MA207 - Tutorial Sheet 6

August 24, 2021

1. Solve the following heat equations.
(a) $L=1, \quad u_{t}=u_{x x}$, with $u(0, t)=0=u(1, t), u(x, 0)=x(1-x)$
(b) $L=\pi, u_{t}=3 u_{x x}$, with $u(0, t)=0=u(\pi, t), u(x, 0)=x \sin x$
(c) $L=2, u_{t}=4 u_{x x}$, with $u_{x}(0, t)=0=u_{x}(2, t), u(x, 0)=\cos \left(\frac{\pi x}{2}\right)$
(d) $L=1, u_{t}=u_{x x}$, with $u_{x}(0, t)=0=u_{x}(1, t), u(x, 0)=x^{2}\left(3 x^{2}-8 x+6\right)$
(e) $L=1, u_{t}=u_{x x}$, with $u_{x}(0, t)=0=u_{x}(1, t), u(x, 0)=\cos \pi x$
2. Solve the following non-homogeneous IBVP.
(a) $L=4, u_{t}=9 u_{x x}-54 x$, with $u(0, t)=1, u(4, t)=61, u(x, 0)=1-x+x^{3}$
(b) $L=1, u_{t}=u_{x x}-2$, with $u(0, t)=1, u(1, t)=3, u(x, 0)=2 x^{2}+1$
(c) $L=1, u_{t}=3 u_{x x}-18 x$, with $u_{x}(0, t)=-1, u_{x}(1, t)=-1, u(x, 0)=-x$
(d) $L=1, u_{t}=3 u_{x x}+\pi^{2} \sin \pi x$, with $u_{x}(0, t)=0, u_{x}(1, t)=-\pi, u(x, 0)=$ $2 \cos \pi x$.
(e) $L=\pi, \quad u_{t}-u_{x x}=8 e^{-t} \sin 3 x$, with $u(0, t)=0=u(\pi, t), u(x, 0)=2 \sin 2 x$
(f) $L=\pi, \quad u_{t}-u_{x x}=e^{-t} \cos 2 x$, with $u_{x}(0, t)=e^{-t}, u_{x}(\pi, t)=-e^{-t}, u(x, 0)=$ $\sin x$.

Remaining problems are not for the exam but only for your intellectual curiosity.
3. For the heat equation: $u_{t}-k u_{x x}=0,0<x<\ell, t>0$ with $u(x, 0)=u_{0}(x)$ and $u_{x}(0, t)=u_{x}(\ell, t)=0$, show that $\int_{0}^{\ell} u(x, t) d x=C$, where C is a constant. In other words, the average temperature stays constant.
Further, show that $\lim _{t \rightarrow \infty} u(x, t)=\frac{1}{\ell} \int_{0}^{\ell} u_{0}(x) d x$.
Compute the solution, when u_{0} is: $(i) u_{0}(x)=x$,
(ii) $u_{0}(x)=\sin ^{2}\left(\frac{\pi x}{\ell}\right)$.
4. Compute the solution of $u_{t}-k u_{x x}+a^{2} u=0, \quad 0<x<\ell, t>0$ with $u(x, 0)=u_{0}(x)$ and $u(0, t)=u(\ell, t)=0$. Find $\lim _{t \rightarrow \infty} u(x, t)$.

