MA207 - Tutorial Sheet 6

August 24, 2021

1. Solve the following heat equations.

- (a) L = 1, $u_t = u_{xx}$, with u(0,t) = 0 = u(1,t), u(x,0) = x(1-x)
- (b) $L = \pi$, $u_t = 3u_{xx}$, with $u(0,t) = 0 = u(\pi,t)$, $u(x,0) = x \sin x$
- (c) L = 2, $u_t = 4u_{xx}$, with $u_x(0,t) = 0 = u_x(2,t)$, $u(x,0) = \cos(\frac{\pi x}{2})$
- (d) L = 1, $u_t = u_{xx}$, with $u_x(0,t) = 0 = u_x(1,t)$, $u(x,0) = x^2(3x^2 8x + 6)$
- (e) L = 1, $u_t = u_{xx}$, with $u_x(0, t) = 0 = u_x(1, t)$, $u(x, 0) = \cos \pi x$

2. Solve the following non-homogeneous IBVP.

- (a) L = 4, $u_t = 9u_{xx} 54x$, with u(0,t) = 1, u(4,t) = 61, $u(x,0) = 1 x + x^3$
- (b) L = 1, $u_t = u_{xx} 2$, with u(0,t) = 1, u(1,t) = 3, $u(x,0) = 2x^2 + 1$
- (c) L = 1, $u_t = 3u_{xx} 18x$, with $u_x(0,t) = -1$, $u_x(1,t) = -1$, u(x,0) = -x
- (d) L = 1, $u_t = 3u_{xx} + \pi^2 \sin \pi x$, with $u_x(0,t) = 0$, $u_x(1,t) = -\pi$, $u(x,0) = 2\cos \pi x$.
- (e) $L = \pi$, $u_t u_{xx} = 8e^{-t} \sin 3x$, with $u(0,t) = 0 = u(\pi,t)$, $u(x,0) = 2\sin 2x$
- (f) $L = \pi$, $u_t u_{xx} = e^{-t} \cos 2x$, with $u_x(0,t) = e^{-t}$, $u_x(\pi,t) = -e^{-t}$, $u(x,0) = \sin x$.

Remaining problems are not for the exam but only for your intellectual curiosity.

3. For the heat equation: $u_t - ku_{xx} = 0, \ 0 < x < \ell, \ t > 0$ with $u(x,0) = u_0(x)$ and $u_x(0,t) = u_x(\ell,t) = 0$, show that $\int_0^\ell u(x,t) \, dx = C$, where C is a constant. In other words, the average temperature stays constant. Further, show that $\lim_{t \to \infty} u(x,t) = \frac{1}{\ell} \int_0^\ell u_0(x) \, dx$.

Compute the solution, when u_0 is: (i) $u_0(x) = x$, (ii) $u_0(x) = \sin^2(\frac{\pi x}{\ell})$.

4. Compute the solution of $u_t - ku_{xx} + a^2 u = 0$, $0 < x < \ell$, t > 0with $u(x, 0) = u_0(x)$ and $u(0, t) = u(\ell, t) = 0$. Find $\lim_{t \to \infty} u(x, t)$.