MA207 - Tutorial Sheet 3

August 24, 2021

- 1. Attempt a power series solution around x = 0 for $x^2y'' (1+x)y = 0$. Explain why the procedure does not give any nontrivial solutions.
- 2. Attempt a Frobenius series solution for the differential equation $x^2y'' + (3x - 1)y' + y = 0.$ Why does the method fail?
- 3. Locate and classify the singular points for the following differential equations. (All letters other than x and y such as p, λ , etc are constants.)
 - (a) Bessel equation: $x^2y'' + xy' + (x^2 p^2)y = 0.$
 - (b) Laguerre equation: $xy'' + (1-x)y' + \lambda y = 0.$
 - (c) Jacobi equation: $x(1-x)y'' + (\gamma (\alpha + 1)x)y' + n(n+\alpha)y = 0.$
 - (d) Hypergeometric equation: x(1-x)y'' + [c (a+b+1)x)]y' aby = 0.
 - (e) Associated Legendre equation: $(1-x^2)y'' 2xy' + \left[n(n+1) \frac{m^2}{1-x^2}\right]y = 0$ (f) $xy'' + (\sin x)y' + xy = 0.$
- 4. In (3), find the indicial equations corresponding to all the regular singular points.
- 5. Find two linearly independent solutions around x = 0 of the following differential equations.

(a)
$$x^2y'' + \frac{x(2x-1)}{2}y' + \frac{1}{2}y = 0.$$

(b) $x^2y'' + x(x^2-3)y' + (4+x^2)y = 0.$
(c) $x^2y'' + \frac{x(2x-1)}{2(1+x)}y' + \frac{1}{2(1+x)}y = 0.$
(d) $x^2y'' - x(2-x^2)y' + (2+x^2)y = 0.$
(e) $x^2(2-x^2)y'' - 2x(1+2x^2)y' + (2-2x^2)y = 0.$
(f) $x^2(1+x^2)y'' + x(3+10x^2)y' - (15-14x^2)y = 0.$