MA207 - Tutorial Sheet 4

September 20, 2021

1. Using the indicated substitutions, reduce the following differential equations to the Bessel equation and find the general solution in term of the Bessel functions.
(a) $x^{2} y^{\prime \prime}+x y^{\prime}+\left(\lambda^{2} x^{2}-\nu^{2}\right) y=0, \quad(\lambda x=z)$.
(b) $x y^{\prime \prime}-5 y^{\prime}+x y=0, \quad\left(y=x^{3} u\right)$.
(c) $y^{\prime \prime}+k^{2} x y=0, \quad\left(y=u \sqrt{x}, \frac{2}{3} k x^{3 / 2}=z\right)$.
(d) $x^{2} y^{\prime \prime}+(1-2 \nu) x y^{\prime}+\nu^{2}\left(x^{2 \nu}+1-\nu^{2}\right) y=0, \quad\left(y=x^{\nu} u, x^{\nu}=z\right)$.
2. Prove the following Bessel identities.
(a) $\left[x^{p} J_{p}(x)\right]^{\prime}=x^{p} J_{p-1}(x)$
(b) $\left[x^{-p} J_{p}(x)\right]^{\prime}=-x^{-p} J_{p+1}(x)$.
(c) $J_{p}^{\prime}(x)+\frac{p}{x} J_{p}(x)=J_{p-1}(x)$.
(d) $J_{p}^{\prime}(x)-\frac{p}{x} J_{p}(x)=-J_{p+1}(x)$.
(e) $J_{p-1}(x)-J_{p+1}(x)=2 J_{p}^{\prime}(x)$.
(f) $J_{p-1}(x)+J_{p+1}(x)=\frac{2 p}{x} J_{p}(x)$.
3. Show that for $p \in\{0,1,2, \ldots\}$ we have $J_{-p}(x)=(-1)^{p} J_{p}(x)$. (HINT: Use vanishing of the Gamma function at certain points)
4. Show that (a) $J_{1 / 2}=\sqrt{\frac{2}{\pi x}} \sin x$,
(b) $J_{-1 / 2}=\sqrt{\frac{2}{\pi x}} \cos x$.
(c) $J_{3 / 2}=\sqrt{\frac{2}{\pi x}}\left(\frac{\sin x}{x}-\cos x\right)$,
(d) $J_{-3 / 2}=-\sqrt{\frac{2}{\pi x}}\left(\frac{\cos x}{x}+\sin x\right)$.
5. For an integer n, show that $J_{n}(x)$ is an even (resp. odd) function if n is even (resp. odd).
6. Express $J_{2}(x), J_{3}(x), J_{4}(x)$ in terms of $J_{0}(x)$ and $J_{1}(x)$.
7. Show the following.
(a) $J_{3}+3 J_{0}^{\prime}+4 J_{0}^{\prime \prime \prime}=0$.
(b) $\int J_{\nu+1} d x=\int J_{\nu-1} d x-2 J_{\nu}$.
8. If y_{1} and y_{2} are any two solutions of the Bessel equation of order ν, then show that $y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=c / x$ for a suitable constant c.
9. Show that $\int x^{\mu} J_{\nu}(x) d x=x^{\mu} J_{\nu+1}(x)-(\mu-\nu-1) \int x^{\mu-1} J_{\nu+1}(x) d x$.
10. Expand the indicated function in Fourier-Bessel series over the given interval and in terms of the Bessel function of given order. (The Bessel expansion theorem applies in each case.)
(a) $f(x)=1$ over $[0,1], \nu=0$.
(b) $f(x)=x$ over $[0,1], \nu=1$.
(c) $f(x)=x^{3}$ over $[0,1], \nu=1$.
(d) $f(x)=x^{2}$ over $[0,1], \nu=2$.
(e) $f(x)=\sqrt{x}$ over $[0,1], \nu=\frac{1}{2}$.
11. If $f(x)=\left\{\begin{array}{ll}1 & \text { if } 0 \leq x<1 / 2 \\ 1 / 2 & \text { if } x=1 / 2 \\ 0 & \text { if } 1 / 2<x \leq 1\end{array}\right.$, show that $f(x)=\sum_{n=1}^{\infty} \frac{J_{1}\left(\lambda_{0, n} / 2\right)}{\lambda_{0, n} J_{1}\left(\lambda_{0, n}\right)^{2}} J_{0}\left(\lambda_{0, n} x\right)$, where $\lambda_{0, n}$'s are positive zeros of $J_{0}(x)$.
