MA207 - Tutorial Sheet 1

September 15, 2021

1. Find the radius of convergence R and the interval of convergence (if $R>0$) of the following:
(a) $\sum_{n=k}^{\infty} n(n-1) \ldots(n-k+1)(x-1)^{n}$
(b) $\sum_{n=1}^{\infty} \frac{1}{n(n+1) \ldots(n+k+1)} x^{n}$
(c) $\sum_{n=0}^{\infty} \frac{(2 n)!}{2^{2 n}(n!)^{2}}(x+1)^{n}$
(d) $\sum_{n=1}^{\infty} \frac{n^{n}}{n!} x^{n}$
(e) $\sum_{n=1}^{\infty} \frac{(2 n)!}{n^{n}} x^{n}$
(f) $\sum_{n=1}^{\infty} \frac{(3 n)!}{2^{n}(n!)^{3}} x^{n}$
(g) $\sum_{n=1}^{\infty} \frac{n(n+1)}{16^{n}}(x-2)^{n}$
(h) $\sum_{n=1}^{\infty} \frac{3^{n}}{4^{n+1}(n+1)^{2}}(x+7)^{n}$
(i) $\sum_{n=0}^{\infty}(-1)^{n}(3 n+1)(x-1)^{2 n+1}$
(j) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(27)^{n}}(x-3)^{3 n+2}$
(k) $\sum_{n=0}^{\infty} \frac{9^{n}(n+1)}{(n+2)}(x-2)^{2 n+2}$
2. Let R be the radius of convergence of $\sum_{n=0}^{\infty} a_{n} x^{n}$.
(a) Show that $\sum_{n=0}^{\infty} a_{n} x^{2 n}$ has radius of convergence $R^{1 / 2}$.
(b) Show that $\sum_{n=0}^{\infty} a_{n}^{2} x^{n}$ has radius of convergence R^{2}.
(c) Let k be a positive integer. Show that $\sum_{n=0}^{\infty} a_{n} x^{k n}$ has radius of convergence $R^{1 / k}$.
(d) Let k be a positive integer. Show that $\sum_{n=0}^{\infty} a_{n}^{k} x^{n}$ has radius of convergence R^{k}.
3. Determine the radius of convergence of $\sum_{n=0}^{\infty} n!x^{n^{2}}$ and $\sum_{n=0}^{\infty} x^{n!}$.
4. Let $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Express the following equations as power series in x
(a) $(2+x) y^{\prime \prime}+x y^{\prime}+3 y$
(b) $\left(1+3 x^{2}\right) y^{\prime \prime}+3 x^{2} y^{\prime}-2 y$
(c) $\left(1+2 x^{2}\right) y^{\prime \prime}+(2-3 x) y^{\prime}+4 y$
5. Show that the series $y(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\left(2^{n} n!\right)^{2}} x^{2 n}$ is a solution of $x y^{\prime \prime}+y^{\prime}+x y=$ 0.
6. Find the power series in x for the general solution of:
(a) $\left(1+x^{2}\right) y^{\prime \prime}+6 x y^{\prime}+6 y=0$
(b) $\left(1-x^{2}\right) y^{\prime \prime}-8 x y^{\prime}-12 y=0$
(c) $\left(1+2 x^{2}\right) y^{\prime \prime}+7 x y^{\prime}+2 y=0$
(d) $\left(1-2 x^{3}\right) y^{\prime \prime}-10 x^{2} y^{\prime}-8 x y=0$
(e) $y^{\prime \prime}-x y=0$
(f) $\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+p^{2} y=0$
(g) $y^{\prime \prime}-x^{2} y=0$
7. Find the power series in $x-1$ for the general solution of $(2+4 x-$ $\left.2 x^{2}\right) y^{\prime \prime}-12(x-1) y^{\prime}-12 y=0$.
8. Suppose $y(x)=\sum_{n=0}^{\infty} a_{n}(x+1)^{n}$ on an open interval around $x=-1$.

Find the power series in $(x+1)$ for $x y^{\prime \prime}+(4+2 x) y^{\prime}+(2+x) y$.
9. Compute coefficients a_{0}, \ldots, a_{4} in the series solution in x for the IVP:
(a) $\left(1+2 x^{2}\right) y^{\prime \prime}+10 x y^{\prime}+8 y=0, \quad y(0)=2, y^{\prime}(0)=-3$
(b) $\left(1+2 x^{2}\right) y^{\prime \prime}+x y^{\prime}+y=0, \quad y(0)=1, y^{\prime}(0)=-1$
10. Compute coefficients a_{0}, \ldots, a_{4} in the series solution in $x+1$ for the IVP:
(a) $(3+x) y^{\prime \prime}+(1+2 x) y^{\prime}-(2-x) y=0, \quad y(-1)=2, y^{\prime}(-1)=-3$
11. Find the points x_{0} around which the following functions are analytic. Find the radius of the following rational functions about a general point x_{0}
(a) $\frac{1}{(5-x)\left(x^{2}+16\right)}$
(b) $\frac{25 x^{2}+13 x+57}{\left(x^{2}+1\right)\left(x^{2}+2 x+27\right)}$
12. Consider the ODE $a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$. Assume that $a(x)$, $b(x), c(x)$ are analytic in a neighborhood of x_{0} and that $a\left(x_{0}\right) \neq 0$. Let $y(x)=\sum_{n=0}^{\infty} \alpha_{n}\left(x-x_{0}\right)^{n}$ be a series solution in a neighborhood of x_{0}. What can you say about the radius of convergence of this series in terms of the radius of convergence of the series of $a(x), b(x), c(x)$ around x_{0} ? Using this, what can you say about the radius of convergence around 0 of the power series solution of the following ODE's
(a) $\left(9-x^{2}\right)\left(x^{2}+2\right) y^{\prime \prime}+x^{2} y^{\prime}+x(2+x) y=0$
(b) $\left(16-x^{2}\right)\left(x^{2}+5\right) y^{\prime \prime}+2 x y^{\prime}+x(2+x) y=0$
13. Let $f(x)$ be the function on \mathbb{R} defined by $f(x)=e^{-1 / x^{2}}$ if $x \neq 0$ and $f(0)=0$. Show that f is infinitely differentiable. Show that $f^{(n)}(0)=0$ for all $n>0$ and conclude that f is not analytic at 0 .

