved our Laplace equation with the given
boundary conditions.
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Neumann boundary conditions: Formal solution

Definition

Consider the Laplace equation with the boundary conditions
uxx + uyy = 0 0 < x < a, 0 < y < b
ux(0, y) = 0 = ux(a, y) = 0 0 ≤ y ≤ b
u(x, 0) = f(x) 0 ≤ x ≤ a
u(x, b) = 0 0 ≤ x ≤ a

The formal solution of the above problem is

u(x, y) = α0

(−1

b
y + 1

)
+∑

n≥1
αn cos

(nπx
a

)
sinh

(nπ(b− y)

a

)/
sinh

(nπb
a

)
,

where

α0 =
1

L

∫ L

0
f(x) dx αn =

2

L

∫ L

0
f(x) cos

nπx

L
dx
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Neumann boundary conditions: Actual solution

Theorem

Let f be continuous and piecewise smooth on [0, a].
Consider the Laplace equation with the boundary conditions

uxx + uyy = 0 0 < x < a, 0 < y < b
ux(0, y) = 0 = ux(a, y) = 0 0 ≤ y ≤ b
u(x, 0) = f(x) 0 ≤ x ≤ a
u(x, b) = 0 0 ≤ x ≤ a

The solution to the above problem is given by

u(x, y) = α0

(−1

b
y + 1

)
+∑

n≥1
αn cos

(nπx
a

)
sinh

(nπ(b− y)

a

)/
sinh

(nπb
a

)
,

where

α0 =
1

L

∫ L

0
f(x) dx αn =

2

L

∫ L

0
f(x) cos

nπx

L
dx
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Neumann boundary conditions: Actual solution

Example

Consider the Laplace equation with boundary conditions given by
uxx + uyy = 0 0 < x < a, 0 < y < b
ux(0, y) = 0 = ux(a, y) = 0 0 ≤ y ≤ b
u(x, 0) = cos

(5πx

a

)
− 3 cos

(9πx

a

)
0 ≤ x ≤ a

u(x, b) = 0
Since f is given by its Fourier series in the above example, it is
clear that

α5 = 1

α9 = −3
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Neumann boundary conditions: Actual solution

Example (continued)

Thus, the solution to the above problem is given by

u(x, t) = cos
(5πx

a

)
sinh

(5π(b− y)

a

)/
sinh

(5πb

a

)
− 3 cos

(9πx

a

)
sinh

(9π(b− y)

a

)/
sinh

(9πb

a

)
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Laplace equation in polar coordinates

Consider the Dirichlet problem in a disc of radius r

uxx + uyy = 0

with
u = f

on the boundary of the disc, which is a circle of radius r.
To solve this problem write the Laplace operator in polar
coordinates.

∆ =
∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
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Laplace equation in polar coordinates

Example

Solve for harmonic function u(r, θ) in unit disc i.e.

∆u = 0, r < 1, θ ∈ [0, 2π]

with boundary condition

u(1, θ) = f(θ) =

{
sin θ, θ ∈ [0, π]

0, θ ∈ [π, 2π]

Laplace equation in polar coordinates is

∆u = urr +
1

r
ur +

1

r2
uθθ = 0

Again we try to analyze using separation of variables. Assume
u(r, θ) = R(r)Θ(θ). Then ∆u = 0 becomes

R′′(r)Θ(θ) +
1

r
R′(r)Θ(θ) +

1

r2
R(r)Θ′′(θ) = 0
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Laplace equation in polar coordinates

From this we get

R′′(r) + 1
rR
′(r)

1
r2
R(r)

= −Θ′′(θ)

Θ(θ)
= λ .

Thus, we need to solve

Θ′′(θ) + λΘ(θ) = 0 , r2R′′(r) + rR′(r)− λR(r) = 0

Since u(r, θ+ 2π) = u(r, θ), the functions Θ and Θ′ need to be 2π
periodic. Thus for the ODE for Θ, we need to solve

Θ′′(θ) + λΘ(θ) = 0, Θ(0) = Θ(2π), Θ′(0) = Θ′(2π)

Recall that this is EVP 5. The eigenvalues and eigenfunctions for
periodic eigenvalue problem in Θ are

λ0 = 0, Θ0 = 1
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Laplace equation in polar coordinates

and for n ≥ 1,

λn = n2, Θn,1(θ) = cos(nθ), Θn,2(θ) = sin(nθ)

The problem for R-function, namely

r2R′′(r) + rR′(r)− λR(r) = 0 ,

is the Cauchy-Euler equation with solution xm, where

m(m− 1) +m− λ = m2 − λ = 0 .

=⇒ m = ±
√
λ

For λ = λ0 = 0 we are in the regular singular repeated roots case.
Recall that two linearly independent solutions in this case are

R0,1(r) = 1, R0,2(r) = ln r
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Laplace equation in polar coordinates

For λ = λn = n2 > 0, m = ±n, two linearly independent solutions
are

Rn,1(r) = rn, Rn,2(r) = r−n

Let us look for a solution of the Laplace equation in the disc which
is a linear combinations of

{1, ln r}∪{rn cos(nθ), rn sin(nθ), r−n cos(nθ), r−n sin(nθ)}n≥1

Since we are looking for solutions that are bounded in the disc, we
will discard ln r, r−n cos(nθ) and r−n sin(nθ).
Thus, the series solution has the form

u(r, θ) = A0 +
∑
n≥1

(Anr
n cos(nθ) +Bnr

n sin(nθ))
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Laplace equation in polar coordinates

At the boundary we get

u(1, θ) = A0 +
∑
n≥1

(An cos(nθ) +Bn sin(nθ))

But we need that u(1, θ) = f(θ). Hence, Ai and Bi are Fourier
coefficients of f(θ).
Check that the Fourier series of f(θ) is

f(θ) =
1

π
− 2

π

∑
n≥1

cos(2nθ)

4n2 − 1
+

1

2
sin θ

Therefore, the solution is

u(r, θ) =
1

π
− 2

π

∑
n≥1

1

4n2 − 1
r2n cos(2nθ) +

1

2
r sin θ
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Laplace equation in polar coordinates

Example

Solve for harmonic function u(r, θ) in an annulus

∆u(r, θ) = 0, 1 < r < 2, θ ∈ [0, 2π]

u(1, θ) = cos θ, 0 ≤ θ ≤ 2π

ur(2, θ) = sin 2θ, 0 ≤ θ ≤ 2π

This BVP can be interpreted as that for the steady state
temperature distribution in an annular region where on the outer
boundary the heat flux is prescribed and on the inner boundary, the
temperature is prescribed.
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Laplace equation in polar coordinates

Recall that the Laplace equation in polar coordinates is

∆u = urr +
1

r
ur +

1

r2
uθθ = 0

As the polar coordinates (r, θ) and (r, θ + 2π) represent the same
point in the plane, any function u defined in the plane is
2π-periodic in θ. Therefore,

u(r, 0) = u(r, 2π), ur(r, 0) = ur(r, 2π) .

Again we try to analyze using separation of variables. Assume
u(r, θ) = R(r)Θ(θ). Then

R′′(r)Θ(θ) +
1

r
R′(r)Θ(θ) +

1

r2
R(r)Θ′′(θ) = 0
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Laplace equation in polar coordinates

From this we get

R′′(r) + 1
rR
′(r)

1
r2
R(r)

= −Θ′′(θ)

Θ(θ)
= λ

Thus, we need to solve

Θ′′(θ) + λΘ(θ) = 0 , r2R′′(r) + rR′(r)− λR(r) = 0

Since u(r, θ+ 2π) = u(r, θ), the functions Θ and Θ′ need to be 2π
periodic. Thus for the ODE for Θ, we need to solve

Θ′′(θ) + λΘ(θ) = 0, Θ(0) = Θ(2π), Θ′(0) = Θ′(2π)

Recall that this is EVP 5. The eigenvalues and eigen functions for
periodic eigenvalue problem in Θ are
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Laplace equation in polar coordinates

λ0 = 0, Θ0 = 1

and for n ≥ 1,

λn = n2, Θn,1(θ) = cos(nθ), Θn,1(θ) = sin(nθ)

The problem for R-function, namely

r2R′′(r) + rR′(r)− λR(r) = 0

is the Cauchy-Euler equation with solution xm, where

m(m− 1) +m− λ = m2 − λ = 0 .

=⇒ m = ±
√
λ

For λ = λ0 = 0, we are in the regular singular repeated roots case,
two linearly independent solutions are

R0,1(r) = 1, R0,2(r) = ln r
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Laplace equation in polar coordinates

For λ = λn = n2 > 0, m = ±n, the general solutions are

Rn,1(r) = rn, Rn,2(r) = r−n

Let us look for a solution of the Laplace equation in the disc which
is a linear combinations of

{1, ln r}∪{rn cos(nθ), rn sin(nθ), r−n cos(nθ), r−n sin(nθ)}n≥1

Hence the general solution is

u(r, θ) = (A0 +B0 ln r) +
∑
n≥1

(Anr
n cos(nθ) +Bnnr

−n cos(nθ))

+
∑
n≥1

(Cnr
n sin(nθ) +Dnr

−n sin(nθ))

We are given

u(1, θ) = cos θ, ur(2, θ) = sin 2θ
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Laplace equation in polar coordinates

u(1, θ) = A0 +
∑
n≥1

(An +Bn) cos(nθ) + (Cn +Dn) sin(nθ)

Compare with u(1, θ) = cos θ, we get A0 = 0,

A1 +B1 = 1, An +Bn = 0 (n ≥ 2), Cn +Dn = 0 (n ≥ 1)

ur(r, θ) =
B0

r
+
∑
n≥1

n(Anr
n−1 −Bnr−n−1) cosnθ

+n(Cnr
n−1 −Dnr

−n−1) sinnθ

Comparing with ur(2, θ) = sin 2θ, we get B0 = 0,
2(2C2 − 2−3D2) = 1

An2n−1−Bn2−n−1 = 0 (n ≥ 1), Cn2n−1−Dn2−n−1 = 0 (n 6= 2)
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Laplace equation in polar coordinates

Using these equations we can solve for the values of the constants.

A0 = 0 = B0

For n = 1

A1 +B1 = 1, A1 −B12
−2 = 0 =⇒ A1 =

1

5
, B1 =

4

5

C1 +D1 = 0, C1 −D12
−2 = 0 =⇒ C1 = 0, D1 = 0

For n = 2,

A2 +B2 = 0, A22−B22
−3 = 0 =⇒ A2 = 0 = B2

C2 +D2 = 0, 2C2 −
1

23
D2 =

1

2
=⇒ C2 =

4

17
, D2 =

−4

17
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Laplace equation in polar coordinates

For n > 2,

An +Bn = 0, An2n−1 −Bn2−n−1 = 0 =⇒ A1
n = 0 = B1

n

Cn +Dn = 0, Cn2n−1 −Dn2−n−1 = 0 =⇒ Cn = 0 = Dn

Thus the solution is

u(r, θ) = (
1

5
r +

4

5
r−1) cos θ + (

4

17
r2 +

−4

17
r−2) sin 2θ
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Consider the two dimensional wave equation given by

utt = k2(uxx + uyy) k > 0

In polar coordinates (r, θ) in the region R2 this equation becomes

utt = k2(urr + r−1ur + r−2uθθ).

We impose the following initial conditions

u(r, θ, 0) = f(r, θ) ut(r, θ, 0) = g(r, θ)

and the following boundary condition

u(R, θ, t) = 0.

Let use the method of separation of variables to get some solutions.
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If we divide the differential equation by u, then we get

utt
u

= k2
(urr + r−1ur

u
+ r−2

uθθ
u

)
.

Let u(r, θ, t) = X(r)Y (θ)T (t).

We get (after multiplying everything with r2

k2
)

Y ′′(θ)

Y (θ)
=
r2T ′′(t)

k2T (t)
− r2X ′′(r) + rX ′(r)

X(r)

Thus, both the above have to be a constant.

Also, we are looking for periodic solutions in θ,
This forces that the above constant has to be −n2, for some
integer n ≥ 0.
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Thus, Y (θ) satisfies the differential equation

Y ′′(θ) + n2Y (θ) = 0

If n = 0, then the solution is Y (θ) = constant.

If n ≥ 1, then the solution is of the type

Y (θ) = A cos(nθ) +B sin(nθ).

The second equation becomes

r2T ′′(t)

k2T (t)
− r2X ′′(r) + rX ′(r)

X(r)
= −n2

We rewrite this as

T ′′(t)

k2T (t)
=
r2X ′′(r) + rX ′(r)

r2X(r)
− n2

r2

Again, this forces both sides to be a constant c.
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The function X satisfies

r2X ′′(r) + rX ′(r)− (r2c+ n2)X(r) = 0

We shall later rule out the case c ≥ 0.
Let us assume that c < 0 and put c = −a2

r2X ′′(r) + rX ′(r) + (r2a2 − n2)X(r) = 0

Let us assume that n ≥ 1.

Let y(r) be a solution of the equation

r2y′′(r) + ry′(r) + (r2 − λ2)y(r) = 0

Define f(r) := y(ar)
Then f(r) satisfies the differential equation

r2f ′′(r) + rf ′(r) + ((ra)2 − λ2)y(r) = 0
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Thus, the first Bessel solution of

r2X ′′(r) + rX ′(r) + (r2a2 − n2)X(r) = 0

Jn(ar) =
(ar

2

)n ∑
m≥0

(−1)m

m! Γ(m+ n+ 1)

(r
2

)2m
r > 0

Since 2n is an even integer, the second solution is

y2(r) =

p−1∑
n=0

1

22nn!(p− n)!
r2n−p+

∑
n≥p

(−1)n−p

22nn!(p− 1)!(n− p)!

(
Hn −Hp−1 +Hn−p

)
r2n−p+

−
∑
n≥p

2(−1)n−p

22nn!(p− 1)!(n− p)!
r2n−plog r

Clearly, this solution is unbounded as r → 0.
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Thus, the second solution is to be discarded.

We have the boundary condition u(R, θ, t) = 0 = Jn(aR)Y (θ)T (t)

Since we do not want Y or T to be identically 0,

we get the condition Jn(aR) = 0.

This forces that a = µn,i for some i ≥ 1

where µn,i > 0 are the zeros of the Bessel function Jn(ar).

With a = µn,i let us consider the equation

T ′′(t) + (µn,ik)2T (t) = 0

The solutions to this equation are given by

T (t) = C cos(µn,ikt) +D sin(µn,ikt)
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Thus for n, i ≥ 1, we have un,i(r, θ, t) = Jn(µn,ir).

(A cos(nθ) +B sin(nθ))(C cos(µn,ikt) +D sin(µn,ikt))

For n = 0, we only allow constant solutions for Y (since we want
the solutions to be periodic),

So u0,i(r, θ, t) = J0(µ0,ir)
(
C cos(µn,ikt) +D sin(µn,ikt)

)
Thus, consider

u(r, θ, t) =
∑

n≥0,i≥1

(
An,i cos(nθ) cos(µn,it)+

+Bn,i sin(nθ) cos(µn,it) + Cn,i cos(nθ) sin(µn,it)

+Dn,i sin(nθ) sin(µn,it)
)
Jn(µn,ir)
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If we put t = 0 in the above, then we get∑
n≥0,i≥1

(An,i cos(nθ) +Bn,i sin(nθ))Jn(µn,ir)

The initial condition that we have is u(r, θ, 0) = f(r, θ)
Question: Can we write f as an expansion as above?

Let us first observe that the functions

S := {Jn(µn,ir) cos(nθ), Jm(µm,jr) sin(mθ)}n≥0,i≥1

is an orthogonal set of functions, under the inner product

〈f, g〉 :=

∫ R

0

∫ 2π

0
f(r, θ)g(r, θ)rdθdr
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Next let us observe that for any function f(r) and n ≥ 0 fixed,

the function f(r) cos(nθ) has a Fourier-Bessel series in terms of
Jn(µn,ir) cos(nθ)

This is because {Jn(µn,ir)}i≥1 is a maximal orthogonal set for
functions f on [0, R] such that 〈f, f〉 <∞.
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Recall that for f as above, f(r) =
∑
i≥1

ciJn(µn,ir)

where

ci =
1

〈Jn(µn,ir), Jn(µn,ir)〉
Thus,

f(r) cos(nθ) =
∑
i≥1

ciJn(µn,ir) cos(nθ)

Similarly, the function f(r) sin(nθ) has a Fourier-Bessel series in
terms of Jn(µn,ir) sin(nθ)

If g(θ) is any function in L2([0, θ]), then g(θ) has a Fourier
expansion in terms of {cos(nθ), sin(nθ)}n∈Z, we get that any
function of the type f(r)g(θ) can be approximated by the
functions in S.
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Since functions of the type f(r)g(θ) approximate functions of the
type h(r, θ), we get that h(r, θ) can be approximated by functions
in S.

If we write
h(r, θ) =

∑
n≥0,i≥1

(
An,i cos(nθ) +Bn,i sin(nθ)

)
Jn(µn,ir)then

An,i =
〈h, Jn(µn,ir) cos(nθ)〉

〈Jn(µn,ir) cos(nθ), Jn(µn,ir) cos(nθ)〉

Similarly, we get Bn,i by replacing cos by sin in the above.
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Solution of the wave equation

We now return to our initial condition u(r, θ, 0) = f(r, θ).

Because of the above discussion, we can solve for An,i, Bn,i.

The condition ut(r, θ, 0) = g(r, θ) determines Cn,i, Dn,i.
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Theorem

Consider the differential equation

utt = k2(urr + r−1ur + r−2uθθ) k > 0

in the disc {(x, y) ∈ R2 |x2 + y2 < R2},
with initial conditions

u(r, θ, 0) = f(r, θ) ut(r, θ, 0) = g(r, θ)

where f and g are smooth functions in the disc,

and boundary condition u(R, θ, t) = 0.
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Solution of the wave equation

Theorem (continued ..)

The above differential equation with initial and boundary
conditions has a solution given by

u(r, θ, t) =
∑

n≥0,i≥1

(
An,i cos(nθ) cos(µn,it)+

+Bn,i sin(nθ) cos(µn,it) + Cn,i cos(nθ) sin(µn,it)

+Dn,i sin(nθ) sin(µn,it)
)
Jn(µn,ir)

where

An,i =
〈f, Jn(µn,ir) cos(nθ)〉

〈Jn(µn,ir) cos(nθ), Jn(µn,ir) cos(nθ)〉

Bn,i =
〈f, Jn(µn,ir) sin(nθ)〉

〈Jn(µn,ir) sin(nθ), Jn(µn,ir) sin(nθ)〉
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Solution of the wave equation

Theorem (continued ..)

Cn,i =
1

µn,i

〈g, Jn(µn,ir) cos(nθ)〉
〈Jn(µn,ir) cos(nθ), Jn(µn,ir) cos(nθ)〉

Dn,i =
1

µn,i

〈g, Jn(µn,ir) sin(nθ)〉
〈Jn(µn,ir) sin(nθ), Jn(µn,ir) sin(nθ)〉
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