MA207 - Tutorial Sheet 2

September 7, 2021

1. Express x^{2}, x^{3}, and x^{4} as linear combinations of Legendre polynomials.
2. (a) Let $f(x)$ be a polynomial of the type $(x-a)^{2}(x-b)^{2} g(x)$ where $a<b$. Use Rolle's theorem to show that $f^{\prime \prime}(x)$ has at least two distinct roots in the interval (a, b).
(b) Generalize the above and show that the Legendre polynomial $P_{n}(x)$ has exactly n distinct roots in the interval $(-1,1)$.
3. Recall that Rodrigues formula says that

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(\left(x^{2}-1\right)^{n}\right) .
$$

Evaluate the RHS to show that

$$
\begin{equation*}
P_{n}(x)=\sum_{m=0}^{[n / 2]}(-1)^{m} \frac{(2 n-2 m)!}{2^{n} m!(n-m)!(n-2 m)!} x^{n-2 m} \tag{0.0.1}
\end{equation*}
$$

4. Show using Rodrigues formula and/or equation (0.0.1) that
(a) $P_{n}(-x)=(-1)^{n} P_{n}(x)$
(b) $P_{n}^{\prime}(-x)=(-1)^{n+1} P_{n}^{\prime}(x)$
(c) $P_{n}(1)=1$
(d) $P_{n}(-1)=(-1)^{n}$
(e) $P_{2 n+1}(0)=0$
(f) $P_{2 n}(0)=(-1)^{n} \frac{(2 n)!}{2^{2 n}(n!)^{2}}$
(g) $P_{n}^{\prime}(1)=\frac{n(n+1)}{2}$
(h) $P_{n}^{\prime}(-1)=(-1)^{n+1} \frac{n(n+1)}{2}$
(i) $P_{2 n}^{\prime}(0)=0$
(j) $P_{2 n+1}^{\prime}(0)=(-1)^{n} \frac{(2 n+1)!}{2^{2 n}(n!)^{2}}$
5. Show that

$$
\int_{-1}^{1}\left(1-x^{2}\right) P_{m}^{\prime}(x) P_{n}^{\prime}(x)= \begin{cases}\frac{2 n(n+1)}{2 n+1} & m=n \\ 0 & m \neq n\end{cases}
$$

6. Prove the following identities
(a) Let $n-m=2 k$ where $k \geq 0$. Show that

$$
\int_{-1}^{1} P_{m}^{\prime}(x) P_{n}^{\prime}(x)=m(m+1) .
$$

(b) Let $n-m=2 k$ where $k \geq 0$. Show that

$$
\int_{-1}^{1} x^{m} P_{n}^{\prime}(x)=0
$$

(c) Let $n-m=2 k+1$ where $k \geq 0$. Show that

$$
\int_{-1}^{1} P_{m}^{\prime}(x) P_{n}^{\prime}(x)=0 .
$$

(d) Let $n-m=2 k+1$ where $k \geq 0$. Evaluate

$$
\int_{-1}^{1} x^{m} P_{n}^{\prime}(x)
$$

7. If $x^{n}=\sum_{r=0}^{n} a_{r} P_{r}(x)$ then show that

$$
a_{n}=\frac{2^{n}(n!)^{2}}{(2 n)!} .
$$

8. Let $n \geq 1$ be an integer. Let $p(x)$ be a polynomial of degree n such that $\int_{-1}^{1} x^{k} p(x) d x=0$ for $k \in\{0,1, \ldots, n-1\}$. Show that $p(x)=c P_{n}(x)$ for some constant c.
9. Find the Legendre series of the following polynomials and the values to which the series converges for points in $[-1,1]$
(a) $f_{1}(x)= \begin{cases}-1 & -1 \leq x \leq 0 \\ 1 & 0<x \leq 1\end{cases}$
(b) $f_{2}(x)= \begin{cases}0 & -1 \leq x \leq 0 \\ 1 & 0<x \leq 1\end{cases}$
(c) $f_{3}(x)= \begin{cases}-x & -1 \leq x \leq 0 \\ x & 0<x \leq 1\end{cases}$
(d) $f_{4}(x)= \begin{cases}0 & -1 \leq x \leq 0 \\ x & 0<x \leq 1\end{cases}$
