PICARD GROUPS OF SOME QUOT SCHEMES

CHANDRANANDAN GANGOPADHYAY AND RONNIE SEBASTIAN

Abstract

Let C be a smooth projective curve over the field of complex numbers \mathbb{C} of genus $g(C)>0$. Let E be a locally free sheaf on C of rank r and degree e. Let $\mathcal{Q}:=$ Quot $_{C / \mathbb{C}}(E, k, d)$ denote the Quot scheme of quotients of E of rank k and degree d. For $k>0$ and $d \gg 0$ we compute the Picard group of \mathcal{Q}.

1. Introduction

Let C be a smooth projective curve over the field of complex numbers \mathbb{C}. We shall denote the genus of C by $g(C)$. Throughout this article we shall assume that $g(C) \geqslant 1$. Let E be a locally free sheaf on C of rank r and degree e. Throughout this article

$$
\begin{equation*}
\mathcal{Q}:=\operatorname{Quot}_{C / \mathbb{C}}(E, k, d) \tag{1.1}
\end{equation*}
$$

will denote the Quot scheme of quotients of E of rank k and degree d.
Stromme proved that $\mathcal{Q}_{\mathbb{P}^{1} / \mathbb{C}}\left(\mathcal{O}_{\mathbb{P}^{1}}^{\oplus n}, k, d\right)$ is a smooth projective variety and computed its Picard group and nef cone. In [Jow12], the author computes the effective cone of $\mathcal{Q}_{\mathbb{P}^{1}} / \mathbb{C}\left(\mathcal{O}_{\mathbb{P}^{1}}^{\oplus n}, k, d\right)$. In [Ito17], the author studies the birational geometry of $\mathcal{Q}_{\mathbb{P}^{1} / \mathbb{C}}\left(\mathcal{O}_{\mathbb{P}^{1}}^{\oplus n}, k, d\right)$. When E is trivial and $g(C) \geqslant 1$, the space \mathcal{Q} is studied in [BDW96] and it is proved that when $d \gg 0$ it is irreducible and generically smooth. For $g(C) \geqslant 1$ and E trivial, the divisor class group of \mathcal{Q} was computed in [HO10] under the assumption $d \gg 0$.

When $g(C) \geqslant 1$, it was proved in [PR03] that \mathcal{Q} is irreducible and generically smooth when $d \gg 0$. See also [Gol19], [CCH21], [CCH22] for similar results on other variations of this Quot scheme. We use this as a starting point to further investigate the space \mathcal{Q} when $d \gg 0$ and compute its Picard group. In the case when $k=r-1$ we have that \mathcal{Q} is a projective bundle over the Jacobian of C for $d \gg 0$ (Theorem 3.3) and as a result its Picard group can be computed easily (Corollary 3.5). In Theorem 6.3 we show that if $d \gg 0$ then \mathcal{Q} is an integral variety which is normal, a local complete intersection and locally factorial. We compute the Picard group of \mathcal{Q} in the following cases.

Theorem 1.2 (Theorem 7.17). Let $k \leqslant r-2$. Assume one of the following two holds

- $k \geqslant 2$ and $g(C) \geqslant 3$, or
- $k \geqslant 3$ and $g(C)=2$.

Then for $d \gg 0$ we have

$$
\operatorname{Pic}(\mathcal{Q}) \cong \operatorname{Pic}\left(\operatorname{Pic}^{0}(C)\right) \times \mathbb{Z} \times \mathbb{Z}
$$

2010 Mathematics Subject Classification. 14J60.
Key words and phrases. Quot Scheme.

Note that we have a natural determinant map

$$
\operatorname{det}: \mathcal{Q} \longrightarrow \operatorname{Pic}^{d}(C)
$$

which sends a quotient $[E \longrightarrow F] \mapsto \operatorname{det}(F)$. In Theorem 6.3 we show that det is a flat map when $d \gg 0$. For $[L] \in \operatorname{Pic}^{d}(C)$ let \mathcal{Q}_{L} be the scheme theoretic fiber of det over $[L]$. We prove the following analogous results for \mathcal{Q}_{L}.

Theorem 1.3 (Theorem 8.7). Let $k \geqslant 2, g(C) \geqslant 2$. Let $d \gg 0$. Then \mathcal{Q}_{L} is a local complete intersection, integral, normal and locally factorial scheme.

Theorem 1.4 (Theorem 8.9). Let $k \leqslant r-2$. Assume one of the following two holds

- $k \geqslant 2$ and $g(C) \geqslant 3$, or
- $k \geqslant 3$ and $g(C)=2$.

Let $d \gg 0$. Then $\operatorname{Pic}\left(\mathcal{Q}_{L}\right) \cong \mathbb{Z} \times \mathbb{Z}$.
When $k=1$ the above results can be improved to the case $g(C) \geqslant 1$. In Theorem 9.1 we show that if $d \gg 0$ then $\operatorname{Pic}(\mathcal{Q}) \cong \operatorname{Pic}\left(\operatorname{Pic}^{0}(C)\right) \times \mathbb{Z} \times \mathbb{Z}$ and $\operatorname{Pic}\left(\mathcal{Q}_{L}\right) \cong \mathbb{Z} \times \mathbb{Z}$.

We say a few words about how the above results are proved. By a very large open subset we mean an open set whose complement has codimension $\geqslant 2$. When $d \gg 0$ the Quot scheme \mathcal{Q} is a local complete intersection. This follows easily using [HL10, Proposition 2.2.8] and is the content of Lemma 6.1. Using dimension bounds from [PR03] we show that the locus of singular points in \mathcal{Q} has large codimension. These are used to prove Theorem 6.3. To compute the Picard group, we first show that the locus of quotients $[E \longrightarrow F$] with F stable is a very large open subset. Let \mathcal{Q}^{s} denote this locus. We consider a map $\mathcal{Q}^{s} \longrightarrow M^{s}$, to a moduli space of stable bundles of rank k and suitable degree, see (7.10). After base change by a principal PGL (N)-bundle, the domain becomes a very large open subset of a projective bundle associated to a vector bundle. From this we compute the Picard group of \mathcal{Q}^{s} in terms of the Picard group of M^{s}. The assertions about \mathcal{Q}_{L} follow in a similar manner using the assertions about \mathcal{Q} and the flat map det : $\mathcal{Q} \longrightarrow \operatorname{Pic}^{d}(C)$.

2. Preliminaries

For a locally closed subset $Z \subset X$ we shall refer to $\operatorname{dim}(X)-\operatorname{dim}(Z)$ as the codimension of Z in X. For a morphism $f: X \longrightarrow Y$ and a closed point $y \in Y$ we denote by X_{y} the fiber over Y.

Lemma 2.1. Let $f: X \longrightarrow Y$ be a dominant morphism of integral schemes of finite type over a field k. Let $U \subset X$ be an open subset such that nonempty fibers of $\left.f\right|_{U}$ have constant dimension. Let $Z:=X \backslash U$.
(1) If $\operatorname{dim}(X)-\operatorname{dim}(Z)>\operatorname{dim}(Y)$ then the dimension of nonempty fibers of f is constant.
(2) Let $t_{0} \geqslant 0$ be an integer and assume $\operatorname{dim}(X)-\operatorname{dim}(Z)>\operatorname{dim}(Y)+t_{0}$. Let $y \in Y$ be a closed point such that Z_{y} is nonempty. Then $\operatorname{dim}\left(X_{y}\right)-\operatorname{dim}\left(Z_{y}\right)>t_{0}$.

Proof. Let $y \in Y$ be a closed point such that X_{y} is nonempty. Note that $X_{y}=U_{y} \bigsqcup Z_{y}$. If U_{y} is empty then

$$
\operatorname{dim}(Z) \geqslant \operatorname{dim}\left(Z_{y}\right)=\operatorname{dim}\left(X_{y}\right) \geqslant \operatorname{dim}(X)-\operatorname{dim}(Y)
$$

This contradicts the hypothesis that $\operatorname{dim}(X)-\operatorname{dim}(Z)>\operatorname{dim}(Y)$. Thus, U_{y} is nonempty. Since $\left.f\right|_{U}$ has constant fiber dimension, it follows that $\operatorname{dim}\left(U_{y}\right)=\operatorname{dim}(U)-\operatorname{dim}(Y)$, see [Har77, Chapter 2, Exercise 3.22(b), (c)]. Since X is integral, it follows that $\operatorname{dim}\left(U_{y}\right)=$ $\operatorname{dim}(X)-\operatorname{dim}(Y)$. As $\operatorname{dim}(X)-\operatorname{dim}\left(Z_{y}\right) \geqslant \operatorname{dim}(X)-\operatorname{dim}(Z)>\operatorname{dim}(Y)$ it follows that $\operatorname{dim}\left(Z_{y}\right)<\operatorname{dim}(X)-\operatorname{dim}(Y)$. It follows that

$$
\operatorname{dim}\left(X_{y}\right)=\max \left\{\operatorname{dim}\left(U_{y}\right), \operatorname{dim}\left(Z_{y}\right)\right\}=\operatorname{dim}(X)-\operatorname{dim}(Y) .
$$

This proves (1).
Let $y \in Y$ be a closed point such that Z_{y} is nonempty. Then X_{y} is nonempty and so by the previous part we get that $\operatorname{dim}\left(X_{y}\right)=\operatorname{dim}(X)-\operatorname{dim}(Y)$. As $\operatorname{dim}(X)-\operatorname{dim}\left(Z_{y}\right) \geqslant \operatorname{dim}(X)-$ $\operatorname{dim}(Z)>\operatorname{dim}(Y)+t_{0}$ it follows that $\operatorname{dim}\left(Z_{y}\right)<\operatorname{dim}(X)-\operatorname{dim}(Y)-t_{0}=\operatorname{dim}\left(X_{y}\right)-t_{0}$. This proves (2) and completes the proof of the Lemma.

Lemma 2.2. Let $f: X \longrightarrow Y$ be a morphism of irreducible schemes of finite type over a field k which is surjective on closed points. Let $Y^{\prime} \subset Y$ be a closed subset. Then $\operatorname{dim}(X)-$ $\operatorname{dim}\left(f^{-1}\left(Y^{\prime}\right)\right) \leqslant \operatorname{dim}(Y)-\operatorname{dim}\left(Y^{\prime}\right)$.

Proof. Since it suffices to consider reduced schemes, we look at the map $f_{\text {red }}: X_{\text {red }} \longrightarrow Y_{\text {red }}$. Thus, we may assume that X and Y are integral schemes. Let $Y^{\prime \prime} \subset Y^{\prime}$ be an irreducible component such that $\operatorname{dim}\left(Y^{\prime \prime}\right)=\operatorname{dim}\left(Y^{\prime}\right)$. Let $Z^{\prime \prime}$ be an irreducible component of $f^{-1}\left(Y^{\prime \prime}\right)$ which surjects onto $Y^{\prime \prime}$. By $\left[\operatorname{Har} 77\right.$, Chapter 2, Exercise 3.22(a)] we have $\operatorname{dim}(X)-\operatorname{dim}\left(Z^{\prime \prime}\right) \leqslant$ $\operatorname{dim}(Y)-\operatorname{dim}\left(Y^{\prime \prime}\right)$. As $Z^{\prime \prime} \subset f^{-1}\left(Y^{\prime}\right)$ it follows that

$$
\operatorname{dim}(X)-\operatorname{dim}\left(f^{-1}\left(Y^{\prime}\right)\right) \leqslant \operatorname{dim}(X)-\operatorname{dim}\left(Z^{\prime \prime}\right) \leqslant \operatorname{dim}(Y)-\operatorname{dim}\left(Y^{\prime \prime}\right)=\operatorname{dim}(Y)-\operatorname{dim}\left(Y^{\prime}\right)
$$

This completes the proof of the Lemma.
Recall the space \mathcal{Q} from (1.1). Let

$$
\begin{equation*}
p_{1}: C \times \mathcal{Q} \longrightarrow C \quad p_{2}: C \times \mathcal{Q} \longrightarrow \mathcal{Q} \tag{2.3}
\end{equation*}
$$

denote the projections. Let

$$
\begin{equation*}
0 \longrightarrow \mathcal{K} \longrightarrow p_{1}^{*} E \longrightarrow \mathcal{F} \longrightarrow 0 \tag{2.4}
\end{equation*}
$$

denote the universal quotient on $C \times \mathcal{Q}$. The sheaf \mathcal{K} is locally free and so $p_{1}^{*} \operatorname{det}(E) \otimes$ $\left(\wedge^{r-k} \mathcal{K}\right)^{-1}$ is a line bundle on $C \times \mathcal{Q}$ which is flat over \mathcal{Q}. Using this we define the determinant map as

$$
\begin{equation*}
\operatorname{det}: \mathcal{Q} \longrightarrow \operatorname{Pic}^{d} C \tag{2.5}
\end{equation*}
$$

which has the following pointwise description. Let $[q: E \longrightarrow F] \in \mathcal{Q}$ be a closed point. We denote the kernel of q by K, so that there is a short exact sequence

$$
\begin{equation*}
0 \longrightarrow K \longrightarrow E \xrightarrow{q} F \longrightarrow 0 \tag{2.6}
\end{equation*}
$$

Then

$$
\operatorname{det}(q):=\operatorname{det}(E) \otimes \operatorname{det}(K)^{-1}=\operatorname{det}(F)
$$

Next we describe the differential of this map det.

Lemma 2.7. The differential of the map det (2.5) at the point q is the composite

$$
\operatorname{Hom}(K, F) \xrightarrow{-\delta} \operatorname{Ext}^{1}(F, F) \xrightarrow{t r} H^{1}\left(C, \mathcal{O}_{C}\right),
$$

where the first map is obtained by applying $\operatorname{Hom}(-, F)$ to (2.6) and the second map is the trace.

Proof. Let $p_{C}: C \times \operatorname{Spec}\left(\mathbb{C}[\epsilon] /\left(\epsilon^{2}\right)\right) \longrightarrow C$ denote the projection. Let $\iota: C \hookrightarrow C \times$ $\operatorname{Spec}\left(\mathbb{C}[\epsilon] /\left(\epsilon^{2}\right)\right)$ denote the reduced subscheme.

Given a vector $v \in \operatorname{Hom}(K, F)$ it corresponds to an element in the Zariski tangent space at $q \in \mathcal{Q}$, and so it corresponds to a short exact sequence on $C \times \operatorname{Spec}\left(\mathbb{C}[\epsilon] /\left(\epsilon^{2}\right)\right)$

$$
0 \longrightarrow \tilde{K} \longrightarrow p_{C}^{*} E \longrightarrow \tilde{F} \longrightarrow 0
$$

whose restriction to C gives the sequence (2.6). Moreover, \tilde{F} is flat over $\operatorname{Spec}\left(\mathbb{C}[\epsilon] /\left(\epsilon^{2}\right)\right)$. Consider the line bundle $\operatorname{det}(\tilde{F})$ on $C \times \operatorname{Spec}\left(\mathbb{C}[\epsilon] /\left(\epsilon^{2}\right)\right)$. Tensoring this line bundle with the short exact sequence

$$
\begin{equation*}
0 \longrightarrow(\epsilon) \longrightarrow \mathbb{C}[\epsilon] /\left(\epsilon^{2}\right) \longrightarrow \mathbb{C} \longrightarrow 0 \tag{2.8}
\end{equation*}
$$

gives the short exact sequence of sheaves on $C \times \operatorname{Spec}\left(\mathbb{C}[\epsilon] /\left(\epsilon^{2}\right)\right)$

$$
\begin{equation*}
0 \longrightarrow \iota_{*} \operatorname{det}(F) \longrightarrow \operatorname{det}(\tilde{F}) \longrightarrow \iota_{*} \operatorname{det}(F) \longrightarrow 0 \tag{2.9}
\end{equation*}
$$

Using the definition of the differential of the map det it is clear that

$$
\begin{equation*}
d \operatorname{det}_{q}(v)=\text { extension class of }(2.9) \in H^{1}\left(C, \mathcal{O}_{C}\right) \tag{2.10}
\end{equation*}
$$

Tensoring (2.8) with \tilde{F} gives a short exact sequence

$$
\begin{equation*}
0 \longrightarrow \iota_{*} F \longrightarrow \tilde{F} \longrightarrow \iota_{*} F \longrightarrow 0 \tag{2.11}
\end{equation*}
$$

One checks easily, using the discussion before [HL10, Lemma 2.2.6], that the above extension, and in particular the sheaf \tilde{F}, is obtained by taking the pushout of the sequence (2.6) along the map $-v$. That is, the extension class of (2.11) in $\operatorname{Ext}^{1}(F, F)$ is precisely $-\delta(v)$.

For a coherent sheaf G, consider the trace map $\operatorname{tr}: \operatorname{Ext}^{1}(G, G) \longrightarrow H^{1}\left(C, \mathcal{O}_{C}\right)$. An element $v \in \operatorname{Ext}^{1}(G, G)$ corresponds to a short exact sequence

$$
0 \longrightarrow G \longrightarrow \tilde{G} \longrightarrow G \longrightarrow 0
$$

on $C \times \operatorname{Spec}\left(\mathbb{C}[\epsilon] /\left(\epsilon^{2}\right)\right)$ such that \tilde{G} is flat over $\operatorname{Spec}\left(\mathbb{C}[\epsilon] /\left(\epsilon^{2}\right)\right)$. The image $\operatorname{tr}(v)$ in $H^{1}\left(C, \mathcal{O}_{C}\right)$ corresponds to the extension class obtained by tensoring (2.8) with the line bundle $\operatorname{det}(\tilde{G})$ on $C \times \operatorname{Spec}\left(\mathbb{C}[\epsilon] /\left(\epsilon^{2}\right)\right)$. When G is locally free this can be seen using a Cech description, for example, see [Nit09]. The general case reduces to the locally free case using the discussion in [HL10, §10.1.2]. In particular, we can apply this discussion by taking $G=F$. We get that $\operatorname{tr}(-\delta(v))$ is the extension class obtained by tensoring $\operatorname{det}(\tilde{F})$ in (2.11) with (2.8). But note that we obtained (2.9) also by tensoring $\operatorname{det}(\tilde{F})$ with (2.8). This proves that

$$
d \operatorname{det}_{q}(v)=\operatorname{tr}(-\delta(v))
$$

and completes the proof of the Lemma. We also refer the reader to [HL10, Theorem 4.5.3], where a similar result is proved for the moduli of stable bundles.

3. Quot Schemes Quot $_{C / \mathbb{C}}(E, r-1, d)$

Recall that for a sheaf G on C we define $\mu_{\text {min }}(G)$ as

$$
\min \{\mu(F) \mid F \text { is a quotient of } G \text { of positive rank }\} .
$$

In this section we describe the Quot scheme Quot $_{C / \mathbb{C}}(E, r-1, d)$ which parametrizes quotients of E of rank $(r-1)$ and degree $d>2 g-2+e-\mu_{\min }(E)$. Let

$$
\begin{equation*}
\rho_{1}: C \times \operatorname{Pic}^{e-d}(C) \longrightarrow C, \quad \rho_{2}: C \times \operatorname{Pic}^{e-d}(C) \longrightarrow \operatorname{Pic}^{e-d}(C) \tag{3.1}
\end{equation*}
$$

be the projections. Let \mathcal{L} be a Poincare bundle on $C \times \operatorname{Pic}^{e-d}(C)$. Define

$$
\mathcal{E}:=\rho_{2 *}\left[\rho_{1}^{*} E \otimes \mathcal{L}^{\vee}\right] .
$$

Lemma 3.2. Assume $d>2 g-2+e-\mu_{\min }(E)$. Then \mathcal{E} is a vector bundle on $\mathrm{Pic}^{e-d}(C)$ of rank $r d-(r-1) e-r(g-1)$.
Proof. Let K_{C} denote the canonical bundle of C. For any $L \in \mathrm{Pic}^{e-d}(C)$, we claim

$$
H^{1}\left(C, E \otimes L^{\vee}\right)=H^{0}\left(C, E^{\vee} \otimes L \otimes K_{C}\right)^{\vee}=0
$$

This is because a nonzero section of $H^{0}\left(C, E^{\vee} \otimes L \otimes K_{C}\right)$ corresponds to a nonzero map $E \longrightarrow L \otimes K_{C}$ which cannot exist since by assumption $\mu_{\min }(E)>\operatorname{deg}\left(L \otimes K_{C}\right)=e-d+2 g-2$. Therefore by Grauert's theorem \mathcal{E} is a vector bundle of $\operatorname{rank} h^{0}\left(C, E \otimes L^{\vee}\right)$ which by RiemannRoch is $r d-(r-1) e-r(g-1)$.

Let $\pi: \mathbb{P}\left(\mathcal{E}^{\vee}\right) \longrightarrow \operatorname{Pic}^{e-d}(C)$ be the projective bundle associated to \mathcal{E}^{\vee}. Here we use the notation in [Har77], that is, for a vector space $V, \mathbb{P}(V)$ denotes the space of hyperplanes in V. Thus, $\mathbb{P}\left(V^{\vee}\right)$ denotes the space of lines in V. Recall that we have the map

$$
\mathcal{Q}_{C / \mathbb{C}}(E, r-1, d) \longrightarrow \operatorname{Pic}^{e-d}(C)
$$

which sends a quotient $[E \longrightarrow F \longrightarrow 0$] to its kernel.
Theorem 3.3. Assume $d>2 g-2+e-\mu_{\min }(E)$. We have an isomorphism of schemes over $\mathrm{Pic}^{e-d}(C)$

$$
\mathbb{P}\left(\mathcal{E}^{\vee}\right) \xrightarrow{\sim} \mathcal{Q}_{C / \mathbb{C}}(E, r-1, d) .
$$

In particular, under the above assumption on d, the space $\mathcal{Q}_{C / \mathbb{C}}(E, r-1, d)$ is smooth.
Proof. Let

$$
\sigma_{1}: C \times \mathbb{P}\left(\mathcal{E}^{\vee}\right) \longrightarrow C, \quad \sigma_{2}: C \times \mathbb{P}\left(\mathcal{E}^{\vee}\right) \longrightarrow \mathbb{P}\left(\mathcal{E}^{\vee}\right)
$$

be the projections. We define the map $\mathbb{P}\left(\mathcal{E}^{\vee}\right) \longrightarrow \mathcal{Q}_{C / \mathbb{C}}(E, r-1, d)$ by producing a quotient on $C \times \mathbb{P}\left(\mathcal{E}^{\vee}\right)$.

Recall the maps ρ_{i} from (3.1). By adjunction we have a natural map on $C \times \operatorname{Pic}^{e-d}(C)$

$$
\rho_{2}^{*} \mathcal{E} \otimes \mathcal{L} \longrightarrow \rho_{1}^{*} E .
$$

Pulling this morphism back to $C \times \mathbb{P}\left(\mathcal{E}^{\vee}\right)$ we get a map

$$
\left(\operatorname{Id}_{C} \times \pi\right)^{*}\left[\rho_{2}^{*} \mathcal{E} \otimes \mathcal{L}\right]=\left(\pi \circ \sigma_{2}\right)^{*} \mathcal{E} \otimes\left(\operatorname{Id}_{C} \times \pi\right)^{*} \mathcal{L} \longrightarrow \sigma_{1}^{*} E
$$

We also have the morphism of sheaves on $\mathbb{P}\left(\mathcal{E}^{\vee}\right)$

$$
\mathcal{O}(-1) \hookrightarrow \pi^{*} \mathcal{E}
$$

Pulling this back to $C \times \mathbb{P}\left(\mathcal{E}^{\vee}\right)$ we get a composed map of sheaves on $C \times \mathbb{P}\left(\mathcal{E}^{\vee}\right)$

$$
\begin{equation*}
\sigma_{2}^{*} \mathcal{O}(-1) \otimes\left(\operatorname{Id}_{C} \times \pi\right)^{*} \mathcal{L} \longrightarrow\left(\pi \circ \sigma_{2}\right)^{*} \mathcal{E} \otimes\left(\operatorname{Id}_{C} \times \pi\right)^{*} \mathcal{L} \longrightarrow \sigma_{1}^{*} E . \tag{3.4}
\end{equation*}
$$

As $\sigma_{2}^{*} \mathcal{O}(-1) \otimes\left(\operatorname{Id}_{C} \times \pi\right)^{*} \mathcal{L}$ is a line bundle and $C \times \mathbb{P}\left(\mathcal{E}^{\vee}\right)$ is smooth, it easily follows that (3.4) is an inclusion as it is nonzero. By the previous lemma, a point $x \in \mathbb{P}\left(\mathcal{E}^{\vee}\right)$ corresponds to a pair $(L, \phi: L \longrightarrow E)$ where L is a line bundle of degree $e-d$ and ϕ is a nonzero homomorphism of sheaves, up to scalar multiplication. The inclusion (3.4) restricted to $C \times x$ is nothing but the nonzero homomorphism ϕ. Therefore we get that the cokernel of (3.4), which we denote \mathcal{F}, is flat over $\mathbb{P}\left(\mathcal{E}^{\vee}\right)$, and the restriction $\left.\mathcal{F}\right|_{C \times x}$ has rank $r-1$ and degree d. Thus, \mathcal{F} defines a map $\phi: \mathbb{P}\left(\mathcal{E}^{\vee}\right) \longrightarrow \mathcal{Q}_{C / \mathbb{C}}(E, r-1, d)$. It is easily checked that this map is bijective on closed points.

Let point $x=[E \longrightarrow F \longrightarrow 0]$ be a point in $\mathcal{Q}_{C / \mathbb{C}}(E, r-1, d)$. Let L be the kernel. Then we have an exact sequence

$$
\operatorname{Ext}^{1}(L, L) \longrightarrow \operatorname{Ext}^{1}(L, E) \longrightarrow \operatorname{Ext}^{1}(L, F) \longrightarrow 0
$$

From the proof of Lemma 3.2 it follows that $\operatorname{Ext}^{1}(L, E)=0$. Hence $\operatorname{Ext}^{1}(L, F)=0$. Therefore $\mathcal{Q}_{C / \mathbb{C}}(E, r-1, d)$ is smooth at x [HL10, Proposition 2.2.8]. As ϕ is bijective on closed points, it follows it is an isomorphism.

Corollary 3.5. Assume $d>2 g-2+e-\mu_{\min }(E)$. Then $\mathcal{Q}_{C / \mathbb{C}}(E, r-1, d)$ is a smooth projective variety and $\operatorname{Pic}\left(\mathcal{Q}_{C / \mathbb{C}}(E, r-1, d)\right) \cong \operatorname{Pic}\left(\operatorname{Pic}^{0}(C)\right) \times \mathbb{Z}$.

When E is the trivial bundle, Theorem 3.3 is proved in [BDW96, Corollary 4.23].

4. The good locus for torsion free quotients

The following Lemma is an easy consequence of [PR03, Lemma 6.1].
Lemma 4.1. Let k be an integer. There is a number $\mu_{0}(E, k)$, which depends only on E and k, such that for all torsion free sheaves F with $\operatorname{rk}(F) \leqslant k$ and $\mu_{\min }(F) \geqslant \mu_{0}(E, k)$ we have $H^{1}\left(E^{\vee} \otimes F\right)=0$.

Proof. When F is stable and $\operatorname{rk}(F) \leqslant k$, it follows using [PR03, Lemma 6.1], that there is $\mu_{0}(E, k)$ such that if $\operatorname{rk}(F) \leqslant k$ and $\mu(F) \geqslant \mu_{0}(E, k)$ then $H^{1}\left(E^{\vee} \otimes F\right)=0$.

Next let F be semistable (see Remark following [PR03, Lemma 6.1]). Take a JordanHolder filtration for F and let G be a graded piece of this filtration. As $\operatorname{rk}(G) \leqslant k$ and $\mu(G)=\mu(F) \geqslant \mu_{0}(E, k)$ it follows from the stable case that $H^{1}\left(E^{\vee} \otimes G\right)=0$. From this it easily follows that if F is semistable, $\operatorname{rk}(F) \leqslant k$ and $\mu(F) \geqslant \mu_{0}(E, k)$ then $H^{1}\left(E^{\vee} \otimes F\right)=0$.

Now let F be a locally free sheaf with $\operatorname{rk}(F) \leqslant k$ and let

$$
0=F_{0} \subsetneq F_{1} \subsetneq \ldots \subsetneq F_{l}=F
$$

be its Harder-Narasimhan filtration. Each graded piece is semistable with slope

$$
\mu\left(F_{i} / F_{i-1}\right) \geqslant \mu\left(F_{l} / F_{l-1}\right)=\mu_{\min }(F) .
$$

Thus, if $\mu_{\min }(F) \geqslant \mu_{0}(E, k)$ then $\mu_{\min }\left(F_{i} / F_{i-1}\right) \geqslant \mu_{0}(E, k)$ and so from the semistable case it follows that $H^{1}\left(E^{\vee} \otimes\left(F_{i} / F_{i-1}\right)\right)=0$. Again it follows that $H^{1}\left(E^{\vee} \otimes F\right)=0$. This proves the lemma.

Let G be a locally free sheaf on C and let k be an integer. Define

$$
\begin{equation*}
d_{k}(G):=\min \{d \mid \exists \text { quotient } G \longrightarrow F \text { with } \operatorname{deg}(F)=d, \operatorname{rk}(F)=k\} \tag{4.2}
\end{equation*}
$$

Remark 4.3. We recall some results from [PR03] (see [PR03, Lemma 6.1, Proposition 6.1, Theorem 6.4] and the remarks following these). There is an integer $\alpha(E, k)$ such that when $d \geqslant \alpha(E, k)$, the following three assertions hold:
(1) If F is a stable bundle of rank k and degree d, then $E^{\vee} \otimes F$ is globally generated.
(2) \mathcal{Q} is irreducible and generically smooth of dimension $r d-e k-k(r-k)(g-1)$.
(3) For the general quotient $E \longrightarrow F$, with F having rank k and degree d, we have the sheaf F is torsion free and stable.
 quotients of E of rank a and degree b. For a locally closed subset $A \subset \operatorname{Quot}_{C / \mathbb{C}}(E, a, b)$ define the following locally closed subsets of A.

$$
\begin{align*}
& A_{\mathrm{g}}:=\left\{[E \longrightarrow F] \in A \mid H^{1}\left(E^{\vee} \otimes F\right)=0\right\} \tag{4.5}\\
& A_{\mathrm{b}}:=A \backslash A_{\mathrm{g}} \\
& A^{\mathrm{tf}}:=\{[E \longrightarrow F] \in A \mid F \text { is torsion free }\} \\
& A_{\mathrm{g}}^{\mathrm{tf}}:=A^{\mathrm{tf}} \cap A_{\mathrm{g}} \\
& A_{\mathrm{b}}^{\mathrm{tf}}:=A^{\mathrm{tf}} \cap A_{\mathrm{b}}
\end{align*}
$$

In particular, we get subsets $\mathcal{Q}_{\mathrm{g}}^{\mathrm{tf}}, \mathcal{Q}_{\mathrm{b}}^{\mathrm{tf}}$.
For integers $0<k^{\prime \prime}<k<r$ define constants

$$
\begin{align*}
C_{1}\left(E, k, k^{\prime \prime}\right) & :=k^{\prime \prime}\left(r-k^{\prime \prime}\right)-d_{k^{\prime \prime}}(E) r+\left(k-k^{\prime \prime}\right)(r-k)-d_{k}(E)\left(r-k^{\prime \prime}\right) \tag{4.6}\\
C_{2}\left(E, k, k^{\prime \prime}\right) & :=-e k-k(r-k)(g-1)-C_{1}\left(E, k, k^{\prime \prime}\right) \\
C_{3}(E, k) & :=\min _{k^{\prime \prime}<k}\left\{C_{2}\left(E, k, k^{\prime \prime}\right)\right\} .
\end{align*}
$$

Let t_{0} be a positive integer. Define

$$
\begin{equation*}
\beta\left(E, k, t_{0}\right):=\max \left\{(r-1) \mu_{0}(E, r-1), r^{2} \mu_{0}(E, r-1)+t_{0}-C_{3}(E, k), \alpha(E, k), 1\right\} . \tag{4.7}
\end{equation*}
$$

Remark 4.8. From the definition it is clear that $\beta\left(E, k, t_{0}\right) \geqslant \alpha(E, k)$ for all integers $t_{0} \geqslant 1$, if $t_{1} \geqslant t_{0} \geqslant 1$ then $\beta\left(E, k, t_{1}\right) \geqslant \beta\left(E, k, t_{0}\right)$ and $\beta\left(E, k, t_{0}\right) \geqslant 1$ for all positive integers t_{0}. To define the constants C_{1}, C_{2}, C_{3} we need that $r \geqslant 3$. Note that if $r=2$, then the only possible value for k is 1 , which equals $r-1$. This case has been dealt with in the previous section. Thus, from now on we may assume that $r \geqslant 3$. These constants will play a role while computing dimensions of some subsets of $\mathcal{Q}_{C / \mathbb{C}}(E, k, d)$. We emphasize that these constants are independent of d.

Lemma 4.9. Fix positive integers t_{0} and k such that $k<r$. Let $d \geqslant \beta\left(E, k, t_{0}\right)$. Let S be an irreducible component of $\mathcal{Q}_{\mathrm{b}}^{\mathrm{tf}}$. Then $\operatorname{dim}(\mathcal{Q})-\operatorname{dim}(S)>t_{0}$ and so also $\operatorname{dim}(\mathcal{Q})-\operatorname{dim}\left(\mathcal{Q}_{\mathrm{b}}^{\mathrm{tf}}\right)>$ t_{0}.

Proof. We give S the reduced subscheme structure so that S is an integral scheme. Let $q \in S$ be a closed point corresponding to a quotient $E \longrightarrow F$. If F is semistable, then using $d \geqslant \beta\left(E, k, t_{0}\right) \geqslant(r-1) \mu_{0}(E, r-1)$ (note that as $\beta\left(E, k, t_{0}\right)>0$ we have $d>0$) we get

$$
\mu(F)=\mu_{\min }(F)=\frac{d}{k} \geqslant \frac{d}{r-1} \geqslant \mu_{0}(E, r-1) .
$$

It follows from Lemma 4.1 that $q \in \mathcal{Q}_{\mathrm{g}}^{\text {tf }}$, which is a contradiction as $q \in \mathcal{Q}_{\mathrm{b}}^{\text {tf }}$. Thus, F is not semistable.

Let $p_{1}: C \times S \longrightarrow C$ denote the projection. Consider the pullback of the universal quotient from $C \times \mathcal{Q}$ to $C \times S$ and denote it

$$
p_{1}^{*} E \longrightarrow \mathcal{F}
$$

From [HL10, Theorem 2.3.2] (existence of relative Harder-Narasimhan filtration) it follows that there is a dense open subset $U \subset S$ and a filtration

$$
0=\mathcal{F}_{0} \subsetneq \mathcal{F}_{1} \subsetneq \ldots \subsetneq \mathcal{F}_{l}=\mathcal{F}
$$

such that $\mathcal{F}_{i} / \mathcal{F}_{i-1}$ is flat over U and for each closed point $u \in U$, the sheaf $\mathcal{F}_{i, u} / \mathcal{F}_{i-1, u}$ is semistable. Consider the quotient $p_{1}^{*} E \longrightarrow \mathcal{F}_{l} \longrightarrow \mathcal{F}_{l} / \mathcal{F}_{l-1}$. Denote the kernel by \mathcal{S} so that we have an exact sequence

$$
0 \longrightarrow \mathcal{S} \longrightarrow p_{1}^{*} E \longrightarrow \mathcal{F}_{l} / \mathcal{F}_{l-1} \longrightarrow 0
$$

on $C \times U$. Let us denote

$$
\mathcal{F}^{\prime \prime}:=\mathcal{F}_{l} / \mathcal{F}_{l-1}, \quad \mathcal{F}^{\prime}:=\mathcal{F}_{l-1}
$$

With this notation we have a commutative diagram of short exact sequences on $C \times U$

In particular, we observe that the map $E \longrightarrow \mathcal{F}_{u}$ can be obtained as the pushout of the short exact sequence $0 \longrightarrow \mathcal{S}_{u} \longrightarrow E \longrightarrow \mathcal{F}_{u}^{\prime \prime} \longrightarrow 0$ along the map $\mathcal{S}_{u} \longrightarrow \mathcal{F}_{u}^{\prime}$.

For a closed point $u \in U$ define

$$
k^{\prime \prime}:=\operatorname{rk}\left(\mathcal{F}_{u}^{\prime \prime}\right), \quad d^{\prime \prime}:=\operatorname{deg}\left(\mathcal{F}_{u}^{\prime \prime}\right) .
$$

Then

$$
\operatorname{rk}\left(\mathcal{F}_{u}^{\prime}\right)=k-k^{\prime \prime}, \quad \operatorname{deg}\left(\mathcal{F}_{u}^{\prime}\right)=d-d^{\prime \prime}
$$

The top row of (4.10) defines a map

$$
\theta: U \longrightarrow \operatorname{Quot}_{C / \mathbb{C}}\left(E, k^{\prime \prime}, d^{\prime \prime}\right) .
$$

For ease of notation let us denote $A:=\operatorname{Quot}_{C / \mathbb{C}}\left(E, k^{\prime \prime}, d^{\prime \prime}\right)$. Let \mathcal{S}_{1} denote the universal kernel bundle on $C \times A$. Then $\left(\operatorname{Id}_{C} \times \theta\right)^{*} \mathcal{S}_{1}=\mathcal{S}$. The left vertical arrow of (4.10) defines a
map to the relative Quot scheme

We claim that the map $\tilde{\theta}$ is injective on closed points. Let $u_{1}, u_{2} \in U$ be such that $\tilde{\theta}\left(u_{1}\right)=$ $\tilde{\theta}\left(u_{2}\right)$. Then $\theta\left(u_{1}\right)=\theta\left(u_{2}\right)$. It follows that the quotients $E \longrightarrow \mathcal{F}_{u_{1}}^{\prime \prime}$ and $E \longrightarrow \mathcal{F}_{u_{2}}^{\prime \prime}$ are the same, that is, $\mathcal{S}_{u_{1}}=\mathcal{S}_{u_{2}}$. Since $\tilde{\theta}\left(u_{1}\right)=\tilde{\theta}\left(u_{2}\right)$ it follows that the quotients $\mathcal{S}_{u_{1}} \longrightarrow \mathcal{F}_{u_{1}}^{\prime}$ and $\mathcal{S}_{u_{2}} \longrightarrow \mathcal{F}_{u_{2}}^{\prime}$ are the same. We observed after (4.10), that the quotient $E \longrightarrow \mathcal{F}_{u_{i}}$ is obtained as the pushout of the short exact sequence $0 \longrightarrow \mathcal{S}_{u_{i}} \longrightarrow E \longrightarrow \mathcal{F}_{u_{i}}^{\prime \prime} \longrightarrow 0$ along the map $\mathcal{S}_{u_{i}} \longrightarrow \mathcal{F}_{u_{i}}^{\prime}$. From this it follows that the quotients $E \longrightarrow \mathcal{F}_{u_{i}}$ are the same. Thus, the map $\tilde{\theta}$ is injective on closed points.

Let us compute the dimension of $\operatorname{Quot}_{C \times A / A}\left(\mathcal{S}_{1}, k-k^{\prime \prime}, d-d^{\prime \prime}\right)$. Consider a quotient [$E \longrightarrow F^{\prime \prime}$] which corresponds to a closed point in A. Let $S_{F^{\prime \prime}}$ denote the kernel. It has rank $r-k^{\prime \prime}$. The fiber of π over $\left[E \longrightarrow F^{\prime \prime}\right]$ is the Quot scheme Quot $_{C / \mathbb{C}}\left(S_{F^{\prime \prime}}, k-k^{\prime \prime}, d-d^{\prime \prime}\right)$. Recall from (4.2) the integer $d_{k-k^{\prime \prime}}\left(S_{F^{\prime \prime}}\right)$, which is the smallest possible degree among all quotients of $S_{F^{\prime \prime}}$ of rank $k-k^{\prime \prime}$. Thus, if the fiber is nonempty then we have that

$$
d-d^{\prime \prime} \geqslant d_{k-k^{\prime \prime}}\left(S_{F^{\prime \prime}}\right)
$$

By [PR03, Theorem 4.1] it follows that, if the fiber is nonempty then

$$
\begin{align*}
\operatorname{dim}\left(\operatorname{Quot}_{C / \mathbb{C}}\left(S_{F^{\prime \prime}}, k-k^{\prime \prime}, d-d^{\prime \prime}\right)\right) & \leqslant\left(k-k^{\prime \prime}\right)(r-k)+ \tag{4.11}\\
& \left(d-d^{\prime \prime}-d_{k-k^{\prime \prime}}\left(S_{F^{\prime \prime}}\right)\right)\left(r-k^{\prime \prime}\right)
\end{align*}
$$

We will find a lower bound for $d_{k-k^{\prime \prime}}\left(S_{F^{\prime \prime}}\right)$. Let $S_{F^{\prime \prime}} \longrightarrow G$ be a quotient such that $\operatorname{deg}(G)=$ $d_{k-k^{\prime \prime}}\left(S_{F^{\prime \prime}}\right)$. Then we can form the pushout \tilde{G} which sits in the following commutative diagram

Since \tilde{G} is a quotient of E of rank k, it follows that

$$
\operatorname{deg}(\tilde{G})=d^{\prime \prime}+d_{k-k^{\prime \prime}}\left(S_{F^{\prime \prime}}\right) \geqslant d_{k}(E)
$$

This shows that $d_{k-k^{\prime \prime}}\left(S_{F^{\prime \prime}}\right) \geqslant d_{k}(E)-d^{\prime \prime}$. Combining this with (4.11) yields

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{Quot}_{C / \mathbb{C}}\left(S_{F^{\prime \prime}}, k-k^{\prime \prime}, d-d^{\prime \prime}\right)\right) \leqslant\left(k-k^{\prime \prime}\right)(r-k)+\left(d-d_{k}(E)\right)\left(r-k^{\prime \prime}\right) \tag{4.12}
\end{equation*}
$$

Again using [PR03, Theorem 4.1] it follows that

$$
\begin{equation*}
\operatorname{dim}(A)=\operatorname{dim}\left(\operatorname{Quot}_{C / \mathbb{C}}\left(E, k^{\prime \prime}, d^{\prime \prime}\right)\right) \leqslant k^{\prime \prime}\left(r-k^{\prime \prime}\right)+\left(d^{\prime \prime}-d_{k^{\prime \prime}}(E)\right) r \tag{4.13}
\end{equation*}
$$

Combining (4.12) and (4.13), using (4.6) and injectivity of $\tilde{\theta}$ we get that

$$
\begin{aligned}
\operatorname{dim}(U) & \leqslant \operatorname{Quot}_{C \times A / A}\left(\mathcal{S}_{1}, k-k^{\prime \prime}, d-d^{\prime \prime}\right) \\
& \leqslant k^{\prime \prime}\left(r-k^{\prime \prime}\right)+\left(d^{\prime \prime}-d_{k^{\prime \prime}}(E)\right) r+\left(k-k^{\prime \prime}\right)(r-k)+\left(d-d_{k}(E)\right)\left(r-k^{\prime \prime}\right) \\
& =C_{1}\left(E, k, k^{\prime \prime}\right)+d\left(r-k^{\prime \prime}\right)+d^{\prime \prime} r
\end{aligned}
$$

From this, Remark 4.3(2) and (4.6) it follows that

$$
\begin{equation*}
\operatorname{dim}(\mathcal{Q})-\operatorname{dim}(U) \geqslant C_{2}\left(E, k, k^{\prime \prime}\right)+d k^{\prime \prime}-d^{\prime \prime} r \tag{4.14}
\end{equation*}
$$

We claim that $C_{2}\left(E, k, k^{\prime \prime}\right)+d k^{\prime \prime}-d^{\prime \prime} r>t_{0}$. If not, then we have

$$
\frac{C_{2}\left(E, k, k^{\prime \prime}\right)+d k^{\prime \prime}-t_{0}}{r} \leqslant d^{\prime \prime} .
$$

But this yields

$$
\begin{equation*}
\frac{C_{3}(E, k)+d-t_{0}}{r^{2}} \leqslant \frac{C_{2}\left(E, k, k^{\prime \prime}\right)+d-t_{0}}{r^{2}}<\frac{C_{2}\left(E, k, k^{\prime \prime}\right)+d k^{\prime \prime}-t_{0}}{r k^{\prime \prime}} \leqslant \frac{d^{\prime \prime}}{k^{\prime \prime}} . \tag{4.15}
\end{equation*}
$$

Let $u \in U$ be a closed point. Then $\mu_{\text {min }}\left(\mathcal{F}_{u}\right)=d^{\prime \prime} / k^{\prime \prime}$. By the assumption on d we have that

$$
d \geqslant \beta\left(E, k, t_{0}\right) \geqslant r^{2} \mu_{0}(E, r-1)+t_{0}-C_{3}(E, k) .
$$

Using this and (4.15) gives

$$
\mu_{0}(E, r-1) \leqslant \frac{C_{3}(E, k)+d-t_{0}}{r^{2}}<\frac{d^{\prime \prime}}{k^{\prime \prime}}=\mu_{\min }\left(\mathcal{F}_{u}\right) .
$$

It follows from Lemma 4.1 that $H^{1}\left(E^{\vee} \otimes \mathcal{F}_{u}\right)=0$, that is, $u \in \mathcal{Q}_{\mathrm{g}}^{\mathrm{tf}}$. But this is a contradiction as $U \subset \mathcal{Q}_{\mathrm{b}}^{\mathrm{tf}}$. Thus, it follows from (4.14) that

$$
\operatorname{dim}(\mathcal{Q})-\operatorname{dim}(S) \geqslant C_{2}\left(E, k, k^{\prime \prime}\right)+d k^{\prime \prime}-d^{\prime \prime} r>t_{0}
$$

This completes the proof of the Lemma.

5. Locus of quotients which are not torsion free

For a sheaf F, denote the torsion subsheaf of F by $\operatorname{Tor}(F)$. For an integer $i \geqslant 1$ define the locally closed subset

$$
\begin{equation*}
Z_{i}:=\{[q: E \longrightarrow F] \in \mathcal{Q} \mid \operatorname{deg}(\operatorname{Tor}(F))=i\} . \tag{5.1}
\end{equation*}
$$

We now estimate the dimension of Z_{i} and $\left(Z_{i}\right)_{\mathrm{b}}$ (recall the definition of $\left(Z_{i}\right)_{b}$ from (4.5)).
Lemma 5.2. With notation as above we have
(1) Assume that $d-i \geqslant \alpha(E, k)$ (see Remark 4.3). Then Z_{i} is irreducible and $\operatorname{dim}\left(Z_{i}\right)=$ $\operatorname{dim}(\mathcal{Q})-k i$. Moreover, $\bar{Z}_{i} \supset \bigcup_{j \geqslant i} Z_{j}$.
(2) Let t_{1} be a positive integer. If $d-i \geqslant \beta\left(E, k, t_{1}\right)$ (see (4.7) for definition of β) then $\operatorname{dim}\left(Z_{i}\right)-\operatorname{dim}\left(\left(Z_{i}\right)_{\mathrm{b}}\right)>t_{1}$.
(3) If $d-i \geqslant \beta\left(E, k, t_{1}\right)$ then $\operatorname{dim}(\mathcal{Q})-\operatorname{dim}\left(\left(Z_{i}\right)_{\mathrm{b}}\right)>t_{1}+k i$.

Proof. Consider the Quot scheme $\operatorname{Quot}_{C / \mathbb{C}}(E, k, d-i)$. For ease of notation we denote $A=$ Quot $_{C / \mathbb{C}}(E, k, d-i)$. Let

$$
0 \longrightarrow \mathscr{S} \longrightarrow p_{1}^{*} E \longrightarrow \mathscr{F} \longrightarrow 0
$$

be the universal quotient on $C \times A$. Consider the relative Quot scheme

$$
\begin{equation*}
\operatorname{Quot}_{C \times A / A}(\mathscr{S}, 0, i) \xrightarrow{\pi} A . \tag{5.3}
\end{equation*}
$$

There is a map

$$
\begin{equation*}
\operatorname{Quot}_{C \times A / A}(\mathscr{S}, 0, i) \xrightarrow{\pi^{\prime}} \mathcal{Q} \tag{5.4}
\end{equation*}
$$

whose image consists of precisely those quotients $[E \longrightarrow F]$ for which $\operatorname{deg}(\operatorname{Tor}(F)) \geqslant i$. Recall the locus $A^{\text {tf }}$ from (4.5). One checks easily that

$$
\begin{equation*}
\pi^{\prime-1}\left(Z_{i}\right)=\pi^{-1}\left(A^{\mathrm{tf}}\right) \tag{5.5}
\end{equation*}
$$

In fact, one easily checks that $\pi^{\prime}: \pi^{-1}\left(A^{\mathrm{tf}}\right) \longrightarrow Z_{i}$ is a bijection on points and so they have the same dimension. As $d-i \geqslant \alpha(E, k)$, by Remark 4.3(2), it follows that A is irreducible of dimension

$$
\operatorname{dim}(A)=r(d-i)-e k-k(r-k)(g-1)
$$

By Remark 4.3(3), it follows that $A^{\text {tf }}$ is a dense open subset of A. If $[E \longrightarrow F] \in A$ is a quotient, let S_{F} denote the kernel. The fiber of π over this point is the Quot scheme Quot $_{C / \mathbb{C}}\left(S_{F}, 0, i\right)$, which is irreducible and has dimension $(r-k) i$. From this it follows that $\operatorname{Quot}_{C \times A / A}(\mathscr{S}, 0, i)$ is irreducible of dimension $\operatorname{dim}(\mathcal{Q})-k i$. Thus, the open set $\pi^{-1}\left(A^{\text {tf }}\right)$ also has the same dimension and is irreducible. As this open subset dominates Z_{i}, the claim about the irreducibility and dimension of Z_{i} follows. We have already observed that the image of π^{\prime} is the locus $\bigcup_{j \geqslant i} Z_{j}$. As $\pi^{-1}\left(A^{\mathrm{tf}}\right)$ is dense in Quot $_{C \times A / A}(\mathscr{S}, 0, i)$, the proof of (1) is complete.

To prove the second assertion, note that

$$
H^{1}\left(E^{\vee} \otimes F\right)=H^{1}\left(E^{\vee} \otimes(F / \operatorname{Tor}(F))\right)
$$

One checks easily that

$$
\begin{equation*}
\pi^{\prime-1}\left(\left(Z_{i}\right)_{\mathrm{b}}\right)=\pi^{-1}\left(A_{\mathrm{b}}^{\mathrm{tf}}\right) \tag{5.6}
\end{equation*}
$$

As π has constant fiber dimension, we see

$$
\operatorname{dim}\left(A^{\mathrm{tf}}\right)-\operatorname{dim}\left(A_{\mathrm{b}}^{\mathrm{tf}}\right)=\operatorname{dim}\left(\pi^{-1}\left(A^{\mathrm{tf}}\right)\right)-\operatorname{dim}\left(\pi^{-1}\left(A_{\mathrm{b}}^{\mathrm{tf}}\right)\right)
$$

By applying Lemma 2.2 to the map π^{\prime}, and using (5.5) and (5.6), we get

$$
\begin{aligned}
\operatorname{dim}\left(A^{\mathrm{tf}}\right)-\operatorname{dim}\left(A_{\mathrm{b}}^{\mathrm{tf}}\right) & =\operatorname{dim}\left(\pi^{-1}\left(A^{\mathrm{tf}}\right)\right)-\operatorname{dim}\left(\pi^{-1}\left(A_{\mathrm{b}}^{\mathrm{tf}}\right)\right) \\
& =\operatorname{dim}\left(\pi^{\prime-1}\left(Z_{i}\right)\right)-\operatorname{dim}\left(\pi^{\prime-1}\left(\left(Z_{i}\right)_{\mathrm{b}}\right)\right) \leqslant \operatorname{dim}\left(Z_{i}\right)-\operatorname{dim}\left(\left(Z_{i}\right)_{\mathrm{b}}\right)
\end{aligned}
$$

As $d-i \geqslant \beta\left(E, k, t_{1}\right) \geqslant \alpha(E, k)$ it follows from Remark 4.3(2) and (3) that $\operatorname{Quot}_{C / \mathbb{C}}(E, k, d-i)$ is irreducible and so $\operatorname{dim}\left(\operatorname{Quot}_{C / \mathbb{C}}(E, k, d-i)\right)=\operatorname{dim}\left(\operatorname{Quot}_{C / \mathbb{C}}(E, k, d-i)^{\mathrm{tf}}\right)$. By Lemma 4.9 it follows that

$$
\operatorname{dim}\left(A^{\mathrm{tf}}\right)-\operatorname{dim}\left(A_{\mathrm{b}}^{\mathrm{tf}}\right)=\operatorname{dim}\left(\operatorname{Quot}_{C / \mathbb{C}}(E, k, d-i)^{\mathrm{tf}}\right)-\operatorname{dim}\left(\operatorname{Quot}_{C / \mathbb{C}}(E, k, d-i)_{\mathrm{b}}^{\mathrm{tf}}\right)>t_{1}
$$

This proves that $\operatorname{dim}\left(Z_{i}\right)-\operatorname{dim}\left(\left(Z_{i}\right)_{\mathrm{b}}\right)>t_{1}$. This proves (2).
Assertion (3) of the Lemma follows easily using the first two.

6. Flatness of Det

We begin by showing that when $d \gg 0, \mathcal{Q}$ is a local complete intersection. This result seems well known to experts (see [BDW96, Theorem 1.6] and the paragraph following it); however, we include it as we could not find a precise reference.

Lemma 6.1. Let $d \geqslant \alpha(E, k)$. Then \mathcal{Q} is a local complete intersection scheme. In particular, it is Cohen-Macaulay.
Proof. By Remark 4.3(2), \mathcal{Q} is irreducible and so $\operatorname{dim}_{q}(\mathcal{Q})$ is independent of the closed point $q \in \mathcal{Q}$. Let \mathcal{F} denote the universal quotient and let \mathcal{K} denote the universal kernel on $C \times \mathcal{Q}$. For a closed point $q \in \mathcal{Q}$ we shall denote the restrictions of these sheaves to $C \times q$ by \mathcal{K}_{q} and \mathcal{F}_{q}. The sheaf \mathcal{K} is locally free on $C \times \mathcal{Q}$. It follows that $\mathcal{K}^{\vee} \otimes \mathcal{F}$ is flat over \mathcal{Q}, and so the Euler characteristic of $\mathcal{K}_{q}^{\vee} \otimes \mathcal{F}_{q}$ is constant, call it χ. As $\mathcal{Q}_{\mathrm{g}}^{\mathrm{tf}}$ is nonempty, let $q \in \mathcal{Q}_{\mathrm{g}}^{\mathrm{tf}}$ be a closed point. As $h^{1}\left(\mathcal{K}_{q}^{\vee} \otimes \mathcal{F}_{q}\right)=0$, it follows from [HL10, Proposition 2.2.8] that

$$
\operatorname{dim}_{q}(\mathcal{Q})=h^{0}\left(\mathcal{K}_{q}^{\vee} \otimes \mathcal{F}_{q}\right)=h^{0}\left(\mathcal{K}_{q}^{\vee} \otimes \mathcal{F}_{q}\right)-h^{1}\left(\mathcal{K}_{q}^{\vee} \otimes \mathcal{F}_{q}\right)=\chi .
$$

Let $t \in \mathcal{Q}$ be a closed point. We already observed that $\operatorname{dim}_{t}(\mathcal{Q})$ is independent of the closed point $t \in \mathcal{Q}$ and so is equal to χ. It follows that for all closed points $t \in \mathcal{Q}$ we have

$$
\operatorname{dim}_{t}(\mathcal{Q})=\chi=h^{0}\left(\mathcal{K}_{t}^{\vee} \otimes \mathcal{F}_{t}\right)-h^{1}\left(\mathcal{K}_{t}^{\vee} \otimes \mathcal{F}_{t}\right) .
$$

By [HL10, Proposition 2.2.8] it follows that the space \mathcal{Q} is a local complete intersection at any closed point and so is also Cohen-Macaulay.

Lemma 6.2. Fix a positive integer t_{0}. Let i_{0} be the smallest integer such that $k i_{0}>g(C)+t_{0}$. If $d \geqslant \beta\left(E, k, g(C)+t_{0}\right)+i_{0}$ then $\operatorname{dim}(\mathcal{Q})-\operatorname{dim}\left(\mathcal{Q}_{\mathrm{b}}\right)>g(C)+t_{0}$.

Proof. First observe that we can write

$$
\mathcal{Q}=\mathcal{Q}^{\text {tf }} \sqcup \bigsqcup_{i \geqslant 1} Z_{i} .
$$

Only finitely many indices i appear. In fact, i can be at most $d-d_{k}(E)$, see (4.2). In view of this we get

$$
\mathcal{Q}_{\mathrm{b}}=\mathcal{Q}_{\mathrm{b}}^{\mathrm{tf}} \sqcup \bigsqcup_{i \geqslant 1}\left(Z_{i}\right)_{\mathrm{b}} .
$$

By Lemma 4.9, since $d \geqslant \beta\left(E, k, g(C)+t_{0}\right)$ we have

$$
\operatorname{dim}(\mathcal{Q})-\operatorname{dim}\left(\mathcal{Q}_{\mathrm{b}}^{\mathrm{tf}}\right)>g(C)+t_{0}
$$

If $1 \leqslant i \leqslant i_{0}$ then $d-i \geqslant d-i_{0} \geqslant \beta\left(E, k, g(C)+t_{0}\right)$, and so by Lemma 5.2(3) we get

$$
\operatorname{dim}(\mathcal{Q})-\operatorname{dim}\left(\left(Z_{i}\right)_{\mathrm{b}}\right)>g(C)+t_{0}+k i .
$$

By Lemma 5.2(1) we also get that $\bar{Z}_{i_{0}} \supset \bigcup_{j \geqslant i_{0}} Z_{j}$. For $j \geqslant i_{0}$,

$$
\operatorname{dim}\left(\left(Z_{j}\right)_{\mathrm{b}}\right) \leqslant \operatorname{dim}\left(Z_{j}\right) \leqslant \operatorname{dim}\left(Z_{i_{0}}\right)=\operatorname{dim}(\mathcal{Q})-k i_{0}
$$

This shows that for $j \geqslant i_{0}$ we have

$$
\operatorname{dim}(\mathcal{Q})-\operatorname{dim}\left(\left(Z_{j}\right)_{\mathrm{b}}\right) \geqslant k i_{0}>g(C)+t_{0} .
$$

Combining these shows that $\operatorname{dim}(\mathcal{Q})-\operatorname{dim}\left(\mathcal{Q}_{\mathrm{b}}\right)>g(C)+t_{0}$. This completes the proof of the Lemma.

Theorem 6.3. Recall the map det defined in (2.5).
(1) Let n_{0} be the smallest integer such that $k n_{0}>g(C)+1$. Let $d \geqslant \beta(E, k, g(C)+1)+n_{0}$. Then $\operatorname{det}: \mathcal{Q} \longrightarrow \operatorname{Pic}^{d}(C)$ is a flat map. Further, \mathcal{Q} is an integral and normal variety.
(2) Let n_{1} be the smallest integer such that $k n_{1}>g(C)+3$. Let $d \geqslant \beta(E, k, g(C)+3)+n_{1}$. Then \mathcal{Q} is locally factorial.

Proof. Let $q \in \mathcal{Q}$ be a closed point and let K denote the kernel of the quotient q. Then we have a short exact sequence

$$
0 \longrightarrow K \longrightarrow E \longrightarrow F \longrightarrow 0
$$

Applying $\operatorname{Hom}(-, F)$ and using Lemma 2.7 we get the following diagram, in which the top row is exact.

If $H^{1}\left(E^{\vee} \otimes F\right)=0$ then we make the following two observations. First observe that it follows that $H^{1}\left(K^{\vee} \otimes F\right)=0$, which shows that \mathcal{Q}_{g} is contained in the smooth locus of \mathcal{Q}, by [HL10, Proposition 2.2.8]. Second observe that the map $\operatorname{Hom}(K, F) \longrightarrow \operatorname{Ext}^{1}(F, F)$ will be surjective. As $\operatorname{Ext}^{1}(F, F) \longrightarrow H^{1}\left(C, \mathcal{O}_{C}\right)$ is surjective, it follows that if $H^{1}\left(E^{\vee} \otimes F\right)=0$ then the diagonal map in the above diagram is surjective. However, the diagonal map is precisely the differential of det at the point q. As \mathcal{Q}_{g} and $\operatorname{Pic}^{d}(C)$ are smooth, it follows that the restriction of det to \mathcal{Q}_{g} is a smooth morphism and so also flat and dominant.

Assume $d \geqslant \beta(E, k, g(C)+1)+n_{0}$. Applying Lemma 6.2 we get

$$
\operatorname{dim}(\mathcal{Q})-\operatorname{dim}\left(\mathcal{Q}_{\mathrm{b}}\right)>g(C)+1
$$

We observed in Lemma 6.1 that \mathcal{Q} is a Cohen-Macaulay scheme and so it satisfies Serre's condition S_{2}. The open subset \mathcal{Q}_{g} is smooth. As $\mathcal{Q}_{\mathrm{b}}=\mathcal{Q} \backslash \mathcal{Q}_{\mathrm{g}}$, it follows that \mathcal{Q} satisfies Serre's condition R_{1}. Thus, \mathcal{Q} is an integral and normal variety.

In view of Lemma 6.1 and [Mat86, Theorem 23.1] or [Stk, Tag 00R4], to prove the first assertion of the theorem, it suffices to show that the fibers of det have constant dimension. Applying Lemma 2.1(1), by taking U to be the open subset \mathcal{Q}_{g}, we get that det is flat. This proves (1).

Now we prove (2). Assume $d \geqslant \beta(E, k, g(C)+3)+n_{1}$. Applying Lemma 6.2 we get

$$
\operatorname{dim}(\mathcal{Q})-\operatorname{dim}\left(\mathcal{Q}_{\mathrm{b}}\right)>g(C)+3
$$

This implies that the singular locus has codimension 4 or more. Now we use a result of Grothendieck which states that if R is a local ring that is a complete intersection in which the singular locus has codimension 4 or more, then R is a UFD. We refer the reader to [Gro05], [Cal94], [AH20, Theorem 1.4]. This implies that \mathcal{Q} is locally factorial. The proof of the theorem is now complete.

7. Locus of stable quotients and Picard group of \mathcal{Q}

7.1. In this section we will be using two Quot schemes. Thus, it is worth recalling that \mathcal{Q} denotes the Quot scheme Quot $_{C / \mathbb{C}}(E, k, d)$. We begin by explaining a result from [Bho99] that we need. Assume one of the following two holds

- $k \geqslant 2$ and $g(C) \geqslant 3$, or
- $k \geqslant 3$ and $g(C)=2$.

Let $d \geqslant \alpha(E, k)$. Fix a closed point $P \in C$. For a closed point $q \in \mathcal{Q}$, let $\left[E \xrightarrow{q} \mathcal{F}_{q}\right]$ denote the quotient corresponding to this closed point. We may choose $n \gg 0$ such that for all $q \in \mathcal{Q}_{\mathrm{g}}^{\mathrm{tf}}$ we have $H^{1}\left(C, \mathcal{F}_{q}(n P)\right)=0$ and $\mathcal{F}_{q}(n P)$ is globally generated. As $d \geqslant \alpha(E, k)$, by Remark 4.3 , it follows that $\mathcal{Q}_{\mathrm{g}}^{\mathrm{tf}}$ is irreducible, and so $h^{0}\left(C, \mathcal{F}_{q}(n P)\right)$ is independent of q. Let

$$
\begin{equation*}
N:=h^{0}\left(C, \mathcal{F}_{q}(n P)\right) \tag{7.2}
\end{equation*}
$$

and consider the Quot scheme $\operatorname{Quot}_{C / \mathbb{C}}\left(\mathcal{O}_{C}^{\oplus} N, k, d+k n\right)$. Let \mathcal{G}^{\prime} denote the universal quotient on $C \times \operatorname{Quot}_{C / \mathbb{C}}\left(\mathcal{O}_{C}^{\oplus N}, k, d+k n\right)$. Let $R \subset$ Quot $_{C / \mathbb{C}}\left(\mathcal{O}_{C}^{\oplus} N, k, d+k n\right)$ be the open subset containing closed points $\left[x: \mathcal{O}_{C}^{\oplus} N \longrightarrow \mathcal{G}_{x}^{\prime}\right]$ such that \mathcal{G}_{x}^{\prime} is torsion free, $H^{1}\left(C, \mathcal{G}_{x}^{\prime}\right)=0$ and the quotient map $\mathcal{O}_{C}^{\oplus} N \longrightarrow \mathcal{G}_{x}^{\prime}$ induces an isomorphism $\mathbb{C}^{N} \xrightarrow{\sim} H^{0}\left(C, \mathcal{G}_{x}^{\prime}\right)$. This is the space R in [Bho99, page 246, Proposition 1.2], see [Bho99, page 246, Notation 1.1]. The space R is a smooth equidimensional scheme. Let R^{s} (respectively, $R^{s s}$) denote the open subset of R consisting of closed points x for which \mathcal{G}_{x}^{\prime} is stable (respectively, semistable). In [Bho99, page 246 , Proposition 1.2] it is proved that $\operatorname{dim}(R)-\operatorname{dim}\left(R \backslash R^{s}\right) \geqslant 2$.

Let

$$
\left.\left.\begin{array}{l}
p_{1}: C \times \operatorname{Quot}_{C / \mathbb{C}}\left(\mathcal{O}_{C}^{\oplus} N\right. \\
p_{2}: C \times \operatorname{Quot}_{C / \mathbb{C}}\left(\mathcal{O}_{C}^{\oplus} N\right.
\end{array}, k, d+k n\right) \longrightarrow C \operatorname{Quot}_{C / \mathbb{C}}\left(\mathcal{O}_{C}^{\oplus} N, k, d+k n\right) ~ l i n n\right)
$$

denote the projections. Let

$$
\mathcal{G}:=\mathcal{G}^{\prime} \otimes p_{1}^{*}\left(\mathcal{O}_{C}(-n P)\right)
$$

Let $R^{\prime} \subset R$ be the open subset containing closed points x for which $H^{1}\left(C, E^{\vee} \otimes \mathcal{G}_{x}\right)=0$. By Cohomology and Base change theorem it follows that $p_{2 *}\left(p_{1}^{*} E^{\vee} \otimes \mathcal{G}\right)$ is locally free on R^{\prime}. The fiber over a point $x \in R^{\prime}$ is isomorphic to the vector space $\operatorname{Hom}\left(E, \mathcal{G}_{x}\right)$. Consider the projective bundle

$$
\begin{equation*}
\mathbb{P}\left(p_{2 *}\left(p_{1}^{*} E^{\vee} \otimes \mathcal{G}\right)^{\vee}\right) \xrightarrow{\Theta} R^{\prime} \tag{7.3}
\end{equation*}
$$

The fiber of Θ over a point $x \in R^{\prime}$ is the space of lines in the vector space $\operatorname{Hom}\left(E, \mathcal{G}_{x}\right)$. For ease of notation we denote $\mathbb{P}\left(p_{2 *}\left(p_{1}^{*} E^{\vee} \otimes \mathcal{G}\right)^{\vee}\right)$ by \mathbb{P}. Denote the projection maps from $C \times \mathbb{P}$ by

$$
p_{1}^{\prime}: C \times \mathbb{P} \longrightarrow C, \quad p_{2}^{\prime}: C \times \mathbb{P} \longrightarrow \mathbb{P}
$$

Consider the following Cartesian square

Let $\mathcal{O}(1)$ denote the tautological line bundle on \mathbb{P}. Then we have a map of sheaves on $C \times \mathbb{P}$

$$
\begin{equation*}
p_{1}^{\prime *} E \longrightarrow \tilde{\Theta}^{*} \mathcal{G} \otimes p_{2}^{\prime *} \mathcal{O}(1) \tag{7.4}
\end{equation*}
$$

A closed point $v \in \mathbb{P}$ corresponds to the closed point $\Theta(v) \in R^{\prime}$ and a line spanned by some $w_{v} \in \operatorname{Hom}\left(E, \mathcal{G}_{\Theta(v)}\right)$. The restriction of (7.4) to $C \times v$ gives the map $w_{v}: E \longrightarrow \mathcal{G}_{\Theta(v)}$. Let $\mathbb{U} \subset \mathbb{P}$ denote the open subset parametrizing points v such that w_{v} is surjective. On $C \times \mathbb{U}$ we have a surjection

$$
\begin{equation*}
p_{1}^{\prime *} E \longrightarrow \tilde{\Theta}^{*} \mathcal{G} \otimes p_{2}^{\prime *} \mathcal{O}(1) \tag{7.5}
\end{equation*}
$$

This defines a morphism

$$
\begin{equation*}
\Psi: \mathbb{U} \longrightarrow \mathcal{Q}_{\mathrm{g}}^{\mathrm{tf}} \tag{7.6}
\end{equation*}
$$

Lemma 7.7. Ψ is surjective on closed points.
Proof. Let $\left[q: E \longrightarrow \mathcal{F}_{q}\right] \in \mathcal{Q}_{\mathrm{g}}^{\mathrm{tf}}$ be a closed point. By our choice of n and N (see (7.2)), we have that $\mathcal{F}_{q}(n P)$ is globally generated and $N=h^{0}\left(C, \mathcal{F}_{q}(n P)\right)$. Therefore, by choosing a basis for $H^{0}\left(C, \mathcal{F}_{q}(n P)\right)$ we get a surjection $\left[\mathcal{O}_{C}^{N} \longrightarrow \mathcal{F}_{q}(n P)\right]$. Now it follows easily that Ψ is surjective on closed points.

Now further assume $d \geqslant \max \left\{\alpha(E, k), k \mu_{0}(E, k)\right\}$. By Lemma 4.1 we have $H^{1}\left(C, E^{\vee} \otimes\right.$ $\left.\mathcal{G}_{x}\right)=0$ for $x \in R^{s}$. Thus, we have inclusions of open sets $R^{s} \subset R^{\prime} \subset R$. Let $\mathbb{P}^{s} \subset \mathbb{P}$ denote the inverse image of R^{s} under the map Θ. Similarly, let $\mathbb{U}^{s} \subset \mathbb{U}$ denote the inverse image of R^{s} under the restriction of Θ to \mathbb{U}. Let

$$
\begin{equation*}
\mathcal{Q}^{\mathrm{s}}:=\{[E \longrightarrow F] \in \mathcal{Q} \mid F \text { is stable }\} . \tag{7.8}
\end{equation*}
$$

As $d \geqslant k \mu_{0}(E, k)$, by Lemma 4.1 we have $H^{1}\left(C, E^{\vee} \otimes F\right)=0$ for $[E \longrightarrow F] \in \mathcal{Q}^{s}$. It follows that $\mathcal{Q}^{s} \subset \mathcal{Q}_{\mathrm{g}}^{\mathrm{tf}}$. It is easily checked that

$$
\begin{equation*}
\Psi^{-1}\left(\mathcal{Q}^{s}\right)=\mathbb{U}^{s} . \tag{7.9}
\end{equation*}
$$

The group $\operatorname{PGL}(N)$ acts freely on \mathbb{P}^{s} and leaves the open subset \mathbb{U}^{s} invariant. Consider the trivial action of $\operatorname{PGL}(N)$ on \mathcal{Q}^{s}. Then the restriction $\Psi: \mathbb{U}^{s} \longrightarrow \mathcal{Q}^{s}$ is $\operatorname{PGL}(N)$-equivariant. It is clear that the restriction of the map $\Theta: \mathbb{P}^{s} \longrightarrow R^{s}$ is also PGL(N)-equivariant. Let $M_{k, d+k n}^{s}$ (respectively, $M_{k, d+k n}$) denote the moduli space of stable (respectively, semistable) bundles of rank k and degree $d+k n$. Then $M_{k, d+k n}^{s}$ is the GIT quotient

$$
\psi: R^{s} \longrightarrow R^{s} / / \operatorname{PGL}(N)=M_{k, d+k n}^{s}
$$

Let $p_{C}: C \times \mathcal{Q} \longrightarrow C$ denote the projection and let $p_{C}^{*} E \longrightarrow \mathcal{F}$ denote the universal quotient on $C \times \mathcal{Q}$. The sheaf $p_{C}^{*} \mathcal{O}_{C}(n P) \otimes \mathcal{F}$ on $C \times \mathcal{Q}^{s}$ defines a morphism $\mathcal{Q}^{s} \xrightarrow{\theta} M_{k, d+k n}^{s}$. One easily checks that we have the following commutative diagram, in which all arrows are surjective on closed points

The map ψ is a principal PGL (N)-bundle. For a closed point $x \in R^{s}$, the points in the fiber $\Theta_{\mathbb{U}^{s}}^{-1}(x)$ are in bijection with the points in the fiber $\theta^{-1}(\psi(x))$. Here we use the stability of the quotient sheaf to assert that no two distinct points in the fiber $\Theta_{\mathbb{U}^{s}}^{-1}(x)$ map to the same point in the fiber $\theta^{-1}(\psi(x))$. The natural map from \mathbb{U}^{s} to the Cartesian product of ψ and θ is a bijective map of smooth varieties and hence an isomorphism. This shows that the above diagram is Cartesian.

In this section we shall compute the Picard group of \mathcal{Q} when $d \gg 0$. As we saw in Theorem 6.3, \mathcal{Q} is locally factorial and so the Picard group is isomorphic to the divisor class group. Let $C H^{1}(\mathcal{Q})$ denote the divisor class group of \mathcal{Q}. We shall first show that $C H^{1}(\mathcal{Q}) \xrightarrow{\sim} C H^{1}\left(\mathcal{Q}^{s}\right)$ and then use the diagram (7.10) to compute $C H^{1}\left(\mathcal{Q}^{s}\right)$.

In the following Lemma we shall use the fact that \mathbb{U} is irreducible. This is easily seen as follows. The moduli space $M_{k, k+d n}^{s}$ is an integral scheme. It easily follows that R^{s} is irreducible as $M_{k, k+d n}^{s}$ is the GIT quotient $R^{s} / / \operatorname{PGL}(N)$. By [Bho99, Proposition 1.2] we have that $\operatorname{dim}(R)-\operatorname{dim}\left(R \backslash R^{s}\right) \geqslant 2$. As R is equidimensional, it follows that R is irreducible. As R is smooth it follows that R is an integral scheme and so is R^{\prime}. It follows that \mathbb{U} is integral.
Lemma 7.11. Assume one of the following two holds

- $k \geqslant 2$ and $g(C) \geqslant 3$, or
- $k \geqslant 3$ and $g(C)=2$.

Also assume $d \geqslant \max \left\{\alpha(E, k)+1, k \mu_{0}(E, k), \beta(E, k, 1)\right\}$. Then the map $C H^{1}(\mathcal{Q}) \longrightarrow C H^{1}\left(\mathcal{Q}^{s}\right)$ is an isomorphism.
Proof. Recall the definition of Z_{1} from (5.1) and observe that $\mathcal{Q}^{\text {tf }}=\mathcal{Q} \backslash \bar{Z}_{1}$. Taking $i=1$ in Lemma 5.2(1) we get $\operatorname{dim}(\mathcal{Q})-\operatorname{dim}\left(\bar{Z}_{1}\right) \geqslant k$. Since $k \geqslant 2$, it follows that $C H^{1}(\mathcal{Q})=$ $C H^{1}\left(\mathcal{Q}^{\text {tf }}\right)$.

By Lemma 4.9 it follows that

$$
\operatorname{dim}\left(\mathcal{Q}^{\text {tf }}\right)-\operatorname{dim}\left(\mathcal{Q}_{\mathrm{b}}^{\mathrm{tf}}\right)=\operatorname{dim}(\mathcal{Q})-\operatorname{dim}\left(\mathcal{Q}_{\mathrm{b}}^{\mathrm{tf}}\right)>1
$$

Observe that $\mathcal{Q}_{\mathrm{g}}^{\mathrm{tf}}=\mathcal{Q}^{\text {tf }} \backslash \mathcal{Q}_{\mathrm{b}}^{\text {tf }}$. It follows that $C H^{1}\left(\mathcal{Q}^{\mathrm{tf}}\right)=C H^{1}\left(\mathcal{Q}_{\mathrm{g}}^{\mathrm{tf}}\right)$.
We had observed earlier that $\mathcal{Q}^{s} \subset \mathcal{Q}_{\mathrm{g}}^{\mathrm{tf}}$. To prove the Lemma it suffices to show that

$$
\operatorname{dim}\left(\mathcal{Q}_{\mathrm{g}}^{\mathrm{tf}}\right)-\operatorname{dim}\left(\mathcal{Q}_{\mathrm{g}}^{\mathrm{tf}} \backslash \mathcal{Q}^{s}\right)>1
$$

We will now show this.
As $d \geqslant k \mu_{0}(E, k)$, by Lemma 4.1 we have $H^{1}\left(C, E^{\vee} \otimes \mathcal{G}_{x}\right)=0$ for $x \in R^{s}$. We have already checked above, see (7.9), that $\Psi^{-1}\left(\mathcal{Q}^{s}\right)=\mathbb{U}^{s}$.

As the map Θ is flat and \mathbb{U} is integral, it follows using Lemma 2.2 (applied to the map $\Psi: \mathbb{U} \longrightarrow \mathcal{Q}_{\mathrm{g}}^{\mathrm{tf}}$) that

$$
2 \leqslant \operatorname{dim}\left(R^{\prime}\right)-\operatorname{dim}\left(R^{\prime} \backslash R^{s}\right)=\operatorname{dim}(\mathbb{U})-\operatorname{dim}\left(\mathbb{U} \backslash \mathbb{U}^{s}\right) \leqslant \operatorname{dim}\left(\mathcal{Q}_{\mathrm{g}}^{\mathrm{tf}}\right)-\operatorname{dim}\left(\mathcal{Q}_{\mathrm{g}}^{\mathrm{tf}} \backslash \mathcal{Q}^{s}\right)
$$

This completes the proof of the Lemma.
Lemma 7.12. Let $r-k \geqslant 2$. Let $d \geqslant \max \left\{\alpha(E, k), k \mu_{0}(E, k)+k\right\}$. The natural map $C H^{1}\left(\mathbb{P}^{s}\right) \longrightarrow C H^{1}\left(\mathbb{U}^{s}\right)$ is an isomorphism.
Proof. It suffices to show that $\operatorname{dim}\left(\mathbb{P}^{s}\right)-\operatorname{dim}\left(\mathbb{P}^{s} \backslash \mathbb{U}^{s}\right) \geqslant 2$. Let $\left[x: \mathcal{O}_{C}^{\oplus} N \longrightarrow F\right]$ be a quotient corresponding to a closed point $x \in R^{s}$. It suffices to show that $\operatorname{dim}\left(\Theta^{-1}(x)\right)-\operatorname{dim}\left(\Theta^{-1}(x) \backslash\right.$ $\left.\mathbb{U}^{s}\right) \geqslant 2$ for every closed point $x \in R^{s}$. We now show this.

The space $\Theta^{-1}(x)$ is the space $\mathbb{P}\left(\operatorname{Hom}(E, F)^{\vee}\right)$ parametrizing lines in the vector space $\operatorname{Hom}(E, F)$. Let $c \in C$ be a closed point. As F is stable, note $\mu_{\min }(F(-c))=\mu(F)-1$. As $d \geqslant k \mu_{0}(E, k)+k$, it follows that

$$
\mu_{\min }(F(-c))=\mu(F)-1=\frac{d-k}{k} \geqslant \mu_{0}(E, k) .
$$

Let p_{i} denote the projections from $C \times C$. Let Δ denote the diagonal in $C \times C$. Consider the short exact sequence of sheaves on $C \times C$ given by

$$
0 \longrightarrow p_{1}^{*}\left(E^{\vee} \otimes F\right)(-\Delta) \longrightarrow p_{1}^{*}\left(E^{\vee} \otimes F\right) \longrightarrow \Delta_{*}\left(E^{\vee} \otimes F\right) \longrightarrow 0
$$

By Lemma 4.1 we have $H^{1}\left(E^{\vee} \otimes F(-c)\right)=0$. Applying $p_{2 *}$ to the above, we get that the sheaf

$$
\mathcal{V}:=p_{2 *}\left(p_{1}^{*}\left(E^{\vee} \otimes F\right)(-\Delta)\right),
$$

which is locally free on C, sits in a short exact sequence

$$
0 \longrightarrow \mathcal{V} \longrightarrow \operatorname{Hom}(E, F) \otimes \mathcal{O}_{C} \longrightarrow E^{\vee} \otimes F \longrightarrow 0
$$

The restriction of the above sequence to a closed point $c \in C$ gives the short exact sequence of vector spaces

$$
\begin{equation*}
0 \longrightarrow \operatorname{Hom}(E, F(-c)) \longrightarrow \operatorname{Hom}(E, F) \longrightarrow \operatorname{Hom}\left(\left.E\right|_{c},\left.F\right|_{c}\right) \longrightarrow 0 \tag{7.13}
\end{equation*}
$$

Consider the closed subset $\mathbb{P}\left(\mathcal{V}^{\vee}\right) \subset \mathbb{P}\left(\operatorname{Hom}(E, F)^{\vee}\right) \times C$. Let $T \subset \mathbb{P}\left(\operatorname{Hom}(E, F)^{\vee}\right)$ denote the image of $\mathbb{P}\left(\mathcal{V}^{\vee}\right)$ under the projection map

$$
\mathbb{P}\left(\operatorname{Hom}(E, F)^{\vee}\right) \times C \longrightarrow \mathbb{P}\left(\operatorname{Hom}(E, F)^{\vee}\right)
$$

Then T is a closed subset and set theoretically it is the union

$$
T=\bigcup_{c \in C} \mathbb{P}\left(\operatorname{Hom}(E, F(-c))^{\vee}\right) .
$$

As $r-k \geqslant 2$ we have $r k \geqslant(k+2) k>2$. Therefore,
(7.14) $\operatorname{dim}\left(\mathbb{P}\left(\operatorname{Hom}(E, F)^{\vee}\right)\right)-\operatorname{dim}(T) \geqslant \operatorname{dim}\left(\mathbb{P}\left(\operatorname{Hom}(E, F)^{\vee}\right)\right)-\operatorname{dim}\left(\mathbb{P}\left(\mathcal{V}^{\vee}\right)\right)=r k-1 \geqslant 2$.

Let V denote the open set $\mathbb{P}\left(\operatorname{Hom}(E, F)^{\vee}\right) \backslash T$. Let $\mathcal{O}(1)$ denote the restriction of the tautological bundle on $\mathbb{P}\left(\operatorname{Hom}(E, F)^{\vee}\right)$ to V. Let p_{C} denote the projection from $C \times V$ to C and let p_{V} denote the projection to V. Consider the canonical map of sheaves on $C \times V$

$$
\begin{equation*}
p_{C}^{*}\left(E \otimes F^{\vee}\right) \longrightarrow \operatorname{Hom}(E, F)^{\vee} \otimes \mathcal{O}_{C \times V} \longrightarrow p_{V}^{*} \mathcal{O}(1) \tag{7.15}
\end{equation*}
$$

Let $\varphi \neq 0$ be an element in $\operatorname{Hom}(E, F)$ such that the line $[\varphi]$ it defines is in V. The dual of equation (7.15) restricted to $C \times[\varphi]$ is described as follows. This restriction maps

$$
\mathbb{C} \longrightarrow \mathbb{C}[\varphi] \otimes \mathcal{O}_{C} \longrightarrow E^{\vee} \otimes F
$$

The second map is precisely the global section corresponding to the map φ. For a point $c \in C$, the map (7.15) restricted to $(c,[\varphi])$ is adjoint to the map $\left.\left.E\right|_{c} \xrightarrow{\left.\varphi\right|_{c}} F\right|_{c}$. As $[\varphi] \in V$, it follows that the map $\left.\left.E\right|_{c} \xrightarrow{\left.\varphi\right|_{c}} F\right|_{c}$ is nonzero, and so it follows that the restriction of (7.15) to $(c,[\varphi])$ is nonzero, that is, $\left.\left.E\right|_{c} \otimes F\right|_{c} ^{V} \longrightarrow \mathbb{C}$ is nonzero and hence surjective. This proves
that the map (7.15) is surjective. This defines a map $C \times V \xrightarrow{\kappa} \mathbb{P}\left(E \otimes F^{\vee}\right)$ which sits in a commutative diagram

The restriction of the map κ over a point $c \in C$ is the composite map below, where the second arrow is obtained using (7.13)

$$
V \longrightarrow \mathbb{P}\left(\operatorname{Hom}(E, F)^{\vee}\right) \backslash \mathbb{P}\left(\operatorname{Hom}(E, F(-c))^{\vee}\right) \longrightarrow \mathbb{P}\left(\operatorname{Hom}\left(\left.E\right|_{c},\left.F\right|_{c}\right)^{\vee}\right)
$$

The second arrow is a surjective flat map and the first arrow is an open immersion. It follows that the composite is a flat map and hence has constant fiber dimension. It follows that the map κ has constant fiber dimension, and so using [Mat86, Theorem 23.1] or [Stk, Tag 00R4] we see that κ is a flat map. Consider the canonical map

$$
\pi^{*} E \longrightarrow \pi^{*} F \otimes \mathcal{O}_{\mathbb{P}\left(E \otimes F^{\vee}\right)}(1)
$$

on $\mathbb{P}\left(E \otimes F^{\vee}\right)$ and let Z denote the support of the cokernel. The set $Z \cap \pi^{-1}(c)$ is precisely the locus of non-surjective maps in $\mathbb{P}\left(\left.\left.E\right|_{c} \otimes F\right|_{c} ^{\vee}\right)$. By [ACGH85, Chapter II, §2, page 67] we have that the codimension of $Z \cap \pi^{-1}(c)$ in $\mathbb{P}\left(\left.\left.E\right|_{c} \otimes F\right|_{c} ^{\vee}\right)$ is $r-k+1$. It follows that the codimension of Z in $\mathbb{P}\left(E \otimes F^{\vee}\right)$ is $r-k+1$. It follows that the codimension of $\kappa^{-1}(Z)$ in $C \times V$ is $r-k+1$ and the codimension of $p_{V}\left(\kappa^{-1}(Z)\right)$ in V is at least $r-k \geqslant 2$. The set $V \backslash p_{V}\left(\kappa^{-1}(Z)\right)$ is precisely the locus of points in $\mathbb{P}\left(\operatorname{Hom}(E, F)^{\vee}\right)$ corresponding to maps which are surjective. The locus of points in $\mathbb{P}\left(\operatorname{Hom}(E, F)^{\vee}\right)$ corresponding to non-surjective maps $E \longrightarrow F$ is the set $T \bigcup p_{V}\left(\kappa^{-1}(Z)\right)$, which has codimension at least 2 . This proves that $\operatorname{dim}\left(\Theta^{-1}(x)\right)-\operatorname{dim}\left(\Theta^{-1}(x) \backslash \mathbb{U}^{s}\right) \geqslant 2$, which completes the proof of the Lemma.

Remark 7.16. The proof of Lemma 7.12 also shows the following. Let $k=1$ and $r \geqslant 3$ so that $k \leqslant r-2$. Let $d \geqslant \max \left\{\alpha(E, 1), \mu_{0}(E, 1)+1\right\}$. Let L be a line bundle on C of degree d. Then the closed subset in $\mathbb{P}\left(\operatorname{Hom}(E, L)^{\vee}\right)$ consisting of non-surjective maps has codimension $\geqslant 2$.

Theorem 7.17. Let $r-k \geqslant 2$. Assume one of the following two holds

- $k \geqslant 2$ and $g(C) \geqslant 3$, or
- $k \geqslant 3$ and $g(C)=2$.

Let n_{1} be the smallest integer such that $k n_{1}>g(C)+3$. Assume

$$
d \geqslant \max \left\{\alpha(E, k)+1, k \mu_{0}(E, k)+k, \beta(E, k, g(C)+3)+n_{1}\right\}
$$

Then

$$
\operatorname{Pic}(\mathcal{Q}) \cong \operatorname{Pic}\left(M_{k, d+k n}^{s}\right) \times \mathbb{Z} \cong \operatorname{Pic}\left(\operatorname{Pic}^{0}(C)\right) \times \mathbb{Z} \times \mathbb{Z}
$$

Proof. We saw in Theorem 6.3 that \mathcal{Q} is an integral variety which is normal and locally factorial. So the Picard group is isomorphic to the divisor class group. By Lemma 7.11 it is enough to show that

$$
\operatorname{Pic}\left(\mathcal{Q}^{s}\right) \cong \operatorname{Pic}\left(M_{k, d+k n}^{s}\right) \times \mathbb{Z}
$$

Recall that we have the following diagram (7.10), which we checked is Cartesian:

Recall from $\S 7.1$ that we had fixed a closed point $P \in C$. Note that for any $\left[x: \mathcal{O}_{C}^{N} \longrightarrow\right.$ $F(n P)] \in R^{s}$, the fibre $\Theta_{\mathbb{U}^{s}}^{-1}(x) \cong \theta^{-1}([F])$. In the proof of Lemma 7.12 we proved that $\operatorname{dim}\left(\Theta^{-1}(x)\right)-\operatorname{dim}\left(\Theta^{-1}(x) \backslash \mathbb{U}^{s}\right) \geqslant 2$ for every closed point $x \in R^{s}$. It follows that $\Theta_{\mathbb{U}^{s}}^{-1}(x)=$ $\Theta^{-1}(x) \cap \mathbb{U}^{s}$ is an open subset of projective space (that is, $\Theta^{-1}(x)$) whose complement has codimension $\geqslant 2$. Thus,

$$
\mathbb{Z}=\operatorname{Pic}\left(\Theta^{-1}(x)\right)=\operatorname{Pic}\left(\Theta_{\mathbb{U}^{s}}^{-1}(x)\right)=\operatorname{Pic}\left(\theta^{-1}([F])\right) .
$$

Therefore we have the restriction map

$$
\text { res }: \operatorname{Pic}(\mathcal{Q}) \cong \operatorname{Pic}\left(\mathcal{Q}^{s}\right) \longrightarrow \operatorname{Pic}\left(\theta^{-1}([F])\right) \cong \mathbb{Z}
$$

We claim this map is nontrivial. Let \mathcal{L} be a very ample line bundle on \mathcal{Q}. If $\operatorname{res}(\mathcal{L})$ were trivial, it would follow that $\operatorname{res}(\mathcal{L})$ is trivial and very ample, which is a contradiction as $\theta^{-1}([F]) \cong \Theta^{-1}(x)$ is an open subset of a projective space whose complement has codimension $\geqslant 2$. Thus, the image of res is isomorphic to a copy of \mathbb{Z}. We will show that the kernel of res is isomorphic to $\operatorname{Pic}\left(M_{k, d+k n}^{s}\right)$.

Let $L \in \operatorname{Pic}\left(\mathcal{Q}^{s}\right)$ be such that $\operatorname{res}(L)$ is trivial. We need to show that L is isomorphic to the pullback of some line bundle on $\operatorname{Pic}\left(M_{k, d+k n}^{s}\right)$. Consider the pullback $\Psi^{*} L$. Since Ψ is $\operatorname{PGL}(N)$-invariant, this line bundle carries a $\operatorname{PGL}(N)$-linearization. By Lemma 7.12, the complement of \mathbb{U}^{s} in \mathbb{P}^{s} has codimension $\geqslant 2$. Therefore, both L and this $\operatorname{PGL}(N)$ linearization extend uniquely to \mathbb{P}^{s}. Let us denote this extension of $\Psi^{*} L$ to \mathbb{P}^{s} by L^{\prime} and the linearization on $\operatorname{PGL}(N) \times \mathbb{P}^{s}$ by $\alpha^{\prime}: m_{\mathbb{P}_{s}}^{*} L^{\prime} \longrightarrow p_{\mathbb{P}_{s}}^{*} L$, where $m_{\mathbb{P}^{s}}: \operatorname{PGL}(N) \times \mathbb{P}^{s} \longrightarrow \mathbb{P}^{s}$ is the multiplication map and $p_{\mathbb{P}^{s}}: \operatorname{PGL}(N) \times \mathbb{P}^{s} \longrightarrow \mathbb{P}^{s}$ is the second projection. Since $\Theta: \mathbb{P}^{s} \longrightarrow R^{s}$ is a projective bundle, $L^{\prime} \cong \mathcal{O}(n) \otimes \Theta^{*} L^{\prime \prime}$ for some $L^{\prime \prime} \in \operatorname{Pic}\left(R^{s}\right)$ and for some n. However, since the fibers of Θ and θ are isomorphic, the condition $\operatorname{res}(L)$ is trivial implies that $n=0$, that is, $L^{\prime} \cong \Theta^{*} L^{\prime \prime}$. Now note that since the map $\mathbb{P}^{s} \longrightarrow R^{s}$ is $\operatorname{PGL}(N)$ equivariant we have a commutative diagram

From this diagram it follows that we have an isomorphism of sheaves

$$
(\operatorname{Id} \times \Theta)^{*} m_{R^{s}}^{*} L^{\prime \prime} \cong m_{\mathbb{P}_{s}}^{*} \Theta^{*} L^{\prime \prime} \xrightarrow{\sim} p_{\mathbb{P}_{s}}^{*} \Theta^{*} L^{\prime \prime} \cong(\operatorname{Id} \times \Theta)^{*} p_{R^{s}}^{*} L^{\prime \prime} .
$$

where the middle isomorphism is given by the linearization α^{\prime}. Since $\operatorname{Id} \times \Theta$ is a projective bundle, applying $(\operatorname{Id} \times \Theta)_{*}$ to this composition of isomorphisms we get a linearization

$$
\alpha^{\prime \prime}: m_{R^{s}}^{*} L^{\prime \prime} \xrightarrow{\sim} p_{R^{s}}^{*} L^{\prime \prime}
$$

of $L^{\prime \prime}$ such that $(\operatorname{Id} \times \Theta)^{*} \alpha^{\prime \prime}=\alpha^{\prime}$. Now recall that the map ψ is a principal $\operatorname{PGL}(N)$-bundle. By [HL10, Theorem 4.2.14] we get that there exists $L^{\prime \prime \prime} \in \operatorname{Pic}\left(M_{k, d+k n}^{s}\right)$ such that $\psi^{*} L^{\prime \prime \prime} \cong L^{\prime \prime}$ and the induced PGL (N) linearization is $\alpha^{\prime \prime}$. Therefore we get that

$$
\Psi^{*} \theta^{*} L^{\prime \prime \prime} \cong \Theta^{*} \psi^{*} L^{\prime \prime \prime} \cong \Theta^{*} L^{\prime \prime} \cong L^{\prime} \cong \Psi^{*} L
$$

and also the induced $\operatorname{PGL}(N)$-linearizations are also the same. Since the diagram (7.10) is Cartesian, the map Ψ is a principal PGL (N)-bundle. Hence by [HL10, Theorem 4.2.16] we get that $\theta^{*} L^{\prime \prime \prime} \cong L$. This completes the proof of the first equality in the statement of the Theorem. The second equality follows from [DN89, Theorem A, Theorem C] and from the fact that

$$
\operatorname{dim}\left(M_{k, d+k n}\right)-\operatorname{dim}\left(M_{k, d+k n} \backslash M_{k, d+k n}^{s}\right) \geqslant 2
$$

One way to see this inequality is to apply [Bho99, Proposition 1.2 (3)] and Lemma 2.2 to the GIT quotient $R^{s s} \rightarrow M_{k, d+k n}$.

8. Fibers of det

Let L be a line bundle on C of degree d and let \mathcal{Q}_{L} denote the scheme theoretic fiber $\operatorname{det}^{-1}(L)$. As a corollary of Theorem 6.3 we have the following Proposition.

Proposition 8.1. Let n_{1} be the smallest integer such that $k n_{1}>g(C)+3$. Let $d \geqslant$ $\beta(E, k, g(C)+3)+n_{1}$. Then \mathcal{Q}_{L} is a local complete intersection scheme which is equidimensional, normal and locally factorial.

Proof. We use Theorem 6.3 and Lemma 6.1. As \mathcal{Q} is a local complete intersection scheme, $\operatorname{Pic}^{d}(C)$ is smooth and the map det is flat, it follows using [Avr77, (1.9.2)] (see also [BH93, Remark 2.3.5] and [Stk, Tag 09Q2]) that \mathcal{Q}_{L} is a local complete intersection scheme and so also Cohen-Macaulay. As \mathcal{Q} is irreducible, flatness of det also implies that \mathcal{Q}_{L} is equidimensional.

We observed in the proof of Theorem 6.3 that the restriction of det to the open subset \mathcal{Q}_{g} is a smooth morphism. It follows that $\mathcal{Q}_{L} \cap \mathcal{Q}_{\mathrm{g}}$ is contained in the smooth locus of \mathcal{Q}_{L}. The singular locus of \mathcal{Q}_{L} is thus contained in $\mathcal{Q}_{L} \cap \mathcal{Q}_{\mathrm{b}}$. As $d \geqslant \beta(E, k, g(C)+3)+n_{1}$, applying Lemma 6.2 we get

$$
\operatorname{dim}(\mathcal{Q})-\operatorname{dim}\left(\mathcal{Q}_{\mathrm{b}}\right)>g(C)+3
$$

By Lemma 2.1(2) it follows that

$$
\begin{equation*}
\operatorname{dim}\left(\mathcal{Q}_{L}\right)-\operatorname{dim}\left(\mathcal{Q}_{L} \cap \mathcal{Q}_{\mathrm{b}}\right)>3 \tag{8.2}
\end{equation*}
$$

It follows that the singular locus of \mathcal{Q}_{L} has codimension 4 or more. This proves that \mathcal{Q}_{L} is normal, that is, it is the disjoint union of finitely many normal varieties, all of the same dimension. Using Grothendieck's theorem (see [AH20, Theorem 1.4]) it follows that \mathcal{Q}_{L} is locally factorial.

Next we want to find conditions under which \mathcal{Q}_{L} becomes irreducible. We use the notation used in Lemma 5.2. In the proof of the next Lemma we will use the following fact. Let $X \longrightarrow S$ be a projective morphism of schemes with relative ample line bundle $\mathcal{O}(1)$. Let \mathscr{S} be a coherent sheaf on X. Let $P(n)$ denote the constant polynomial defined by $P(n)=1$ for all n. Then the relative Quot scheme Quot $_{X / S}(\mathscr{S}, P)$ is isomorphic to $\mathbb{P}(\mathscr{S}) \longrightarrow X$.

Lemma 8.3. Let n_{0} be the smallest integer such that $k n_{0}>g(C)+1$. Let n_{1} be the smallest integer such that $k n_{1}>g(C)+3$. Let

$$
d \geqslant \max \left\{\beta(E, k, g(C)+1)+n_{0}+1, \beta(E, k, g(C)+3)+n_{1}\right\} .
$$

Then $\mathcal{Q}_{L}^{\text {tf }}$ is dense in \mathcal{Q}_{L}.
Proof. Recall the relative Quot scheme in equation (5.3). We are interested in the case $i=1$, that is, the relative Quot scheme $\operatorname{Quot}_{C \times A / A}(\mathscr{S}, 0,1)$, where A is the Quot scheme $\operatorname{Quot}_{C / \mathbb{C}}(E, k, d-1)$. For ease of notation we denote by B the scheme $\operatorname{Quot}_{C \times A / A}(\mathscr{S}, 0,1)$. Recall the map $\pi: B \longrightarrow A$ from (5.3). On $C \times B$ we have a quotient

$$
\begin{equation*}
\left(\mathrm{Id}_{\mathrm{C}} \times \pi\right)^{*} \mathscr{S} \longrightarrow \mathscr{T}, \tag{8.4}
\end{equation*}
$$

such that \mathscr{T} is flat over B. Using \mathscr{T} we get the determinant map

$$
\operatorname{det}_{B}: B \longrightarrow \operatorname{Pic}^{1}(C)
$$

This map has the following pointwise description. A closed point $b \in B$ gives rise to the closed point $\pi(b) \in A$, which corresponds to a short exact sequence on C

$$
0 \longrightarrow S_{F} \longrightarrow E \longrightarrow F \longrightarrow 0
$$

where F is of rank k and degree $d-1$ on C. The restriction of the universal quotient (8.4) to the point b is a torsion quotient on C

$$
S_{F} \longrightarrow M,
$$

such that length $(M)=1$. Let $c=\operatorname{Supp}(M)$. Then $\operatorname{det}_{B}(b)=\mathcal{O}_{C}(c)$. Consider the natural embedding (recall that $g(C)>0) \iota: C \hookrightarrow \operatorname{Pic}^{1}(C)$ given by $c \mapsto \mathcal{O}_{C}(c)$. It is clear that the image of B is the image of ι. Next we want to show that B is an integral scheme.

As $d-1 \geqslant \alpha(E, k)$, it follows from Lemma 6.1 that A is a local complete intersection. By Theorem 6.3(1) it follows that A is integral. As $i=1$, using the fact stated before this Lemma, it is easily checked that B is the projective bundle $\mathbb{P}(\mathscr{S}) \longrightarrow C \times A$. It follows that B is integral and a local complete intersection and so Cohen-Macaulay. As B is integral, the map det_{B} factors through the map ι, that is, we have a commutative diagram

Let $\operatorname{det}_{A}: A \longrightarrow \operatorname{Pic}^{d-1}(C)$ denote the determinant map for the Quot scheme A. This is flat due to Theorem 6.3(1). Consider the map

The second map is given by $(c, M) \mapsto M \otimes \mathcal{O}_{C}(c)$. It is easily checked that both maps have constant fiber dimension. In view of [Mat86, Theorem 23.1] it follows that both maps are
flat and so the composite det_{B} is also flat. Recall the map π^{\prime} from (5.4). It is clear that we have a commutative diagram

Recall the definition of Z_{1}, see (5.1). We saw in the proof of Lemma 5.2 that $\pi^{\prime}(B)=\bar{Z}_{1}$. Let

$$
\bar{Z}_{1, L}:=\left\{[q: E \longrightarrow F] \in \bar{Z}_{1} \mid \operatorname{det}(F)=L\right\} .
$$

Let $B_{L}:=\operatorname{det}_{B}^{-1}(L)$ denote the scheme theoretic fiber over L. Then it is clear that $\pi^{\prime}\left(B_{L}\right)=$ $\bar{Z}_{1, L}$. Thus, it follows that $\operatorname{dim}\left(\bar{Z}_{1, L}\right) \leqslant \operatorname{dim}\left(B_{L}\right)$. In the proof of Lemma 5.2 (after equation (5.5)) we had remarked that there is an open set $U \subset B$ such that π^{\prime} is injective on points of U. It is easily checked that this open set U meets all fibers B_{L}. Thus, π^{\prime} is also injective on the subset $U \cap B_{L}$. Thus, it follows that $\operatorname{dim}\left(\bar{Z}_{1, L}\right) \geqslant \operatorname{dim}\left(U \cap B_{L}\right)$. Since det_{B} is flat, the fibers are equidimensional and so it follows that every open set of B_{L} has the same dimension as B_{L}. Combining these we get

$$
\begin{equation*}
\operatorname{dim}\left(\bar{Z}_{1, L}\right)=\operatorname{dim}\left(B_{L}\right)=\operatorname{dim}(\mathcal{Q})-k-g=\operatorname{dim}\left(\mathcal{Q}_{L}\right)-k \tag{8.5}
\end{equation*}
$$

As $k \geqslant 1$, and all irreducible components of \mathcal{Q}_{L} have the same dimension, it follows that $\mathcal{Q}_{L} \backslash \bar{Z}_{1, L}=\mathcal{Q}_{L}^{\mathrm{tf}}$ is dense in \mathcal{Q}_{L}.

The above Lemma implies that irreducibility of \mathcal{Q}_{L} is equivalent to the irreducibility of the open subset $\mathcal{Q}_{L}^{\mathrm{tf}}$. Let

$$
\mathcal{Q}_{\mathrm{g}, L}^{\mathrm{tf}}:=\mathcal{Q}_{\mathrm{g}}^{\mathrm{tf}} \cap \mathcal{Q}_{L}
$$

Combining Proposition 8.1 and Lemma 8.3 we get the following.
Lemma 8.6. Let n_{0} be the smallest integer such that $k n_{0}>g(C)+1$. Let n_{1} be the smallest integer such that $k n_{1}>g(C)+3$. Let

$$
d \geqslant \max \left\{\beta(E, k, g(C)+1)+n_{0}+1, \beta(E, k, g(C)+3)+n_{1}\right\} .
$$

Then $\mathcal{Q}_{\mathrm{g}, L}^{\mathrm{ff}}$ is dense in $\mathcal{Q}_{L}^{\mathrm{tf}}$.
Proof. As all components of \mathcal{Q}_{L} have the same dimension, the same holds for the open subset $\mathcal{Q}_{L}^{\mathrm{tf}}$. Note that

$$
\mathcal{Q}_{L}^{\mathrm{tf}} \backslash \mathcal{Q}_{\mathrm{g}, L}^{\mathrm{tf}}=\mathcal{Q}_{L}^{\mathrm{tf}} \cap \mathcal{Q}_{\mathrm{b}}
$$

The Lemma follows using (8.2).
Combining the above results we have the following.
Theorem 8.7. Let $k \geqslant 2, g(C) \geqslant 2$. Let n_{0} be the smallest integer such that $k n_{0}>g(C)+1$. Let n_{1} be the smallest integer such that $k n_{1}>g(C)+3$. Let

$$
d \geqslant \max \left\{\beta(E, k, g(C)+1)+n_{0}+1, \beta(E, k, g(C)+3)+n_{1}\right\} .
$$

Then \mathcal{Q}_{L} is a local complete intersection scheme which is also integral, normal and locally factorial.

Proof. The Theorem follows using Proposition 8.1 once we show that \mathcal{Q}_{L} is irreducible. In view of Lemma 8.3 and Lemma 8.6, it suffices to show that $\mathcal{Q}_{\mathrm{g}, L}^{\mathrm{tf}}$ is irreducible.

Recall the notation from §7, in particular, the map Ψ from (7.6). This sits in the following commutative diagram whose maps we describe next.

The bottom horizontal map sends a closed point $\left[x: \mathcal{O}_{C}^{\oplus N} \longrightarrow F\right] \in R^{\prime}$ to $\operatorname{det}(F)$. The right vertical map sends a closed point $[q: E \longrightarrow F] \in \mathcal{Q}_{\mathrm{g}}^{\text {tf }}$ to $\operatorname{det}(F) \otimes \mathcal{O}_{C}(k n P)$. Let $L^{\prime}:=L \otimes \mathcal{O}_{C}(k n P)$.

The bottom horizontal map in (8.8) is a smooth morphism. This follows using Lemma 2.7 and the reason explained after (6.4) applied to the space R^{\prime}. In particular, the morphism $R^{\prime} \longrightarrow \operatorname{Pic}^{d+k n}(C)$ is flat. Thus, $R_{L^{\prime}}^{\prime}$ is a smooth equidimensional scheme. Using [Bho99, Corollary 1.3] we easily see that $R_{L^{\prime}}^{\prime}$ is irreducible. Taking the "fiber" of (8.8) over the point $\left[L^{\prime}\right] \in \operatorname{Pic}^{d+k n}(C)$ we get the following commutative diagram

It follows that $\mathbb{U}_{L^{\prime}}$ is irreducible. By surjectivity of Ψ on closed points we get that $\Psi_{L^{\prime}}$ is also surjective on closed points. It follows that $\mathcal{Q}_{\mathrm{g}, L}^{\mathrm{tf}}$ is irreducible. This completes the proof of the Theorem.

Let $M_{k, L}^{s}$ denote the moduli space of stable bundles of rank k and determinant L.
Theorem 8.9. Let $r-k \geqslant 2$. Assume one of the following two holds

- $k \geqslant 2$ and $g(C) \geqslant 3$, or
- $k \geqslant 3$ and $g(C)=2$.

Let n_{0} be the smallest integer such that $k n_{0}>g(C)+1$. Let n_{1} be the smallest integer such that $k n_{1}>g(C)+3$. Let

$$
d \geqslant \max \left\{k \mu_{0}(E, k)+k, \beta(E, k, g(C)+1)+n_{0}+1, \beta(E, k, g(C)+3)+n_{1}\right\} .
$$

We have isomorphisms

$$
\operatorname{Pic}\left(\mathcal{Q}_{L}\right) \cong \operatorname{Pic}\left(M_{k, L}^{s}\right) \times \mathbb{Z} \cong \mathbb{Z} \times \mathbb{Z}
$$

Proof. The proof is similar to Theorem 7.17 and so we only sketch it. From (8.2) and the fact that $\mathcal{Q}_{L}^{\mathrm{tf}} \backslash \mathcal{Q}_{\mathrm{g}, L}^{\mathrm{tf}}=\mathcal{Q}_{L}^{\mathrm{tf}} \cap \mathcal{Q}_{\mathrm{b}}$ it follows that

$$
\operatorname{dim}\left(\mathcal{Q}_{L}\right)-\operatorname{dim}\left(\mathcal{Q}_{L} \backslash \mathcal{Q}_{\mathrm{g}, L}^{\mathrm{tf}}\right) \geqslant 2
$$

Now consider the diagram

Just as in Lemma 7.11, using [Bho99, Corollary 1.3], and Lemma 2.2 we have

$$
\operatorname{dim}\left(\mathcal{Q}_{\mathrm{g}, L}^{\mathrm{tf}}\right)-\operatorname{dim}\left(\mathcal{Q}_{\mathrm{g}, L}^{\mathrm{tf}} \backslash \mathcal{Q}_{L}^{s}\right) \geqslant 2
$$

Therefore we get that

$$
\operatorname{dim}\left(\mathcal{Q}_{L}\right)-\operatorname{dim}\left(\mathcal{Q}_{L} \backslash \mathcal{Q}_{L}^{s}\right) \geqslant 2
$$

Since \mathcal{Q}_{L} is locally factorial we have

$$
\operatorname{Pic}\left(\mathcal{Q}_{L}\right) \cong \operatorname{Pic}\left(\mathcal{Q}_{L}^{s}\right)
$$

Now we have the cartesian diagram

which we get by taking the fiber over $[L]$ of the diagram (7.10). The rest of the proof is the same as the proof of Theorem 7.17 , by considering this diagram instead of (7.10). The second equality follows from [DN89, Theorem B].

9. Quot $\operatorname{Schemes~}^{\text {Quot }_{C / \mathbb{C}}(E, 1, d)}$

In this section we consider the case $k=1$. We only sketch the proofs as they are similar to the earlier cases considered.

Theorem 9.1. Let $k=1$. Let $d \geqslant \max \left\{\mu_{0}(E, 1)+1, \beta(E, 1, g(C)+3)+g(C)+4\right\}$. Then

$$
\operatorname{Pic}(\mathcal{Q}) \cong \operatorname{Pic}\left(\operatorname{Pic}^{d}(C)\right) \times \mathbb{Z} \times \mathbb{Z}, \quad \operatorname{Pic}\left(\mathcal{Q}_{L}\right) \cong \mathbb{Z} \times \mathbb{Z}
$$

Proof. We can apply Theorem 6.3 to conclude that \mathcal{Q} is integral, normal and locally factorial. We claim that $\mathcal{Q}^{\text {tf }}$ is smooth. To see this, let

$$
0 \longrightarrow S \longrightarrow E \longrightarrow L \longrightarrow 0
$$

be a quotient. Applying $\operatorname{Hom}(-, L)$ we get a surjection $\operatorname{Ext}^{1}(E, L) \longrightarrow \operatorname{Ext}^{1}(S, L) \longrightarrow 0$. By Lemma 4.1 it follows that $\operatorname{Ext}^{1}(E, L)=0$. It easily follows that $\mathcal{Q}^{\text {tf }}$ is smooth.

Let

$$
\begin{equation*}
\rho_{1}: C \times \operatorname{Pic}^{d}(C) \longrightarrow C, \quad \rho_{2}: C \times \operatorname{Pic}^{d}(C) \longrightarrow \operatorname{Pic}^{d}(C) \tag{9.2}
\end{equation*}
$$

be the projections. Let \mathcal{L} be a Poincare bundle on $C \times \operatorname{Pic}^{d}(C)$. Define

$$
\mathcal{E}:=\rho_{2 *}\left[\rho_{1}^{*} E^{\vee} \otimes \mathcal{L}\right]
$$

Using Lemma 4.1 and cohomology and base change we easily conclude that \mathcal{E} is a locally free sheaf on $\operatorname{Pic}^{d}(C)$ such that the fibre over the point $[L] \in \operatorname{Pic}^{d}(C)$ is isomorphic to $\operatorname{Hom}(E, L)$. Let $\mathbb{W} \subset \mathbb{P}\left(\mathcal{E}^{\vee}\right)$ be the open subset consisting of points parametrizing surjective maps. Both
\mathbb{W} and $\mathcal{Q}^{\text {tf }}$ are smooth. There is a map $\mathbb{W} \longrightarrow \mathcal{Q}^{\text {tf }}$ which is bijective on points (and hence an isomorphism as both are smooth) and sits in a commutative diagram

Using Remark 7.16 it follows that $\operatorname{dim}\left(\mathbb{P}\left(\mathcal{E}^{\vee}\right)\right)-\operatorname{dim}\left(\mathbb{P}\left(\mathcal{E}^{\vee}\right) \backslash \mathbb{W}\right) \geqslant 2$. Thus, it follows that $\operatorname{Pic}\left(\mathcal{Q}^{\text {tf }}\right) \cong \operatorname{Pic}(\mathbb{W}) \cong \operatorname{Pic}\left(\mathbb{P}\left(\mathcal{E}^{\vee}\right)\right) \cong \operatorname{Pic}\left(\operatorname{Pic}^{d}(C)\right) \times \mathbb{Z}$. By Lemma 5.2, $\mathcal{Q} \backslash \mathcal{Q}^{\text {tf }}=\bar{Z}_{1}$ is irreducible of codimension 1 and so we have an exact sequence

$$
0 \longrightarrow \mathbb{Z} \longrightarrow \operatorname{Pic}(\mathcal{Q}) \longrightarrow \operatorname{Pic}\left(\mathcal{Q}^{\mathrm{tf}}\right) \longrightarrow 0
$$

It easily follows that we have an isomorphism

$$
\operatorname{Pic}(\mathcal{Q}) \cong \operatorname{Pic}\left(\operatorname{Pic}^{d}(C)\right) \times \mathbb{Z} \times \mathbb{Z}
$$

For \mathcal{Q}_{L}, we first show that \mathcal{Q}_{L} is integral, normal and locally factorial. This is easily done using Proposition 8.1, Lemma 8.3 and using the fact that $\mathcal{Q}_{L}^{\mathrm{tf}} \cong \mathbb{W}_{L}$. The rest of the proof follows in the same way as that of \mathcal{Q}, once we use the irreducibility of $\bar{Z}_{1, L}$ and the fact that it is of codimension 1 , see (8.5). We remark that when $k=1$, unlike in Theorem 8.7, we do not need to use [Bho99] and hence do not need the hypothesis that $g(C) \geqslant 2$.

References

[ACGH85] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris. Geometry of algebraic curves. Vol. I, volume 267 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1985. doi:10.1007/978-1-4757-5323-3.
[AH20] Tigran Ananyan and Melvin Hochster. Strength conditions, small subalgebras, and Stillman bounds in degree ≤ 4. Trans. Amer. Math. Soc., 373(7):4757-4806, 2020, arXiv:1810.00413.pdf.
[Avr77] Luchezar L. Avramov. Homology of local flat extensions and complete intersection defects. Math. Ann., 228(1):27-37, 1977. doi:10.1007/BF01360771.
[BDW96] Aaron Bertram, Georgios Daskalopoulos, and Richard Wentworth. Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians. J. Amer. Math. Soc., 9(2):529-571, 1996. doi:10.1090/S0894-0347-96-00190-7.
[BH93] Winfried Bruns and Jürgen Herzog. Cohen-Macaulay rings, volume 39 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1993.
[Bho99] Usha N. Bhosle. Picard groups of the moduli spaces of vector bundles. Math. Ann., 314(2):245-263, 1999. doi:10.1007/s002080050293.
[Cal94] Frederick W. Call. A theorem of Grothendieck using Picard groups for the algebraist. Math. Scand., 74(2):161-183, 1994. doi:10.7146/math.scand.a-12487.
[CCH21] Daewoong Cheong, Insong Choe, and George H. Hitching. Isotropic Quot schemes of orthogonal bundles over a curve. Internat. J. Math., 32(8):Paper No. 2150047, 36, 2021. doi:10.1142/S0129167X21500476.
[CCH22] Daewoong Cheong, Insong Choe, and George H. Hitching. Irreducibility of Lagrangian Quot schemes over an algebraic curve. Math. Z., 300(2):1265-1289, 2022. doi:10.1007/s00209-021-028076.
[DN89] J.-M. Drezet and M. S. Narasimhan. Groupe de Picard des variétés de modules de fibrés semistables sur les courbes algébriques. Invent. Math., 97(1):53-94, 1989. doi:10.1007/BF01850655.
[Gol19] Thomas Goller. A weighted topological quantum field theory for Quot schemes on curves. Math. Z., 293(3-4):1085-1120, 2019. doi:10.1007/s00209-018-2221-z.
[Gro05] Alexander Grothendieck. Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), volume 4 of Documents Mathématiques (Paris) [Mathematical Documents (Paris)]. Société Mathématique de France, Paris, 2005. Séminaire de Géométrie Algébrique du Bois Marie, 1962, Augmenté d'un exposé de Michèle Raynaud. [With an exposé by Michèle Raynaud], With a preface and edited by Yves Laszlo, Revised reprint of the 1968 French original.
[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52.
[HL10] Daniel Huybrechts and Manfred Lehn. The geometry of moduli spaces of sheaves. Cambridge Mathematical Library. Cambridge University Press, Cambridge, second edition, 2010. doi:10.1017/CBO9780511711985.
[HO10] Rafael Hernández and Daniel Ortega. The divisor class group of a Quot scheme. Tbil. Math. J., 3:1-15, 2010. doi:10.32513/tbilisi/1528768854.
[Ito17] Atsushi Ito. On birational geometry of the space of parametrized rational curves in Grassmannians. Trans. Amer. Math. Soc., 369(9):6279-6301, 2017. doi:10.1090/tran/6840.
[Jow12] Shin-Yao Jow. The effective cone of the space of parametrized rational curves in a Grassmannian. Math. Z., 272(3-4):947-960, 2012. doi:10.1007/s00209-011-0966-8.
[Mat86] Hideyuki Matsumura. Commutative ring theory, volume 8 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid.
[Nit09] Nitin Nitsure. Deformation theory for vector bundles. In Moduli spaces and vector bundles, volume 359 of London Math. Soc. Lecture Note Ser., pages 128-164. Cambridge Univ. Press, Cambridge, 2009.
[PR03] Mihnea Popa and Mike Roth. Stable maps and Quot schemes. Invent. Math., 152(3):625-663, 2003. doi:10.1007/s00222-002-0279-y.
[Stk] The Stacks Project. https://stacks.math.columbia.edu.
Department of Mathematics, Indian Institute of Science Education and Research, Pune, 411008, Maharashtra, India.

Email address: chandranandan@iiserpune.ac.in
Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.

Email address: ronnie@math.iitb.ac.in

