MEHTA-RAMANATHAN RESTRICTION THEOREMS

CHANDRANANDAN GANGOPADHYAY AND RONNIE SEBASTIAN

Contents

1. Introduction 1
2. A degeneration argument 7
3. μ-Semistable Restriction Theorem 14
4. Fields of definitions 22
5. Socle and extended socle for semistable sheaves 24
6. Socle and extended socle for μ-semistable sheaves 25
7. Openness of certain loci 26
8. Stable Restriction Theorem 29
9. Narasimhan-Seshadri Theorem in higher dimensions 33
References 34

These notes are based on two lectures at IIT-Bombay by Arjun Paul, on the Restriction Theorems of Mehta-Ramanathan. We follow the treatment in [HL10], which is the main reference for us.

1. Introduction

1.1.Pure sheaves. Let X be a scheme of finite-type over an algebraically closed field k. Let E be a coherent sheaf on X. We define $\operatorname{dim}(E)=$ $\operatorname{dim}(\operatorname{Supp} E)$.

Definition 1.2. E is called pure if for any non trivial coherent subsheaf $0 \neq F \subset E$, we have $\operatorname{dim}(F)=\operatorname{dim}(E)$. Given a coherent sheaf E, we define $T(E)$ as the maximal subsheaf of E of dimension $\operatorname{dim}(E)-1$. Then $E / T(E)$ is pure of dimension $\operatorname{dim}(E)$.

Remark 1.3.

(1) Recall that a coherent sheaf is torsion-free if $\forall x \in X, E \otimes \mathcal{O}_{X, x}$ is a torsion free $\mathcal{O}_{X, x}$ module. If X is integral, we have that E is torsion free iff E is pure of dimension $\operatorname{dim}(X)$.
(2) The pure sheaves we will encounter in these notes will always be of dimension $\operatorname{dim} X$. So from here onwards, by "pure sheaves" we mean "pure sheaves of $\operatorname{dim}(X)$ ". Also whenever the underlying scheme is integral, we will use "torsion free" sheaves and "pure sheaves" interchangeably.
1.4.Semistability. Let X be a projective scheme over an algebraically closed field k of dimension n. Fix a very ample line bundle $\mathcal{O}_{X}(1)$ on X. For a coherent sheaf E on X we denote by $P(E, t)$ the Hilbert polynomial of E with respect to $\mathcal{O}_{X}(1)$. Let $P(E, t)=\sum_{i} \alpha_{i}(E) \frac{t^{i}}{i!}$ with $\alpha_{i}(E) \in \mathbb{Q}$. Recall that if $d=\operatorname{dim}(\operatorname{Supp}(E))$ then $\operatorname{deg} P(E, t)=d$. In other words, $\alpha_{i}(E)=0 \forall i>d$ and $\alpha_{d}(E) \neq 0$.

Definition 1.5. If $d=\operatorname{dim}(\operatorname{Supp} E)$, then the reduced Hilbert polynomial of E is defined as $p(E, t):=\frac{P(E, t)}{\alpha_{d}(E)}$.

For two polynomials $p_{1}=\sum_{i} \alpha_{i} \frac{t^{i}}{i!}$ and $p_{2}=\sum_{i} \beta_{i} \frac{t^{i}}{i!}$ in $\mathbb{Q}[t]$, we say $p_{1}>p_{2}$ if there exists $j \geq 0$ such that for all $i>j$ we have $\alpha_{i}=\beta_{i}$ and $\alpha_{j}>\beta_{j}$. This is same as saying that $p_{1}(n)>p_{2}(n)$ for $n \gg 0$.

Definition 1.6. A coherent sheaf E on X is called semistable (respectively, stable) with respect to $\mathcal{O}_{X}(1)$ if
(1) E is pure of dimension X.
(2) for all proper subsheaves $0 \neq F \subset E$ we have $p(F) \leq p(E)$ (respectively, $p(F)<p(E))$.

Theorem 1.7. [HL10, Theorem 1.3.4] Let E be pure of dimension X. Then there exists a fitration of E called the Harder-Narasimhan filtration(or HN filtration)

$$
0=H N_{0}(E) \subsetneq H N_{1}(E) \subsetneq \ldots \subsetneq H N_{e-1}(E) \subsetneq H N_{e}(E)=E
$$

satisfing the following two properties:
(1) Each $H N_{i}(E) / H N_{i-1}(E)$ is semistable,
(2) Let $p_{i}(E)=p\left(H N_{i}(E) / H N_{i-1}(E)\right)$. Then $p_{1}(E)>p_{2}(E)>\ldots>$ $p_{e}(E)$.
Moreover the above filtration is uniquely determined by the above two properties.

Next we state a relative version of Theorem 1.7. First we fix some notations. Let $f: Y \rightarrow S$ be a projective morphism of finite type k-schemes. For any morphism $g: T \rightarrow S$ we will denote $Y \times_{S} T$ by Y_{T}. If \mathcal{E} is a sheaf over Y then the sheaf $\left(f \times_{S} g\right)^{*} \mathcal{E}$ on Y_{T} will be denoted by \mathcal{E}_{T}.

Theorem 1.8. [HL10, Theorem 2.3.2] Let S be an integral finite type scheme over k. Let $f: Y \rightarrow S$ be a projective morphism with a f-very ample line bundle $\mathcal{O}_{Y}(1)$. Let \mathcal{E} be a coherent sheaf on Y which is flat over S. Assume that there is a closed point $s \in S$ such that \mathcal{E}_{s} is pure of dimension Y_{s}. Then there is a non-empty open set $U \subset S$ and a filtration over Y_{U}

$$
0=H N_{0}\left(\mathcal{E}_{U}\right) \subsetneq H N_{1}\left(\mathcal{E}_{U}\right) \subsetneq \ldots \subsetneq H N_{e-1}\left(\mathcal{E}_{U}\right) \subsetneq H N_{e}\left(\mathcal{E}_{U}\right)=\mathcal{E}_{U}
$$

such that
(1) $H N_{i}(\mathcal{E}) / H N_{i-1}\left(\mathcal{E}_{U}\right)$ is flat over U.
(2) $\forall s \in U, \mathcal{E}_{s}$ is pure of dimension Y_{s}
(3) The filtration
$0=H N_{0}\left(\mathcal{E}_{U}\right)_{s} \subsetneq H N_{1}\left(\mathcal{E}_{U}\right)_{s} \subsetneq \ldots \subsetneq H N_{e-1}\left(\mathcal{E}_{U}\right)_{s} \subsetneq H N_{e}\left(\mathcal{E}_{U}\right)_{s}=\mathcal{E}_{s}$ is the $H N$-filtration of \mathcal{E}_{s}.
1.9. μ-semistability. We have the following invariants associated to E.

Definition 1.10. We define
(1) the rank of E as $\operatorname{rk}(E):=\frac{\alpha_{n}(E)}{\alpha_{n}\left(\mathcal{O}_{X}\right)}$.
(2) the degree of E as $\operatorname{deg}(E):=\alpha_{n-1}(E)-r k(E) \cdot \alpha_{n-1}\left(\mathcal{O}_{X}\right)$.
(3) if rk $E \neq 0$, the slope of E as $\mu(E):=\frac{\operatorname{deg} E}{\operatorname{rk} E}$.

Remark 1.11.

(1) If X is integral then $\operatorname{rk}(E)$ is nothing but the rank of the vector space E_{η} over $k(\eta)$, where η is the generic point of X.
(2) If X is smooth outside a closed subset of codimension ≥ 2 then $\operatorname{deg}(E)=\operatorname{deg}(\operatorname{det}(E))=\left([\operatorname{det}(E)] \cdot\left[\mathcal{O}_{X}(1)\right]^{n-1}\right)$.

Definition 1.12. Let E be a coherent sheaf on X. We say that it is μ semistable (respectively, stable) with respect to $\mathcal{O}_{X}(1)$ if
(1) It is pure of dimension X,
(2) For any subsheaf $0 \neq F \subset E$ with $r k(F)<r k(E)$, we have $\mu(F) \leq$ $\mu(E)$ (respectively, $\mu(F)<\mu(E)$).

Lemma 1.13. E is μ-semistable iff for any pure quotient $E \rightarrow G \rightarrow 0$ we have $\mu(E) \leq \mu(G)$.

Proof. Let us consider an exact sequence

$$
0 \rightarrow F \rightarrow E \rightarrow G \rightarrow 0 .
$$

Suppose $\mathrm{rk} F$, rk $G>0$. Since deg and rk are additive, we have

$$
\begin{equation*}
\operatorname{rk}(G)(\mu(E)-\mu(G))=\operatorname{rk}(F)(\mu(F)-\mu(E)) . \tag{1.14}
\end{equation*}
$$

If E is μ-semistable, then the RHS is ≤ 0 and so it follows that $\mu(E) \leq \mu(G)$.
Suppose that for any pure quotient $E \rightarrow G \rightarrow 0$ we have $\mu(E) \leq \mu(G)$. Let $F \subset E$ and its quotient be G. If $\operatorname{rk}(G)=0$, it is immediate from the definition of degree that $\operatorname{deg}(G) \geq 0$. Therefore, since $\operatorname{rk}(F)=\operatorname{rk}(E)$ and $\operatorname{deg}(F)=\operatorname{deg}(E)-\operatorname{deg}(G) \leq \operatorname{deg}(E)$, it follows that $\mu(F) \leq \mu(E)$. Now suppose $\operatorname{rk}(G)>0$. Consider the surjection $E \rightarrow G \rightarrow G / T(G)$, where $T(G)$ is the torsion subsheaf of G. Then $\mu(E) \leq \mu(G / T(G))$. Since $\operatorname{deg}(T(G)) \geq 0$ we have $\mu(E) \leq \mu(G / T(G)) \leq \mu(G)$. Again using 1.14 we have $\mu(F) \leq \mu(E)$.
Lemma 1.15. Let E and G are μ-semistable sheaves with $\mu(E)>\mu(G)$. Then $\operatorname{Hom}(E, G)=0$.

Proof. Let $f: E \rightarrow G$ be a non-trivial morphism. Then by Lemma 1.13, $\mu(E) \leq \mu(f(E)) \leq \mu(G)$. Hence we arrive at a contradiction.

The following Lemma will be needed in the proof of Theorem 1.17.
Lemma 1.16. Let E be μ-semistable. Then the slopes $\mu\left(H N_{i}(E) / H N_{i-1}(E)\right)$ occurring in the $H N$ filtration of E are all equal to $\mu(E)$. The slopes $\mu\left(H N_{i}(E)\right)$ are also equal to the slope $\mu(E)$.
Proof. Since E is μ-semistable, from the inclusion $H N_{1}(E) \subset E$ we get that $\mu\left(H N_{1}(E)\right) \leq \mu(E)$. Similarly, from the quotient $E \rightarrow E / H N_{e-1}(E)$ we get $\mu(E) \leq \mu\left(E / H N_{e-1}(E)\right)$. This shows that $\mu\left(H N_{1}(E)\right) \leq \mu\left(E / H N_{e-1}(E)\right)$. If we had $\mu\left(H N_{1}(E)\right)<\mu\left(E / H N_{e-1}(E)\right)$ then this would mean that $p_{1}(E)<$ $p_{e}(E)$, which is not possible. Thus, $\mu\left(H N_{1}(E)\right)=\mu\left(E / H N_{e-1}(E)\right)$. From the exact sequence $0 \rightarrow H N_{e-1}(E) \rightarrow E \rightarrow E / H N_{e-1}(E) \rightarrow 0$ it follows that $H N_{e-1}(E)$ is pure of dimension X and μ-semistable with slope $\mu(E)$. We proceed in the same way replacing E with $H N_{e-1}(E)$.

Just as in Theorem 1.7, we have the μ-Harder Narasimhan filtration:
Theorem 1.17. Let E be a pure sheaf on X. Then there exists a fitration of E called the μ-Harder-Narasimhan filtration (or μ-HN filtration)

$$
0=\mu-H N_{0}(E) \subsetneq \mu-H N_{1}(E) \subsetneq \ldots \subsetneq \mu-H N_{l-1}(E) \subsetneq \mu-H N_{l}(E)=E
$$

satisfing the following two properties:
(1) Each $\mu-H N_{i}(E) / \mu-H N_{i-1}(E)$ is μ-semistable
(2) Let $\mu_{i}(E)=\mu\left(\mu-H N_{i}(E) / \mu-H N_{i-1}(E)\right)$. Then $\mu_{1}(E)>\mu_{2}(E)>$ $\ldots>\mu_{l}(E)$.
Moreover the above filtration is uniquely determined by the above two properties.

Proof. Let

$$
0=H N_{0}(E) \subsetneq H N_{1}(E) \subsetneq \ldots \subsetneq H N_{l-1}(E) \subsetneq H N_{e}(E)=E
$$

be the HN-filtration of E. Let ν_{i} denote the slope of $H N_{i}(E) / H N_{i-1}(E)$. Then we have

$$
\nu_{1} \geq \nu_{2} \geq \ldots \geq \nu_{e}
$$

Let $i_{1}>i_{2}>\ldots$ be the indices where there is a strict drop in the slope, that is,

$$
\nu_{i_{j}}>\nu_{i_{j}+1} .
$$

Define the $\mu-H N$ filtration of E as

$$
\mu-H N_{j}(E):=H N_{i_{j}}(E) .
$$

Then $\mu-H N_{j} / \mu-H N_{j-1}$ is μ-semistable with $\mu\left(\mu-H N_{j} / \mu-H N_{j-1}\right)=\nu_{i_{j}}$. This follows easily using the HN-filtration and the fact that if $0 \rightarrow E_{1} \rightarrow$ $E \rightarrow E_{2} \rightarrow 0$ is a short exact sequence of μ-semistable sheaves such that E_{1} and E_{2} have the same slope, then E is also μ-semistable of same slope.

Suppose we are given a filtration $F_{1} \subset F_{2} \subset \ldots \subset F_{r}=E$ which satisfies
(1) F_{i} / F_{i-1} is μ-semistable, and
(2) $\mu\left(F_{1}\right)>\mu\left(F_{2} / F_{1}\right)>\mu\left(F_{3} / F_{2}\right)>\ldots$

Consider the HN filtration of F_{i} and F_{i-1}. Let the length of the HN filtration of F_{i} and F_{i-1} be f_{i} and f_{i-1} respectively. By the previous lemma we have
$\mu\left(F_{i-1} / H N_{f_{i-1}-1}\left(F_{i-1}\right)\right)=\mu\left(F_{i-1} / F_{i-2}\right)>\mu\left(F_{i} / F_{i-1}\right)=\mu\left(H N_{1}\left(F_{i} / F_{i-1}\right)\right)$.
This implies that $p\left(F_{i-1} / H N_{f_{i-1}-1}\left(F_{i-1}\right)\right)>p\left(H N_{1}\left(F_{i} / F_{i-1}\right)\right)$. This shows that we can "put together" the HN filtrations of F_{i} / F_{i-1}. Let $g_{i}: F_{i} \rightarrow$ F_{i} / F_{i-1} and let $H N_{\bullet}\left(F_{i} / F_{i-1}\right)$ denote the HN filtration of F_{i} / F_{i-1}. Then we have a filtration

$$
F_{i-1} \subset g_{i}^{-1}\left(H N_{1}\left(F_{i} / F_{i-1}\right)\right) \subset g_{i}^{-1}\left(H N_{2}\left(F_{i} / F_{i-1}\right)\right) \subset \ldots \subset F_{i}
$$

Putting these together, it is clear that the graded pieces are semistable and that the reduced Hilbert polynomials satisfy the strictly decreasing condition. Thus, this is the HN filtration of E. Now it is clear that the F_{i} are precisely the places where the slope strictly drops.

Theorem 1.18. Let S be an integral finite type scheme over k. Let $f: Y \rightarrow$ S be a projective morphism with a f-very ample line bundle $\mathcal{O}_{Y}(1)$. Let \mathcal{F} be a coherent sheaf on Y which is flat over S. Assume that there is a closed point $s \in S$ such that \mathcal{F}_{s} is pure of dimension Y_{s}. Then exists an non-empty open set $U \subset S$ and a filtration over $f^{-1}(U)$
$0=\mu-H N_{0}\left(\mathcal{F}_{U}\right) \subsetneq \mu-H N_{1}\left(\mathcal{F}_{U}\right) \subsetneq \ldots \subsetneq \mu-H N_{l-1}\left(\mathcal{F}_{U}\right) \subsetneq \mu-H N_{l}\left(\mathcal{F}_{U}\right)=\mathcal{F}_{U}$
such that
(1) $\mu-H N_{i}(\mathcal{F}) / \mu-H N_{i-1}\left(\mathcal{F}_{U}\right)$ is flat over U.
(2) $\forall s \in U, \mathcal{F}_{s}$ is torsion free.
(3) The filtration
$0=\mu-H N_{0}\left(\mathcal{F}_{U}\right)_{s} \subsetneq \mu-H N_{1}\left(\mathcal{F}_{U}\right)_{s} \subsetneq \ldots \subsetneq \mu-H N_{l-1}\left(\mathcal{F}_{U}\right)_{s} \subsetneq \mu-H N_{l}\left(\mathcal{F}_{U}\right)_{s}=\mathcal{F}_{s}$
is the $H N$-filtration of \mathcal{F}_{s}.
Proof. As we saw in the proof of 1.17, the HN filtration of a torsion-free coherent sheaf E is a refinement of the $\mu-H N$ filtration of E. Hence the statement follows immediately from Theorem 1.8.

1.19. μ-Minimal destabilising quotient.

We define $E / \mu-H N_{l(E)-1} E$ to be the μ-minimal destabilising quotient of E. Note that $E / \mu-H N_{l(E)-1} E$ is μ-semistable and $\mu\left(E / \mu-H N_{l(E)-1} E\right) \leq$ $\mu(E)$. We define $\mu_{\min }(E)=\mu_{l(E)}$ and $\mu_{\max }=\mu_{1}(E)$.

Lemma 1.20. Let E, G be two pure sheaves. Let $\mu_{\min }(E)>\mu_{\max }(G)$. Then $H o m(E, G)=0$.

Proof. Let $f: E \rightarrow G$ be a non-trivial morphism. Let i be such that $f\left(\mu-H N_{i}(E)\right)=0$ and $f\left(\mu-H N_{i+1}(E)\right) \neq 0$. Let j be such that $f\left(\mu-H N_{i+1}(E)\right) \nsubseteq$
$\mu-H N_{j}(G)$ and $f\left(\mu-H N_{i+1}(E)\right) \subseteq \mu-H N_{j+1}(G)$. Then we have a non-trivial map

$$
\mu-H N_{i+1}(E) / \mu-H N_{i}(E) \rightarrow \mu-H N_{j+1}(G) / \mu-H N_{j}(G)
$$

Now both $\mu-H N_{i+1}(E) / \mu-H N_{i}(E)$ and μ - $H N_{j+1}(G) / \mu-H N_{j}(G)$ are μ-semistable sheaves of slope $\mu_{i+1}(E)$ and $\mu_{j+1}(G)$ respectively and by assumption we have

$$
\mu_{i+1}(E) \geq \mu_{\min }(E)>\mu_{\max }(G) \geq \mu_{j+1}(G)
$$

By Lemma 1.15 this morphism is zero and we arrive at a contradiction.
Theorem 1.21. Let $E \rightarrow G \rightarrow 0$ be a quotient such that G is pure. Then $\mu_{\min }(E) \leq \mu(G)$. If $\mu(G)=\mu_{\min }(E)$ then $E \rightarrow G$ factors as

$$
E \rightarrow E / \mu-H N_{l(E)-1}(E) \rightarrow G
$$

Proof. Let us suppose the contrary, that is,

$$
\mu(G)<\mu_{\min }(E)=\mu\left(E / \mu-H N_{l(E)-1}(E)\right)
$$

Replacing G by $G / \mu-H N_{l(G)-1}(G)$, (since $\left.\mu\left(G / \mu-H N_{l(G)-1} G\right) \leq \mu(G)\right)$ we may assume G is μ-semistable. Consider the composition

$$
\mu-H N_{l(E)-1}(E) \rightarrow E \rightarrow G .
$$

Note that

$$
\mu_{\min }\left(\mu-H N_{l(E)-1}(E)\right)=\mu_{l-1}(E)>\mu_{l}(E)=\mu_{\min }(E)>\mu(G)=\mu_{\max }(G)
$$

By Lemma 1.20 this composition is zero. Therefore there is a surjection

$$
E / \mu-H N_{l(E)-1}(E) \rightarrow G \rightarrow 0,
$$

which implies that $\mu_{\min }(E) \leq \mu(G)$. This is a contradiction.
Now suppose $\mu_{\min }(E)=\mu(G)$. If $G \rightarrow G^{\prime}$ is any quotient then applying the first part of this theorem we have $\mu\left(G^{\prime}\right) \geq \mu_{\min }(E)=\mu(G)$. This implies G is μ-semistable. Now consider the composition

$$
\mu-H N_{l(E)-1}(E) \rightarrow E \rightarrow G
$$

Note that

$$
\mu_{\min }\left(\mu-H N_{l(E)-1}(E)\right)=\mu_{l(E)-1}>\mu_{l(E)}=\mu_{\min }(E)=\mu(G)=\mu_{\max }(G)
$$

By Lemma 1.20 we have that the above compostion is zero. Hence $E \rightarrow G$ factors as

$$
E \rightarrow E / \mu-H N_{l(E)-1}(E) \rightarrow G
$$

Corollary 1.22. Assume X is smooth. Let $E \rightarrow E_{1}$ be the μ-minimal destabilising quotient. Let $E \rightarrow G \rightarrow 0$ be such that $\mu_{\min }(E)=\mu(G)$ and $\operatorname{rk} G=\operatorname{rk} E_{1}$. Then $E_{1} \cong G$ outside a closed subset of codimension ≥ 2.

Proof. Let us consider the surjection $E \rightarrow G \rightarrow G / T(G)$. Applying the above theorem, we have that $\mu(G / T(G)) \geq \mu\left(E_{1}\right)$. On the other hand, we get that $\mu(G / T(G)) \leq \mu(G)$ since $T(G)$ is torsion. Hence we have

$$
\mu\left(E_{1}\right)=\mu(G)=\mu(G / T(G))
$$

In particular, this implies that codimension of $\operatorname{Supp}(T(G)) \geq 2$. Again applying previous theorem, we have

$$
E \rightarrow G / T(G)
$$

factors as $E \rightarrow E_{1} \rightarrow G / T(G)$. Since both E_{1} and $G / T(G)$ are torsion free sheaves of same rank and X is smooth, we have that this is an isomorphism outside a closed subset of codimension ≥ 2.

2. A DEGENERATION ARGUMENT

Define $\Pi_{a}:=\mathbb{P}\left(H^{0}\left(X, \mathcal{O}_{X}(a)\right)^{\vee}\right)$. Recall that associated to Π_{a} we have a closed subscheme $Z_{a} \hookrightarrow X \times \Pi_{a}$ called the incidence variety which has the following property: if the $p: Z_{a} \rightarrow \Pi_{a}$ and $q: Z_{a} \rightarrow X$ are the projections, then the fibre $p^{-1}([D])=D \hookrightarrow X$. To define it in a more formal manner, let $p_{1}: X \times \Pi_{a} \rightarrow \Pi_{a}$ and $q_{1}: X \times \Pi_{a} \rightarrow X$ be the two projections. Then Z_{a} is defined as the zero scheme of the composition

$$
\begin{equation*}
p_{1}^{*} \mathcal{O}_{\Pi_{a}}(-1) \hookrightarrow H^{0}\left(X, \mathcal{O}_{X}(a)\right) \otimes \mathcal{O}_{X \times \Pi_{a}} \rightarrow q_{1}^{*} \mathcal{O}_{X}(a) \tag{2.1}
\end{equation*}
$$

It is clear that Z_{a} has the above property. Define $K:=\operatorname{ker}\left(H^{0}\left(X, \mathcal{O}_{X}(a)\right) \otimes\right.$ $\left.\mathcal{O}_{X} \rightarrow \mathcal{O}_{X}(a)\right)$.

Lemma 2.2. $Z_{a} \xrightarrow{q} X$ is isomorphic to the projective bundle $\mathbb{P}\left(K^{\vee}\right) \rightarrow X$. In particular it is smooth and integral.

Proof. Let $Y:=\mathbb{P}\left(K^{\vee}\right)$. Note that $K \hookrightarrow H^{0}\left(X, \mathcal{O}_{X}(a)\right) \otimes \mathcal{O}_{X}$ induces a closed immersion $Y \hookrightarrow X \times \Pi_{a}$. By the definition of this closed immersion the morphism

$$
\left.\left.p_{1}^{*} \mathcal{O}_{\Pi_{a}}(-1)\right|_{Y} \hookrightarrow H^{0}\left(X, \mathcal{O}_{X}(a)\right) \otimes \mathcal{O}_{X \times \Pi_{a}}\right|_{Y}
$$

factors as

$$
\left.\left.\left.p_{1}^{*} \mathcal{O}_{\Pi_{a}}(-1)\right|_{Y} \hookrightarrow q_{1}^{*} K\right|_{Y} \hookrightarrow H^{0}\left(X, \mathcal{O}_{X}(a)\right) \otimes \mathcal{O}_{X \times \Pi_{a}}\right|_{Y}
$$

Hence the composition 2.1 restricted to Y is zero. Hence $Y \hookrightarrow Z_{a}$.
By definition the following composition is zero.

$$
\left.\left.p_{1}^{*} \mathcal{O}_{\Pi_{a}}(-1)\right|_{Z_{a}} \hookrightarrow H^{0}\left(X, \mathcal{O}_{X}(a)\right) \otimes \mathcal{O}_{Z_{a}} \rightarrow q_{1}^{*} \mathcal{O}_{X}(a)\right|_{Z_{a}}
$$

Hence $\left.p_{1}^{*} \mathcal{O}_{\Pi_{a}}(-1)\right|_{Z_{a}} \hookrightarrow H^{0}\left(X, \mathcal{O}_{X}(a)\right) \otimes \mathcal{O}_{Z_{a}}$ factors as

$$
\left.p_{1}^{*} \mathcal{O}_{\Pi_{a}}(-1)\right|_{Z_{a}} \hookrightarrow q_{1}^{*} K \hookrightarrow H^{0}\left(X, \mathcal{O}_{X}(a)\right) \otimes \mathcal{O}_{Z_{a}}
$$

Hence we have a surjection $\left.\left.q_{1}^{*} K^{\vee}\right|_{Z_{a}} \rightarrow p_{1}^{*} \mathcal{O}_{\Pi_{a}}(1)\right|_{Z_{a}} \rightarrow 0$ and this defines a map $Z_{a} \rightarrow Y$ over X. It is easy to see that this is the inverse of $Y \rightarrow Z_{a}$.

Definition 2.3 (Conormal sheaf). Let $W \hookrightarrow Z$ be closed immersion of finite type schemes over k. Then we define the conormal sheaf $\mathcal{C}_{W / Z}:=$ $\mathcal{I}_{W / Z} / \mathcal{I}_{W / Z}^{2}$, where $\mathcal{I}_{W / Z}$ is the ideal sheaf of W in Z.

Remark 2.4. The cotangent sheaf Ω_{W} of W and the conormal sheaf $\mathcal{C}_{W / Z}$ are related by the right exact sequence (Tag 01UZ):

$$
\left.\mathcal{C}_{W / Z} \rightarrow \Omega_{Z}\right|_{W} \rightarrow \Omega_{W} \rightarrow 0
$$

It is standard that if Z is smooth then W is smooth iff the sequence is left exact. (One may deduce from this the following more general statement which we will not need. If W is smooth then the above sequence is left exact (Tag 01UZ).) In particular, if $i: C \hookrightarrow \Pi_{a}$ is a smooth closed curve, then the above sequence is left exact. From the exact sequence it also follows that $\mathcal{C}_{C / \Pi_{a}}$ is locally free. Let Z_{C} denote the scheme theoretic inverse image of C. We wish to conclude something about the smooth locus of Z_{C}.

Lemma 2.5. Let $C \subset U \subset \Pi_{a}$ be a closed immersion of a smooth curve into an open subset of Π_{a}. Let $z \in Z_{C}$ be a closed point. Then Z_{C} is smooth at z iff the composition

$$
\left.\left.\left.\mathcal{C}_{C / U}\right|_{p(z)} \rightarrow \Omega_{U}\right|_{p(z)} \rightarrow \Omega_{Z}\right|_{z}
$$

is injective.
Proof. Recall that Z_{C} is smooth at z iff $\left.\operatorname{dim} \Omega_{Z_{C}}\right|_{z}=\operatorname{dim}\left(\mathfrak{m}_{Z_{C}, z} / \mathfrak{m}_{Z_{C, z}}^{2}\right)=$ $\operatorname{dim} \mathcal{O}_{Z_{C}, z}$. Since p is flat, Z_{C} is equidimensional of dimension n. Hence $\operatorname{dim} \mathcal{O}_{Z_{C}, z}=n$ and therefore Z_{C} is smooth at z iff $\operatorname{dim} \Omega_{Z_{C}}(z)=n$. Recall that we have we have a commutative diagram whose rows are exact:

Since p is flat we have $\mathcal{C}_{Z_{C} / Z} \cong p^{*} \mathcal{C}_{C / U}$. Restricting to z (and using the top row is a sequence of locally free sheaves), we get

Comparing the dimensions, we get that Z_{C} is smooth at z iff under the map $\left.\left.\Omega_{U}\right|_{p(z)} \rightarrow \Omega_{Z}\right|_{z}$ the subspace $\left.\mathcal{C}_{C / U}\right|_{p(z)}$ maps injectively.

Corollary 2.6. Assume the hypothesis of Lemma 2.5. If z is a smooth point of the fibre $p^{-1}(p(z))$, then Z_{C} is smooth at z.

Proof. Let $c=p(z) \in C$ and let Z_{c} denote the fiber over c. We have the exact sequence:

$$
\left.\left.\left.\Omega_{U}\right|_{p(z)} \rightarrow \Omega_{Z}\right|_{z} \rightarrow \Omega_{Z_{c}}\right|_{z} \rightarrow 0
$$

Since Z_{c} is equidimensional of dimension $n-1$ and smooth at z,

$$
\left.\operatorname{dim} \Omega_{Z_{c}}\right|_{z}=n-1
$$

Hence, the morphism $\left.\left.\Omega_{U}\right|_{p(z)} \rightarrow \Omega\right|_{z}$ itself is injective, so the statement follows from Lemma 2.5.

For this section, let $U_{a} \subset \Pi_{a}$ be a non-empty subset such that for each point $[D] \in U_{a}$, the divisor D is smooth. By [Har77, Chapter 3, Corollary 7.9] each such divisor is connected, and hence integral.

Lemma 2.7. Let $D_{1} \in U_{a_{1}}, D_{2} \in U_{a_{2}}$ be such that $D:=D_{1}+D_{2}$ is a $S N C$ divisor of degree $a:=a_{1}+a_{2}$. Then \exists a smooth (non-proper) curve $C \hookrightarrow \Pi_{a}$ such that $[D] \in C, C \backslash[D] \subset U_{a}$ and $\operatorname{codim}\left(\operatorname{Sing}\left(Z_{C}\right), Z_{C}\right) \geq 3$.
Proof. We will in fact show that C can be chosen to be in an open subset of lines passing through $[D]$. There is a bijection between the set of lines through $[D] \in \Pi_{a}$ with the one dimensional subspaces in the tangent space $\left.T_{\Pi_{a}}\right|_{[D]}$, which is in bijection with the hyperplanes in $\left.\Omega_{\Pi_{a}}\right|_{[D]}$, which is in bijection with the closed points in $\mathbb{P}\left(\left.\Omega_{\Pi_{a}}\right|_{[D]}\right)$. Moreover, the set of hyperplanes H such that the corresponding line through $[D]$ intersects U_{a}, corresponds to a non-empty open subset of $\mathbb{P}\left(\left.\Omega_{\Pi_{a}}\right|_{[D]}\right)$.

Now let L be any line in Π_{a} passing through $[D]$ and intersecting U_{a}. We will denote the corresponding hyperplane in $\left.\Omega_{\Pi_{a}}\right|_{[D]}$ by H. Define $C:=$ $\left(L \cap U_{a}\right) \cup\{[D]\}$. For $c \in C$, choosing a small neighbourhood U around c and applying Corollary 2.6 to the restriction $p: Z_{U} \backslash\left(D_{1} \cap D_{2}\right) \rightarrow U$, we get that if $z \in Z_{C}$ and $z \notin D_{1} \cap D_{2}$, then Z_{C} is smooth at z. $\operatorname{So} \operatorname{Sing}\left(Z_{C}\right) \subset D_{1} \cap D_{2}$.

Let $z \in D_{1} \cap D_{2}$. Then $p(z)=[D]$ and z is not a smooth point of D and hence the following exact sequence is not left exact:

$$
\begin{equation*}
\left.\left.\left.\Omega_{\Pi_{a}}\right|_{[D]} \rightarrow \Omega_{Z}\right|_{z} \rightarrow \Omega_{D}\right|_{z} \rightarrow 0 \tag{2.8}
\end{equation*}
$$

However, $\left.\Omega_{D}\right|_{z}$ being a quotient of $\left.\Omega_{X}\right|_{z}$ has dimension n or $n-1$. Since D is not smooth at z we have $\left.\operatorname{dim} \Omega_{D}\right|_{z}=n$. Therefore

$$
\begin{equation*}
\operatorname{dim} \operatorname{Im}\left(\left.\left.\Omega_{\Pi_{a}}\right|_{[D]} \rightarrow \Omega_{Z}\right|_{z}\right)=\operatorname{dim} Z-n=\operatorname{dim} \Pi_{a}-1 \tag{2.9}
\end{equation*}
$$

hence we get that the kernel of the morphism $\left.\left.\Omega_{\Pi_{a}}\right|_{[D]} \rightarrow \Omega_{Z}\right|_{z}$ has dimension 1. Observe that $\left.\left.\mathcal{C}_{C / U}\right|_{[D]} \subset \Omega_{\Pi_{a}}\right|_{[D]}$ is precisely the subspace H. By Lemma 2.5, it is enough to find a hyperplane $\left.H \subset \Omega_{\Pi_{a}}\right|_{[D]}$ and points z in each component of $D_{1} \cap D_{2}$ for which H does not contain the kernel of $\left.\Omega_{\Pi_{a}}\right|_{[D]} \rightarrow$ $\left.\Omega_{Z}\right|_{z}$. The corresponding line $L \subset \Pi_{a}$ will satisfy the required property.

Now consider the (set theoretically given) morphism

$$
D_{1} \cap D_{2} \rightarrow \mathbb{P}\left(\left.\Omega_{\Pi_{a}}\right|_{\lceil D]} ^{\vee}\right)
$$

with

$$
z \mapsto \operatorname{Ker}\left(\left.\left.\Omega_{\Pi_{a}}\right|_{[D]} \rightarrow \Omega_{Z}\right|_{z}\right)
$$

More precisely, consider equation (2.8) on $D_{1} \cap D_{2}$. We get an exact sequence

$$
\left.\left.\left.0 \rightarrow \mathcal{K} \rightarrow \Omega_{\Pi_{a}}\right|_{[D]} \otimes \mathcal{O}_{D_{1} \cap D_{2}} \rightarrow \Omega_{Z}\right|_{D_{1} \cap D_{2}} \rightarrow \Omega_{D}\right|_{D_{1} \cap D_{2}} \rightarrow 0
$$

Since $D_{1} \cap D_{2}$ is smooth and the rank of $\left.\Omega_{D}\right|_{D_{1} \cap D_{2}}$ is constant at all closed points, it follows that this is locally free. It follows that all sheaves in the above are locally free and that \mathcal{K} is a line bundle on $D_{1} \cap D_{2}$. Taking dual we get a line bundle quotient of $\left.\Omega_{\Pi_{a}}\right|_{[D]} ^{\vee}$ which defines the above morphism.

Since $\mathcal{O}_{X}(1)$ is very ample, $\operatorname{dim} \Pi_{a} \geq n+1$. Therefore

$$
\operatorname{dim} \mathbb{P}\left(\Omega_{\Pi_{a}}([D])^{\vee}\right) \geq n>n-2=\operatorname{dim}\left(D_{1} \cap D_{2}\right)
$$

For each irreducible component of $D_{1} \cap D_{2}$, fix a closed point. Hence, we can find a hyperplane $H \subset \mathbb{P}\left(\Omega_{\Pi_{a}}([D])^{\vee}\right)$ such that H does not contain the images of these points. Finding such a hyperplane in $\mathbb{P}\left(\Omega_{\Pi_{a}}([D])^{\vee}\right)$ is equivalent to finding a hyperplane in $\Omega_{\Pi_{a}}([D])$ having the required property.

This proves that $\operatorname{Sing}\left(Z_{C}\right)$ does not contain any irreducible component of $D_{1} \cap D_{2}$, which shows that $\operatorname{codim}\left(\operatorname{Sing}\left(Z_{C}\right), Z_{C}\right) \geq 3$.

Although this is not required in the proof of the restriction theorems, we mention some properties of the scheme Z_{C}.

Lemma 2.10. The scheme Z_{C} is irreducible, Cohen-Macaulay, integral and normal.

Proof. Since $Z_{C} \rightarrow C$ is flat and proper, every irreducible component of Z_{C} will map surjectively onto C. Since the general fiber of this map is irreducible, it follows that Z_{C} is irreducible. By Corollary to [Mat86, Theorem 23.3] we have that Z_{C} is Cohen-Macauley. Thus, it satisfies Serre's condition S_{2}. Also since $\operatorname{codim}\left(\operatorname{Sing}\left(Z_{C}\right), Z_{C}\right) \geq 3$ it satisfies Serre's condition R_{1}. Hence, Z_{C} is an integral and normal scheme.

For the next two lemmas we fix a smooth curve $C \subset \Pi_{a}$ as in Lemma 2.7.
Lemma 2.11. Let $\left.q^{*} E\right|_{Z_{C \backslash[D]}} \rightarrow G_{C \backslash[D]} \rightarrow 0$ be a quotient over $Z_{C \backslash[D]}$ such that $G_{C \backslash[D]}$ is flat over $C \backslash[D]$. Then this quotient extends uniquely to a quotient $\left.q^{*} E\right|_{Z_{C}} \rightarrow G_{C} \rightarrow 0$ over Z_{C} such that G_{C} is flat over C.
Proof. The quotient

$$
\left.q^{*} E\right|_{Z_{C \backslash[D]}} \rightarrow G_{C \backslash[D]} \rightarrow 0
$$

induces a map $C \backslash[D] \rightarrow \operatorname{Quot}_{Z_{a} / \Pi_{a}}\left(q^{*} E, P\right)$ where P is the Hilbert polynomial of $\left.G_{C \backslash[D]}\right|_{D^{\prime}}$ for $\left[D^{\prime}\right] \in U_{a}$. Since C is smooth and $\operatorname{Quot}_{Z_{a} / \Pi_{a}}\left(q^{*} E, P\right)$ is proper, this map extends and we get a flat quotient $\left.q^{*} E\right|_{C} \rightarrow G_{C}$ over C.

Let G_{C} be a coherent sheaf over Z_{C} which is flat over C. Since G_{C} is flat, we have that $\forall\left[D^{\prime}\right] \in C$ the polynomial $P\left(\left.G_{C}\right|_{D^{\prime}}\right)$ is independent of D^{\prime}. In particular, the rank and degree are independent of D^{\prime}. We denote this rank by r. Define $G:=\left.G_{C}\right|_{D}, \bar{G}:=G / T(G)$ and $\bar{G}_{D_{i}}:=\left.\bar{G}\right|_{D_{i}}$. Then we have the following lemma.

Lemma 2.12. Assume $r \neq 0$. Then we have
(1) $r=\operatorname{rk}(\bar{G})=\operatorname{rk}\left(\bar{G}_{D_{1}} / T\left(\bar{G}_{D_{1}}\right)\right)=\operatorname{rk}\left(\bar{G}_{D_{2}} / T\left(\bar{G}_{D_{2}}\right)\right)$
(2) $\mu(G) \geq \mu(\bar{G}) \geq \mu\left(\bar{G}_{D_{1}} / T\left(\bar{G}_{D_{1}}\right)\right)+\mu\left(\bar{G}_{D_{2}} / T\left(\bar{G}_{D_{2}}\right)\right)$
(3) Assume that $\mu(G)=\mu\left(\bar{G}_{D_{1}} / T\left(\bar{G}_{D_{1}}\right)\right)+\mu\left(\bar{G}_{D_{2}} / T\left(\bar{G}_{D_{2}}\right)\right)$. Let $U \subset$ Z_{C}^{reg} denote the open subset over which G_{C} is locally free of rank r. There is a closed subset $D_{s} \subset D$ such that $\operatorname{codim}\left(D_{s}, D\right) \geq 2$ and $D \backslash D_{s} \subset U$.

Proof. Proof of (1). By definition $\operatorname{dim}(T(G)) \leq n-2$. Therefore $\alpha_{n-1}(G)=$ $\alpha_{n-1}(\bar{G})$. Hence

$$
\begin{equation*}
r=\operatorname{rk}(G)=\frac{\alpha_{n-1}(G)}{\alpha_{n-1}\left(\mathcal{O}_{D}\right)}=\frac{\alpha_{n-1}(\bar{G})}{\alpha_{n-1}\left(\mathcal{O}_{D}\right)} \tag{2.13}
\end{equation*}
$$

and $\mu=\mu(G) \geq \mu(\bar{G})$. We first relate the rank and degree of \bar{G} with the rank and degree of $\bar{G}_{D_{1}}$ and $\bar{G}_{D_{2}}$. Consider the exact sequence:

$$
0 \rightarrow \mathcal{O}_{D} \rightarrow \mathcal{O}_{D_{1}} \oplus \mathcal{O}_{D_{2}} \rightarrow \mathcal{O}_{D_{1} \cap D_{2}} \rightarrow 0
$$

Tensoring with \bar{G} we get

$$
0 \rightarrow \bar{K} \rightarrow \bar{G} \rightarrow \bar{G}_{D_{1}} \oplus \bar{G}_{D_{2}} \rightarrow \bar{G}_{D_{1} \cap D_{2}} \rightarrow 0 .
$$

Notice that when we restrict this to the open subset $D_{1} \backslash D_{2}$ we see that $\left.\bar{K}\right|_{D_{1} \backslash D_{2}}=0$. Similarly, for the other open set $D_{2} \backslash D_{1}$. This shows that \bar{K} is supported on a closed subset of dimension $\leq n-2$. But since \bar{G} is pure of dimension $n-1$, it follows that $\bar{K}=0$ and the following sequence is exact

$$
0 \rightarrow \bar{G} \rightarrow \bar{G}_{D_{1}} \oplus \bar{G}_{D_{2}} \rightarrow \bar{G}_{D_{1} \cap D_{2}} \rightarrow 0
$$

is exact on D.
Therefore we get that

$$
P(\bar{G})=P\left(\bar{G}_{D_{1}}\right)+P\left(\bar{G}_{D_{2}}\right)-P\left(\bar{G}_{D_{1} \cap D_{2}}\right)
$$

From this we get that

$$
\begin{equation*}
\alpha_{n-1}(\bar{G})=\alpha_{n-1}\left(\bar{G}_{D_{1}}\right)+\alpha_{n-1}\left(\bar{G}_{D_{2}}\right) . \tag{2.14}
\end{equation*}
$$

Also we have

$$
\begin{equation*}
\alpha_{n-1}\left(\mathcal{O}_{D}\right)=\alpha_{n-1}\left(\mathcal{O}_{D_{1}}\right)+\alpha_{n-1}\left(\mathcal{O}_{D_{2}}\right) \tag{2.15}
\end{equation*}
$$

We have already seen that Z_{C} is integral. Therefore $\operatorname{dim}_{k}\left(\left.G_{C}\right|_{z}\right)=r$ for a general closed point $z \in Z_{C}$, and $\left.\operatorname{dim}_{k} G_{C}\right|_{z^{\prime}} \geq r$ for any closed point $z^{\prime} \in Z_{C}$. Since D_{i} is integral, we have that for a general point $z_{i}^{\prime} \in D_{i}$

$$
\operatorname{rk}\left(\bar{G}_{D_{i}}\right)=\operatorname{dim}_{k}\left(\left.\bar{G}_{D_{i}}\right|_{z^{\prime}}\right)
$$

Since $\operatorname{dim}(T(G)) \leq n-2, G$ and \bar{G} are equal over a non-empty open subset of D_{i}. Hence for a general $z^{\prime} \in D_{i}$

$$
\begin{aligned}
\operatorname{rk}\left(\bar{G}_{D_{i}}\right)=\operatorname{rk}\left(G_{D_{i}}\right) & =\operatorname{dim}_{k}\left(G_{D_{i}} \mid z^{\prime}\right) \\
& =\operatorname{dim}_{k}\left(\left.G_{C}\right|_{z^{\prime}}\right) \geq r .
\end{aligned}
$$

In other words, (using equation (2.13))

$$
r=\frac{\alpha_{n-1}(G)}{\alpha_{n-1}\left(\mathcal{O}_{D}\right)}=\frac{\alpha_{n-1}(\bar{G})}{\alpha_{n-1}\left(\mathcal{O}_{D}\right)} \leq \frac{\alpha_{n-1}\left(\bar{G}_{D_{1}}\right)}{\alpha_{n-1}\left(\mathcal{O}_{D_{1}}\right)}, \frac{\alpha_{n-1}\left(\bar{G}_{D_{2}}\right)}{\alpha_{n-1}\left(\mathcal{O}_{D_{2}}\right)} .
$$

If

$$
\frac{\alpha_{n-1}\left(\bar{G}_{D_{1}}\right)}{\alpha_{n-1}\left(\mathcal{O}_{D_{1}}\right)} \neq \frac{\alpha_{n-1}\left(\bar{G}_{D_{2}}\right)}{\alpha_{n-1}\left(\mathcal{O}_{D_{2}}\right)},
$$

then dividing (2.14) by (2.15) we get that

$$
r=\frac{\alpha_{n-1}(\bar{G})}{\alpha_{n-1}\left(\mathcal{O}_{D}\right)}>\min \left\{\frac{\alpha_{n-1}\left(\bar{G}_{D_{1}}\right)}{\alpha_{n-1}\left(\mathcal{O}_{D_{1}}\right)}, \frac{\alpha_{n-1}\left(\bar{G}_{D_{2}}\right)}{\alpha_{n-1}\left(\mathcal{O}_{D_{2}}\right)}\right\}
$$

which gives a contradiction. Thus, we get that

$$
\begin{equation*}
r=\frac{\alpha_{n-1}(G)}{\alpha_{n-1}\left(\mathcal{O}_{D}\right)}=\frac{\alpha_{n-1}(\bar{G})}{\alpha_{n-1}\left(\mathcal{O}_{D}\right)}=\frac{\alpha_{n-1}\left(\bar{G}_{D_{1}}\right)}{\alpha_{n-1}\left(\mathcal{O}_{D_{1}}\right)}=\frac{\alpha_{n-1}\left(\bar{G}_{D_{2}}\right)}{\alpha_{n-1}\left(\mathcal{O}_{D_{2}}\right)} . \tag{2.16}
\end{equation*}
$$

Hence we get

$$
r=\operatorname{rk}(G)=\operatorname{rk}(\bar{G})=\operatorname{rk}\left(\bar{G}_{D_{1}}\right)=\operatorname{rk}\left(\bar{G}_{D_{2}}\right) .
$$

From this (1) follows.
Proof of (2). Now we look at the slope.

$$
\begin{align*}
\mu(\bar{G}) & =\frac{\operatorname{deg}(\bar{G})}{r} \\
& =\frac{\alpha_{n-2}(\bar{G})}{r}-\alpha_{n-2}\left(\mathcal{O}_{D}\right) \\
& =\frac{\alpha_{n-2}(\bar{G})}{r}-\left(\alpha_{n-2}\left(\mathcal{O}_{D_{1}}\right)+\alpha_{n-2}\left(\mathcal{O}_{D_{2}}\right)-\alpha_{n-2}\left(\mathcal{O}_{D_{1} \cap D_{2}}\right)\right) \\
& =\frac{\operatorname{deg}\left(\bar{G}_{D_{1}}\right)}{r}+\frac{\operatorname{deg}\left(\bar{G}_{D_{2}}\right)}{r}-\frac{\alpha_{n-2}\left(\mathcal{O}_{D_{1} \cap D_{2}}\right)}{r}\left(\operatorname{rk}\left(\bar{G}_{D_{1} \cap D_{2}}\right)-r\right) \\
& =\mu\left(\bar{G}_{D_{1}}\right)+\mu\left(\bar{G}_{D_{2}}\right)-\frac{\alpha_{n-2}\left(\mathcal{O}_{D_{1} \cap D_{2}}\right)}{r}\left(\operatorname{rk}\left(\bar{G}_{D_{1} \cap D_{2}}\right)-r\right) \tag{2.17}
\end{align*}
$$

Define a filtration

$$
T^{\prime}\left(\bar{G}_{D_{i}}\right) \subset T\left(\bar{G}_{D_{i}}\right) \subset \bar{G}_{D_{i}}
$$

on $\bar{G}_{D_{i}}$ as follows. Let $T\left(\bar{G}_{D_{i}}\right)$ be the largest torsion subsheaf and $T^{\prime}\left(\bar{G}_{D_{i}}\right)$ is the torsion subsheaf which is supported on $D_{1} \cap D_{2}$.

Define $G_{i}:=\bar{G}_{D_{i}} / T^{\prime}\left(\bar{G}_{D_{i}}\right)$. We will relate the degree (or slope) of $\bar{G}_{D_{i}}$ and G_{i} and then use (2.17) to compare the degrees of G_{i} and \bar{G}. Consider the short exact sequence

$$
\begin{equation*}
0 \rightarrow T^{\prime}\left(\bar{G}_{D_{i}}\right) \rightarrow \bar{G}_{D_{i}} \rightarrow G_{i} \rightarrow 0 \tag{2.18}
\end{equation*}
$$

Thus, we have

$$
\alpha_{n-2}\left(\bar{G}_{D_{i}}\right)=\alpha_{n-2}\left(G_{i}\right)+\alpha_{n-2}\left(T^{\prime}\left(\bar{G}_{D_{i}}\right)\right) .
$$

Dividing by r we get

$$
\begin{equation*}
\mu\left(\bar{G}_{D_{i}}\right)=\mu\left(G_{i}\right)+\frac{\alpha_{n-2}\left(T^{\prime}\left(\bar{G}_{D_{i}}\right)\right)}{r} . \tag{2.19}
\end{equation*}
$$

Restricting equation (2.18) to $D_{1} \cap D_{2}$ we get an exact sequence

$$
\begin{equation*}
\left.\left.\left.T^{\prime}\left(\bar{G}_{D_{i}}\right)\right|_{D_{1} \cap D_{2}} \rightarrow \bar{G}_{D_{i}}\right|_{D_{1} \cap D_{2}} \rightarrow G_{i}\right|_{D_{1} \cap D_{2}} \rightarrow 0 . \tag{2.20}
\end{equation*}
$$

If η is the generic point of $D_{1} \cap D_{2}$ then $\mathcal{O}_{D_{i}, \eta}$ is a discrete valuation ring. Therefore the localisation $G_{i, \eta}$ of G_{i} at η being a torsion free module is in fact free. This shows two things, first that

$$
\operatorname{rk}\left(\left.G_{i}\right|_{D_{1} \cap D_{2}}\right)=\operatorname{dim}_{k(\eta)} G_{i} \otimes k(\eta)=\operatorname{rank}_{\mathcal{O}_{D_{i}, \eta}} G_{i, \eta}=\operatorname{rk}\left(G_{i}\right)=r .
$$

Second that the sequence (2.20) is left exact when we tensor with $\mathcal{O}_{D_{1} \cap D_{2}, \eta}$. Thus, we conclude that

$$
\begin{aligned}
\operatorname{rk}\left(\left.T^{\prime}\left(\bar{G}_{D_{i}}\right)\right|_{D_{1} \cap D_{2}}\right) & =\operatorname{rk}\left(\left.\bar{G}_{D_{i}}\right|_{D_{1} \cap D_{2}}\right)-\operatorname{rk}\left(\left.G_{i}\right|_{D_{1} \cap D_{2}}\right) \\
& =\operatorname{rk}\left(\left.\bar{G}_{D_{i}}\right|_{D_{1} \cap D_{2}}\right)-\operatorname{rk}\left(G_{i}\right) \\
& =\operatorname{rk}\left(\left.\bar{G}_{D_{i}}\right|_{D_{1} \cap D_{2}}\right)-r .
\end{aligned}
$$

Therefore we have

$$
\operatorname{rk}\left(\left.T^{\prime}\left(\bar{G}_{D_{i}}\right)\right|_{D_{1} \cap D_{2}}\right)=\frac{\alpha_{n-2}\left(T^{\prime}\left(\bar{G}_{D_{i}}\right)\right)}{\alpha_{n-2}\left(\mathcal{O}_{D_{1} \cap D_{2}}\right)}=\operatorname{rk}\left(\left.\bar{G}_{D_{i}}\right|_{D_{1} \cap D_{2}}\right)-r .
$$

Thus, using this we rewrite equation (2.19) as

$$
\mu\left(G_{i}\right)=\mu\left(\bar{G}_{D_{i}}\right)-\alpha_{n-2}\left(\mathcal{O}_{D_{1} \cap D_{2}}\right) \frac{\operatorname{rk}\left(\left.\bar{G}_{D_{i}}\right|_{D_{1} \cap D_{2}}\right)-r}{r} .
$$

Substituting this into equation (2.17) we get

$$
\begin{equation*}
\mu(\bar{G})=\mu\left(G_{1}\right)+\mu\left(G_{2}\right)+\alpha_{n-2}\left(\mathcal{O}_{D_{1} \cap D_{2}}\right) \frac{\operatorname{rk}\left(\bar{G}_{D_{1} \cap D_{2}}\right)-r}{r} . \tag{2.21}
\end{equation*}
$$

Since $\operatorname{rk}\left(\bar{G}_{D_{1}}\right)=r$, for any closed point $z \in D_{1}, \operatorname{dim}_{k}\left(\bar{G}_{D_{1}} \otimes k(z)\right) \geq r$. Since $D_{1} \cap D_{2}$ is integral, $\operatorname{rk}\left(G_{D_{1} \cap D_{2}}\right) \geq r$. Hence we have

$$
\mu(\bar{G}) \geq \mu\left(G_{1}\right)+\mu\left(G_{2}\right) \geq \mu\left(\bar{G}_{D_{1}} / T\left(\bar{G}_{D_{1}}\right)\right)+\mu\left(\bar{G}_{D_{2}} / T\left(\bar{G}_{D_{2}}\right)\right)
$$

This completes the proof of (2).
Proof of (3). We continue with notation as above. Let us assume that we have equality

$$
\mu(G)=\mu(\bar{G})=\mu\left(G_{1}\right)+\mu\left(G_{2}\right)=\mu\left(\bar{G}_{D_{1}} / T\left(\bar{G}_{D_{1}}\right)\right)+\mu\left(\bar{G}_{D_{2}} / T\left(\bar{G}_{D_{2}}\right)\right)
$$

(a) Since $\mu(G)=\mu(G / T(G))$, we get that $\operatorname{Supp}(T(G)) \subset D$ is a closed subset whose codimension in D is ≥ 2.
(b) Using (2.21) we get $\operatorname{rk}\left(\bar{G}_{D_{1} \cap D_{2}}\right)=r$. Using (2.17), we get $\mu(\bar{G})=$ $\mu\left(\bar{G}_{D_{1}}\right)+\mu\left(\bar{G}_{D_{2}}\right)$. Since $\mu(\bar{G})=\mu\left(\bar{G}_{D_{i}} / T\left(\bar{G}_{D_{1}}\right)\right)+\mu\left(\bar{G}_{D_{i}} / T\left(\bar{G}_{D_{i}}\right)\right)$ and $\mu\left(\bar{G}_{D_{i}}\right) \geq \mu\left(\bar{G}_{D_{i}} / T\left(\bar{G}_{D_{i}}\right)\right)$, we get $\mu\left(\bar{G}_{D_{i}}\right)=\mu\left(\bar{G}_{D_{i}} / T\left(\bar{G}_{D_{i}}\right)\right)$. It follows that $\operatorname{Supp}\left(T\left(\bar{G}_{D_{i}}\right)\right) \subset D_{i}$ is a closed subset whose codimension in D_{i} is ≥ 2.
(c) Since $\bar{G}_{D_{i}} / T\left(\bar{G}_{D_{i}}\right)$ is torsion free on D_{i}, it is locally free on an open subset whose complement in D_{i} has codimension ≥ 2. From this and the previous point we conclude that $\bar{G}_{D_{i}}$ is locally free on an open subset whose complement in D_{i} has codimension ≥ 2.
(d) Since $\operatorname{codim}\left(Z_{C} \backslash Z_{C}^{\mathrm{reg}}, Z_{C}\right) \geq 3$, it follows that $\operatorname{codim}\left(D \backslash Z_{C}^{\mathrm{reg}}, D\right) \geq 2$. Thus, we have obtained some closed subsets of D, each of which has codimension ≥ 2 in D. Let D_{s} be the union of all these. Let $z \in D \backslash D_{s}$ be a closed point, and assume $z \in D_{1}$ (the same argument holds for $z \in D_{2}$). We claim that G_{C} is locally free in a neighbourhood of z. We already know that $r=\operatorname{rk}\left(G_{C}\right)=\operatorname{rk}\left(\bar{G}_{D_{i}}\right)$, see equation (2.16). Then

$$
\operatorname{dim}_{k}\left(G_{C} \otimes k(z)\right)=\operatorname{dim}_{k}\left(\left.G_{C}\right|_{D} \otimes k(z)\right)
$$

(using definition of G we get)

$$
=\operatorname{dim}_{k}(G \otimes k(z))
$$

(since in a nbd of z, using (a), we have $G=\bar{G}$)

$$
=\operatorname{dim}_{k}(\bar{G} \otimes k(z))
$$

$$
\begin{aligned}
\text { (since } z & \in D_{1} \text { we get) } \\
& =\operatorname{dim}_{k}\left(\bar{G}_{D_{1}} \otimes k(z)\right) \\
& =r .
\end{aligned}
$$

The local ring $\mathcal{O}_{Z_{C}^{\text {reg }}, z}$ is integral. If η denotes the generic point, then the above shows that

$$
\operatorname{dim}_{k(\eta)} G_{C} \otimes k(\eta)=\operatorname{dim}_{k}\left(G_{C} \otimes k(z)\right)=r .
$$

It follows that G_{C} is locally free in a neighbourhood of z. This proves that $D \backslash D_{s} \subset U$. This completes the proof of (3).

3. μ-Semistable Restriction Theorem

In this section we will prove the μ-semistable restriction theorem [MR82, Theorem 6.1].

Theorem 3.1. Let X be a smooth projective variety of dimension $n \geq 2$ over an algebraically closed field k. Let $\mathcal{O}_{X}(1)$ be a very ample line bundle on X. Let E be a μ-semistable sheaf on X. Then there is an integer a_{0} such that for all $a \geq a_{0}$ there is a non-empty open set $U_{a} \subset \mathbb{P}\left(H^{0}\left(X, \mathcal{O}_{X}(a)\right)^{\vee}\right)$ such that for all $[D] \in U_{a}$ the divisor D is smooth and $\left.E\right|_{D}$ is μ-semistable with respect to $\left.\mathcal{O}_{X}(1)\right|_{D}$.
Lemma 3.2. For each $a \geq 1$ there exists an open set $U_{a} \subset \Pi_{a}$ and a quotient $\left.q^{*} E\right|_{Z_{U_{a}}} \rightarrow F_{a} \rightarrow 0$ over $Z_{U_{a}}:=p^{-1}\left(U_{a}\right)$ such that
(1) each $[D] \in U_{a}$ is smooth and integral.
(2) F_{a} is U_{a}-flat.
(3) $\left.E\right|_{D}$ is torsion-free.
(4) For $D \in U_{a},\left.\left.E\right|_{D} \rightarrow F_{a}\right|_{D}$ is the μ-minimal destabilising sheaf of $\left.E\right|_{D}$.

Proof. The first assertion is just Bertini's theorem. The rest of the claims will follow from Theorem 1.18 once we show that $q^{*} E$ is flat over Π_{a} and $\left.E\right|_{D}$ is torsion-free for atleast one $D \in \Pi_{a}$. The latter fact follows from [HL10, Corollary 1.1.14(ii)] and [HL10, Lemma 1.1.12]. Let $[D] \in \Pi_{a}$. Note that the map $E(-a) \xrightarrow{\otimes D} E$ is injective since locally it is given by multiplication of a non-zero element and E is torsion free. Hence we have an exact sequence

$$
\left.0 \rightarrow E(-a) \rightarrow E \rightarrow E\right|_{D} \rightarrow 0
$$

Therefore $P\left(\left.E\right|_{D}\right)=P(E)-P(E(-a))$, that is, the Hilbert polynomial of $q^{*} E$ restricted to any closed fibre of p is constant. Hence $q^{*} E$ is flat over Π_{a}.

Since \mathcal{F}_{a} is flat over U_{a}, both $\operatorname{rk}\left(\left.F_{a}\right|_{D}\right)$ and $\operatorname{deg}\left(\left.F_{a}\right|_{D}\right)$ are independent of $[D] \in U_{a}$. We define $r(a):=\operatorname{rk}\left(\left.F_{a}\right|_{D}\right)$ and $\mu(a):=\mu\left(\left.F_{a}\right|_{D}\right)$.

Since Z_{a} is smooth, we have the line bundle $\operatorname{det}\left(F_{a}\right)$ over $Z_{U_{a}}$ and it can be extended it to a line bundle \mathcal{Q} over Z_{a}. Now $Z_{a} \cong \mathbb{P}\left(K^{\vee}\right)$ and it follows from the proof of Lemma 2.2 that under this isomorphism $p^{*} \mathcal{O}_{\Pi_{a}}(1) \cong$ $\mathcal{O}_{\mathbb{P}\left(K^{\vee}\right)}(1)$. Hence we can decompose \mathcal{Q} uniquely as $\mathcal{Q}=q^{*} \mathcal{L}_{a} \otimes p^{*} \mathcal{M}$ with $\mathcal{L}_{a} \in \operatorname{Pic} X, \mathcal{M} \in \operatorname{Pic} \Pi_{a}$. By Lemma 3.3 if $a \geq 3$ then \mathcal{L}_{a} does not depend on the choice of the extension \mathcal{Q}.

Lemma 3.3. Let $a \geq 3$. Let $L^{\prime}, L^{\prime \prime} \in \operatorname{Pic} X$ such that $\left.\left.L^{\prime}\right|_{D} \cong L^{\prime \prime}\right|_{D}$ for $[D]$ in a non-empty open set in Π_{a}. Then $L^{\prime} \cong L^{\prime \prime}$.
Proof. Define $L:=L^{\prime} \otimes\left(L^{\prime \prime}\right)^{-1}$. Then $\left.q^{*} L\right|_{D} \cong \mathcal{O}_{D} \forall D \in U$, where U is an open set in Π_{a}. In particular, we get $h^{0}\left(D,\left.q^{*} L\right|_{D}\right)=h^{0}\left(D,\left.q^{*} L\right|_{D}\right)=1 \forall D \in$ U. Now the proof of Lemma 3.2 shows that $q^{*} L$ is flat over Π_{a}. Applying semicontinuity theorem, we get $h^{0}\left(D,\left.q^{*} L\right|_{D}\right)=h^{0}\left(D,\left.q^{*} L\right|_{D}\right)=1 \forall D \in \Pi_{a}$. If D is integral, this implies that $\left.q^{*} L\right|_{D} \cong \mathcal{O}_{D}$. By [MR82, Lemma 2.1.3(ii)] the set of integral divisors is open in Π_{a}. Let us denote this open set by B_{a}.

Let B_{a}^{\prime} be the open set in Π_{a} parametrizing smooth divisors. By [Har77, Chapter 3, Corollary 7.9] each such divisor is connected, and hence integral. Thus, $\emptyset \subsetneq B_{a}^{\prime} \subset B_{a}$. From the proof of [Har77, Chapter 2, Theorem 8.18] it follows that $\Pi_{a} \backslash B_{a}^{\prime}$ is irreducible. By [MR82, Lemma 2.1.3(ii)] this inclusion is strict. Therefore we get that $\operatorname{codim}\left(\Pi_{a} \backslash B_{a}, \Pi_{a}\right) \geq 2$.

Now consider the sheaf $p_{*} q^{*} L$. By Grauert's theorem $\left.p_{*} q^{*} L\right|_{B_{a}}$ is a line bundle on B_{a}. Let $\mathcal{N} \in \operatorname{Pic} \Pi_{a}$ be such that $\left.\left.\mathcal{N}\right|_{B_{a}} \cong p_{*} q^{*} L\right|_{B_{a}}$. This induces an isomorphism $p^{*} \mathcal{N} \rightarrow q^{*} L$ on $p^{-1}\left(B_{a}\right)$. Since p is flat, $\operatorname{codim}\left(Z_{a} \backslash\right.$ $\left.p^{-1}\left(B_{a}\right), Z_{a}\right) \geq 2$. Therefore $p^{*} \mathcal{N} \cong q^{*} L$. But by Lemma 2.2 we have Pic $Z_{a}=p^{*}$ Pic $\Pi_{a} \oplus q^{*}$ Pic X. This implies $\mathcal{N}=\mathcal{O}_{\Pi_{a}}$ and $L=\mathcal{O}_{X}$.

Next we will prove the following two statements in the form of various lemmas:
(1) $\exists 0<r \leq \operatorname{rk}(E)$ such that for all $a \gg 0$ we have $r(a)=r$.
(2) $\exists \mathcal{L} \in \operatorname{Pic} X$ such that for all $a \gg 0$ we have $\mathcal{L} \cong \mathcal{L}_{a}$.

As the first step towards proving these statements, we will prove a Lemma which shows how the numbers $\mu\left(a_{1}\right), \mu\left(a_{2}\right), \mu\left(a_{1}+a_{2}\right), r\left(a_{1}\right), r\left(a_{2}\right), r\left(a_{1}+a_{2}\right)$ are related.

Lemma 3.4. Let $a=a_{1}+a_{2}$. Then $\mu(a) \geq \mu\left(a_{1}\right)+\mu\left(a_{2}\right)$. In case of equality, we have $r(a) \leq \min \left\{r\left(a_{1}\right), r\left(a_{2}\right)\right\}$.

Proof. Fix $D_{1} \in U_{a_{1}}$. By Bertini's theorem there exists $D_{2} \in U_{a_{2}}$ such that $D=D_{1}+D_{2}$ is a simple normal crossing divisor. By Lemma 2.7 choose a $C \subset \Pi_{a}$ such that $[D] \in C$ and $C \backslash[D] \subset U_{a}$ and consider the quotient $\left.\left.q^{*} E\right|_{Z_{C \backslash[D]}} \rightarrow F_{a}\right|_{Z_{C \backslash D]}} \rightarrow 0$. By Lemma 2.11 this extends to a flat quotient $\left.q^{*} E\right|_{Z_{C}} \rightarrow F_{C} \rightarrow 0$. Let $F:=\left.F_{C}\right|_{D}$. Then $\mu(F)=\mu(a)$. Let $\bar{F}:=F / T(F)$. Applying Lemma 2.12 we have

$$
\mu(a) \geq \mu\left(\bar{F}_{D_{1}} / T\left(\bar{F}_{D_{1}}\right)\right)+\mu\left(\bar{F}_{D_{2}} / T\left(\bar{F}_{D_{2}}\right)\right) .
$$

Since $\bar{F}_{D_{i}} / T\left(\bar{F}_{D_{i}}\right)$ is a torsion free quotient of $\left.E\right|_{D_{i}}$, by Theorem 1.21 we have $\mu\left(a_{i}\right) \leq \mu\left(\bar{F}_{D_{1}} / T\left(\bar{F}_{D_{1}}\right)\right)$ and the first statement follows.

If equality happens then we get $\mu\left(\bar{F}_{D_{i}} / T\left(\bar{F}_{D_{i}}\right)\right)=\mu\left(a_{i}\right)=\mu_{\min }\left(\left.E\right|_{D_{i}}\right)$. Now we apply Theorem 1.21 , which shows that $r(a)=\operatorname{rk}\left(\bar{F}_{D_{i}} / T\left(\bar{F}_{D_{i}}\right)\right) \leq$ $r\left(a_{i}\right)$.

Corollary 3.5. $r(a)$ and $\frac{\mu(a)}{a}$ are constant for $a \gg 0$.
Proof. Since

$$
\frac{\mu(a)}{a}=\frac{\operatorname{deg}\left(\left.F_{a}\right|_{D}\right)}{a \cdot r(a)}=\frac{\operatorname{deg}\left(\left.\mathcal{L}_{a}\right|_{D}\right)}{a \cdot r(a)}=\frac{\operatorname{deg}\left(\mathcal{L}_{a}\right)}{r(a)} \in \frac{\mathbb{Z}}{\operatorname{rk}(\mathrm{E})!},
$$

it follows it belongs to a discrete set. Here by $\operatorname{deg}\left(\mathcal{L}_{a}\right)$ we mean the degree of the line bundle \mathcal{L}_{a} on X computed with respect to $\mathcal{O}_{X}(1)$. Moreover, $\mu\left(E_{D}\right)=a \mu(E)$. Since $\mu\left(E_{D}\right) \geq \mu(a)$ it follows that $\mu(a) / a$ is bounded above by $\mu(E)$. Thus, it attains a maximum at some b_{0}. That is,

$$
\frac{\mu\left(b_{0}\right)}{b_{0}}=\max \left\{\left.\frac{\mu(b)}{b} \right\rvert\, b \geq 2\right\} .
$$

Now consider the second set

$$
\frac{\mu\left(b_{1}\right)}{b_{1}}=\max \left\{\left.\frac{\mu(b)}{b} \right\rvert\, b \geq 2,\left(b, b_{0}\right)=1\right\} .
$$

Clearly, $\mu\left(b_{1}\right) / b_{1} \leq \mu\left(b_{0}\right) / b_{0}$ and b_{1} is coprime to b_{0}. Let $b=\beta_{1} b_{1}+\beta_{0} b_{0}$ be such that b is coprime to b_{0} and $\beta_{i} \geq 1$. Then by Lemma 3.4

$$
\begin{aligned}
\mu(b) & \geq \beta_{1} \mu\left(b_{1}\right)+\beta_{0} \mu\left(b_{0}\right) \\
& =\beta_{1} b_{1} \frac{\mu\left(b_{1}\right)}{b_{1}}+\beta_{0} b_{0} \frac{\mu\left(b_{0}\right)}{b_{0}} \\
& \geq \beta_{1} b_{1} \frac{\mu\left(b_{1}\right)}{b_{1}}+\beta_{0} b_{0} \frac{\mu\left(b_{1}\right)}{b_{1}}
\end{aligned}
$$

This shows that $\mu(b) / b \geq \mu\left(b_{1}\right) / b_{1}$. But since b is coprime to b_{0}, it follows that $\mu(b) / b=\mu\left(b_{1}\right) / b_{1}$. But this shows that $\mu\left(b_{0}\right) / b_{0}=\mu\left(b_{1}\right) / b_{1}$. Since every b sufficiently large can be written as a positive linear combination of b_{0} and b_{1}, it follows that $\mu(a) / a$ is constant for $a \geq a_{0}$. Let $\lambda=\mu(a) / a$. Then

$$
\frac{\mu\left(a_{1}\right)+\mu\left(a_{2}\right)}{a_{1}+a_{2}}=\frac{\lambda\left(a_{1}+a_{2}\right)}{a_{1}+a_{2}}=\frac{\mu(a)}{a}
$$

Since $a=a_{1}+a_{2}$ it follows that

$$
\begin{equation*}
\mu(a)=\mu\left(a_{1}\right)+\mu\left(a_{2}\right) . \tag{3.6}
\end{equation*}
$$

Now from Lemma 3.4 it follows that $r(a) \leq \min \left\{r\left(a_{1}\right), r\left(a_{2}\right)\right\}$. So if we take $a \geq 2 a_{0}$, we see that $r(a) \leq \min \left\{r\left(a_{0}\right), r\left(a-a_{0}\right)\right\} \leq r\left(a_{0}\right)$. Let $a_{1} \geq 2 a_{0}$ be the number at which the minimum is attained. Let $a \geq 2 a_{1}$. Then we get that $r(a) \leq \min \left\{r\left(a_{1}\right), r\left(a-a_{1}\right)\right\} \leq r\left(a_{1}\right)$. This shows that $r(a)=r\left(a_{1}\right)$. This proves that $r(a)$ is eventually constant.

Lemma 3.7. $\exists \mathcal{L} \in \operatorname{Pic} X$ such that $\mathcal{L}_{a} \cong \mathcal{L}$ for $a \gg 0$.
Proof. Let us choose $d_{0} \geq 3$ such that for $a \geq d_{0}$ both $r(a)$ and $\mu(a) / a$ are constant. Define $r:=r(a)$. Let $a \geq 2 d_{0}$. Choose $a_{1}=d_{0}$ and $a_{2}=a-d_{0} \geq$ d_{0}. Let the notation be as in Lemma 3.4. Let $U \subset Z_{C}^{\text {reg }}$ be the locus of points where F_{C} is locally free. Then using Lemma 2.12 (3) we see that $\operatorname{codim}(D \backslash U, D) \geq 2$.

By intersecting U with fibers of the map $p: Z_{C}^{\text {reg }} \rightarrow C$ one checks that $\operatorname{codim}\left(Z_{C}^{\mathrm{reg}} \backslash U, Z_{C}^{\mathrm{reg}}\right) \geq 2$. Consider the line bundle $\mathcal{A}:=\operatorname{det}\left(\left.F_{C}\right|_{U}\right)$ on U. Since Z_{C}^{reg} is smooth, this extends uniquely to a line bundle on Z_{C}^{reg}. By [Har77, Chapter II, Exc. 5.15] we can extend \mathcal{A} by a coherent sheaf $\tilde{\mathcal{A}}$ over Z_{C}. Notice that we can assume $\tilde{\mathcal{A}}$ is torsion free (if not, replace $\tilde{\mathcal{A}}$ by $\tilde{\mathcal{A}} / T(\tilde{\mathcal{A}})$. Since \mathcal{A} is torsion-free, $\left.\tilde{\mathcal{A}}\right|_{C} ^{\text {reg }}=\mathcal{A}$.) Thus, it is C-flat.

Alternatively, we can do the following. Recall that Z_{C} is normal and integral. Now let $j: Z_{C}^{\text {reg }} \rightarrow Z_{C}$ be the inclusion. Define $\tilde{\mathcal{A}}:=j_{*} \mathcal{A}$. If Spec $R \subset Z_{C}$ is an affine open subset, then $\tilde{\mathcal{A}}(\operatorname{Spec} R)=\mathcal{A}(U \cap \operatorname{Spec} R)$. Now $(U \cap \operatorname{Spec} R) \subset U$ is an open set whose complement has codimension ≥ 2 in Spec R. Since R is normal, we have $\mathcal{O}(U \cap \operatorname{Spec} R)=R$. Now since \mathcal{A} is coherent over $Z_{C}^{\text {reg }}, \mathcal{A}(U \cap$ Spec $R)$ is finitely generated over $\mathcal{O}(U \cap \operatorname{Spec} R)=R$. Hence $\tilde{\mathcal{A}}$ is a coherent sheaf over Z_{C}. The above argument also shows that $\tilde{\mathcal{A}}$ is in fact torsion free. Thus, it is C-flat.

We need to make an observation about restricting $\tilde{\mathcal{A}}$ to $D_{i} \backslash D_{s}$. Since $D_{i} \backslash D_{s} \subset U$ (using F_{C} is locally free on U), it follows that

$$
\begin{align*}
\left.\tilde{\mathcal{A}}\right|_{D_{i} \backslash D_{s}} & =\left.\mathcal{A}\right|_{D_{i} \backslash D_{s}} \tag{3.8}\\
& =\operatorname{det}\left(\left.\bar{F}_{D_{i}}\right|_{D_{i} \backslash D_{s}}\right) \\
& =\operatorname{det}\left(\left.\left(\bar{F}_{D_{i}} / T\left(\bar{F}_{D_{i}}\right)\right)\right|_{D_{i} \backslash D_{s}}\right)
\end{align*}
$$

Now $\bar{F}_{D_{i}} / T\left(\bar{F}_{D_{i}}\right)$ is a quotient of $\left.E\right|_{D_{i}}$ with

$$
\mu\left(\bar{F}_{D_{i}} / T\left(\bar{F}_{D_{i}}\right)\right)=\mu\left(a_{i}\right)=\mu_{\min }\left(\left.E\right|_{D_{i}}\right),
$$

and $\operatorname{rk}\left(\bar{F}_{D_{i}} / T\left(\bar{F}_{D_{i}}\right)\right)=r=r(a)=r\left(a_{i}\right)$. Now we apply Corollary 1.22, which shows that $\left.F_{a_{i}}\right|_{D_{i}}$ and $\bar{F}_{D_{i}} / T\left(\bar{F}_{D_{i}}\right)$ agree on an open subset of D_{i} whose complement has codimension ≥ 2. In particular, they have the same determinant. This proves that

$$
\operatorname{det}\left(\left.\left(\bar{F}_{D_{i}} / T\left(\bar{F}_{D_{i}}\right)\right)\right|_{D_{i} \backslash D_{s}}\right)=\mathcal{L}_{a_{i}} .
$$

Thus, we get

$$
\left.\left.\tilde{\mathcal{A}}\right|_{D_{i} \backslash D_{s}} \cong \mathcal{L}_{a_{i}}\right|_{D_{i} \backslash D_{s}} .
$$

It is clear that for a point $\left[D^{\prime}\right] \in C \backslash[D]$

$$
\left.\left.\tilde{\mathcal{A}}\right|_{D^{\prime}} \cong \mathcal{L}_{a}\right|_{D^{\prime}}
$$

Recall $p: Z_{C} \rightarrow C$. Consider $p_{*}\left(\mathcal{L}_{a}^{\vee} \otimes \tilde{\mathcal{A}}\right)$. Since $h^{0}\left(D^{\prime},\left.\mathcal{L}_{a}^{\vee} \otimes \tilde{\mathcal{A}}\right|_{D^{\prime}}\right)=1$, it follows by semi-continuity that $h^{0}\left(D,\left.\mathcal{L}_{a}^{\vee} \otimes \tilde{\mathcal{A}}\right|_{D}\right) \geq 1$. Let $\phi:\left.\left.\mathcal{L}_{a}\right|_{D} \rightarrow \tilde{\mathcal{A}}\right|_{D}$ be a non-zero map. It has to be non-zero restricted to one of the D_{i}, say D_{1}. So we have a non-zero map $\phi:\left.\left.\mathcal{L}_{a}\right|_{D_{1}} \rightarrow \tilde{\mathcal{A}}\right|_{D_{1}}$. But we have seen above that $\left.\left.\tilde{\mathcal{A}}\right|_{D_{1} \backslash D_{s}} \cong \mathcal{L}_{a_{1}}\right|_{D_{1} \backslash D_{s}}$. Thus, we have a non-zero map $\phi:\left.\mathcal{L}_{a}\right|_{D_{1} \backslash D_{s}} \rightarrow$ $\left.\mathcal{L}_{a_{1}}\right|_{D_{1} \backslash D_{s}}$. We claim that both \mathcal{L}_{a} and $\mathcal{L}_{a_{1}}$ have the same degree on X and so they have the same degree on D_{1}. Note that

$$
\mu(a)=\mu\left(\left.F_{a}\right|_{D^{\prime}}\right)=\frac{\operatorname{deg}\left(\left.\mathcal{L}_{a}\right|_{D^{\prime}}\right)}{r(a)}=\frac{a \operatorname{deg}\left(\mathcal{L}_{a}\right)}{r(a)} .
$$

Thus,

$$
\operatorname{deg}\left(\mathcal{L}_{a}\right)=\frac{r(a) \mu(a)}{a}=\frac{r\left(a_{1}\right) \mu\left(a_{1}\right)}{a_{1}}=\operatorname{deg}\left(\mathcal{L}_{a_{1}}\right) .
$$

Since $D_{1} \backslash D_{s}$ is an open subset whose complement has codimension ≥ 2 in D, this proves that $\phi:\left.\left.\mathcal{L}_{a}\right|_{D_{1}} \rightarrow \mathcal{L}_{a_{1}}\right|_{D_{1}}$ is an isomorphism. Restrict this isomorphism to a point $z \in\left(D_{1} \cap D_{2}\right) \backslash D_{s}$. This shows that the restriction of $\phi:\left.\left.\mathcal{L}_{a}\right|_{D_{2}} \rightarrow \mathcal{L}_{a_{2}}\right|_{D_{2}}$ is non-zero and so this is also an isomorphism by the same reason.

We can fix D_{2} and vary D_{1} in an open set and apply the above argument. Then this shows that $\left.\left.\mathcal{L}_{a}\right|_{D_{1}} \cong \mathcal{L}_{a_{1}}\right|_{D_{1}}$ for D_{1} varying in an open subset of $\left|\mathcal{O}\left(a_{1}\right)\right|$. Applying Lemma 3.3 we see that $\mathcal{L}_{a} \cong \mathcal{L}_{a_{1}}$. This proves that all the \mathcal{L}_{a} are isomorphic for $a \geq 2 d_{0}$.

To summarize, we have proved the following. For each $a \gg 0$, we have a non-empty open set $U_{a} \subset \mathbb{P}\left(H^{0}\left(X, \mathcal{O}_{X}(a)\right)^{\vee}\right)$ such that each $[D] \in U_{a}$ is smooth and integral and $\left.E\right|_{D}$ is torsion free on D. Over $Z_{U_{a}}$ we have a quotient $q^{*} E \rightarrow F_{a} \rightarrow 0$ such that
(1) F_{a} is U_{a}-flat.
(2) For $D \in U_{a},\left.F_{a}\right|_{D}$ is the μ-minimal destabilising quotient of $\left.E\right|_{D}$. In particular, it is torsion free and $\mu\left(\left.F_{a}\right|_{D}\right) \leq \mu\left(\left.E\right|_{D}\right)$.
(3) We have an integer $0<r \leq \mathrm{rk} E$ such that rk $F_{a}=r$ for $a \gg 0$.
(4) There exists $\mathcal{L} \in \operatorname{Pic}(X)$ such that $\left.\left.\left(\operatorname{det} F_{a}\right)\right|_{D} \cong \mathcal{L}\right|_{D}$ for $a \gg 0$. In particular,

$$
\begin{equation*}
\operatorname{deg} \mathcal{L}=\frac{\left.\operatorname{deg} \mathcal{L}\right|_{D}}{a}=\frac{\operatorname{deg}\left(\left.F_{a}\right|_{D}\right)}{a}=\frac{r \mu\left(\left.F_{a}\right|_{D}\right)}{a}=\frac{r \mu(a)}{a} \tag{3.9}
\end{equation*}
$$

Lemma 3.10. Suppose we are given an infinite set $N \subset \mathbb{N}$ such that for each $a \in N$, we have a non-empty open set $W_{a} \subset \mathbb{P}\left(H^{0}\left(X, \mathcal{O}_{X}(a)\right)^{\vee}\right)$ with each $\left[D^{\prime}\right] \in W_{a}$ is smooth and integral. Moreover, also assume that over $Z_{W_{a}}$ we have a quotient $q^{*} E \rightarrow G_{a} \rightarrow 0$ such that
(1) $\left.E\right|_{D^{\prime}}$ is torsion free $\forall\left[D^{\prime}\right] \in W_{a}$.
(2) G_{a} is W_{a}-flat.
(3) $\left.G_{a}\right|_{D^{\prime}}$ is torsion-free and $\operatorname{rk}\left(\left.G_{a}\right|_{D^{\prime}}\right)=r \forall a \in N, \forall\left[D^{\prime}\right] \in W_{a}$.
(4) There exists $\mathcal{L} \in \operatorname{Pic}(X)$ such that $\left.\left.\operatorname{det}\left(G_{a}\right)\right|_{D^{\prime}} \cong \mathcal{L}\right|_{D^{\prime}}$ for $\forall a \in N$.

Then \exists an open set $X^{\prime} \subset X$ with $\operatorname{codim}\left(X \backslash X^{\prime}, X\right) \geq 2$ and quotient $\left.E\right|_{X^{\prime}} \rightarrow F_{X^{\prime}} \rightarrow 0$ over X^{\prime} with $\operatorname{det}\left(F_{X^{\prime}}\right)=\mathcal{L}$.

Proof. Fix $a \in N$ and $\left[D^{\prime}\right] \in W_{a}$. Then we have the quotient $\left.\left.E\right|_{D^{\prime}} \rightarrow G_{a}\right|_{D^{\prime}}$. Let $U^{\prime} \subset D^{\prime}$ be the largest open set over which $\left.E\right|_{D^{\prime}}$ and $\left.G_{a}\right|_{D^{\prime}}$ are locally free. Since both are assumed to be torsion-free and D^{\prime} is smooth, we have $\operatorname{codim}\left(D^{\prime} \backslash U^{\prime}, D^{\prime}\right) \geq 2$. We have a surjection over U^{\prime} :

$$
\begin{equation*}
\left.\left.E\right|_{U^{\prime}} \longrightarrow G_{a}\right|_{U^{\prime}} \longrightarrow 0 \tag{3.11}
\end{equation*}
$$

We will show that there is an $a \gg 0$ in N such that the quotient 3.11 extends to a quotient $\left.E\right|_{X^{\prime}} \rightarrow F_{X^{\prime}}$ of locally free sheaves over a large open set $U^{\prime} \subset X^{\prime} \subset X$ and $\operatorname{det}\left(F_{X^{\prime}}\right)=\mathcal{L}$.

Note that a quotient as in 3.11 induces a morphism

$$
U^{\prime} \longrightarrow \operatorname{Gr}\left(E_{U^{\prime}}, r\right) .
$$

Consider the composite of the above with the Plucker embedding $U^{\prime} \rightarrow$ $\operatorname{Gr}\left(E_{U^{\prime}}, r\right) \rightarrow \mathbb{P}\left(\bigwedge^{r} E_{U^{\prime}}\right)$. By definition it is defined by taking r-th exterior power of 3.11:

$$
\bigwedge^{r}\left(\left.E\right|_{U^{\prime}}\right) \longrightarrow \bigwedge^{r}\left(\left.G_{a}\right|_{U^{\prime}}\right)=\left.\operatorname{det}\left(G_{a}\right)\right|_{U^{\prime}}=\left.\mathcal{L}\right|_{U^{\prime}}
$$

Since D^{\prime} is smooth, $\operatorname{codim}\left(D^{\prime} \backslash U^{\prime}, D^{\prime}\right) \geq 2$ and $\left.\mathcal{L}\right|_{D^{\prime}}$ is locally free, this extends to a homomorphism $\sigma_{D^{\prime}}:\left.\bigwedge^{r}\left(\left.E\right|_{D^{\prime}}\right) \rightarrow \mathcal{L}\right|_{D^{\prime}}$. This is clear if $\left.E\right|_{D^{\prime}}$ is locally free. If not, then we may take a resolution of the type $\mathcal{O}_{D^{\prime}}(-\beta)^{\oplus s} \rightarrow$ $\mathcal{O}_{D^{\prime}}(-\alpha)^{\oplus t} \rightarrow \mathcal{F} \rightarrow 0$, and use the commutative diagram

Consider the exact sequence

$$
\left.0 \rightarrow \mathcal{L}(-a) \rightarrow \mathcal{L} \rightarrow \mathcal{L}\right|_{D^{\prime}} \rightarrow 0
$$

Applying $\operatorname{Hom}\left(\bigwedge^{r} E\right.$, $)$ we get:

$$
\begin{aligned}
0 \rightarrow \operatorname{Hom}\left(\bigwedge^{r} E, \mathcal{L}(-a)\right) \rightarrow \operatorname{Hom}\left(\bigwedge^{r} E, \mathcal{L}\right) & \rightarrow \operatorname{Hom}\left(\bigwedge^{r} E, \mathcal{L}_{D^{\prime}}\right) \\
& \rightarrow \operatorname{Ext}^{1}\left(\bigwedge^{r} E, \mathcal{L}(-a)\right) .
\end{aligned}
$$

Now

$$
\begin{aligned}
\operatorname{Ext}^{1}\left(\bigwedge^{r} E, \mathcal{L}(-a)\right) & =H^{n-1}\left(X, \bigwedge^{r} E \otimes \omega_{X} \otimes \mathcal{L}(a)\right)^{\vee} \\
& =0 \quad \text { for } \quad a \gg 0
\end{aligned}
$$

Hence we get that $\sigma_{D^{\prime}}$ extends to $\sigma: \bigwedge^{r} E \rightarrow \mathcal{L}$.
Define $X^{\prime} \subset X$ as the open set where E is locally free and σ is a surjection. Since X is smooth, E is torsion free, it follows that if $E_{D^{\prime}}$ is locally free at a point $z \in D^{\prime}$, then E is locally free at $z \in X$. This shows $U^{\prime} \subset X^{\prime}$. The restriction $\sigma_{X^{\prime}}:=\left.\sigma\right|_{X^{\prime}}$ defines a map $X^{\prime} \rightarrow \mathbb{P}\left(\bigwedge^{r} E_{X^{\prime}}\right)$ which extends the $\operatorname{map} U^{\prime} \rightarrow \mathbb{P}\left(\bigwedge^{r} E_{U^{\prime}}\right)$.

Next we show that $\operatorname{codim}\left(X \backslash X^{\prime}, X\right) \geq 2$. If not, let $Z^{\prime} \subset X \backslash X^{\prime}$ be a divisor. Clearly, since D^{\prime} is ample, the intersection $D^{\prime} \cap Z^{\prime}$ is a divisor in D^{\prime}. Moreover, $\bigwedge^{r} E \rightarrow \mathcal{L}$ is not surjective on $D^{\prime} \cap Z^{\prime}$. But this will imply that $\operatorname{codim}\left(D^{\prime} \backslash U^{\prime}, D^{\prime}\right)=1$, which is a contradiction.

Moreover, replacing X^{\prime} by the open set $X^{\prime} \backslash\left(D^{\prime} \backslash U^{\prime}\right)$ we can assume that $X^{\prime} \cap D^{\prime}=U^{\prime}$. Since $D^{\prime} \backslash U^{\prime}$ has codimension ≥ 2 in D^{\prime}, the complement of this modified X^{\prime} again has codimension ≥ 2 in X.

Next we want to show that for $a \gg 0$ the morphism $X^{\prime} \rightarrow \mathbb{P}\left(\bigwedge^{r} E_{X^{\prime}}\right)$ factors as $X^{\prime} \rightarrow \operatorname{Gr}\left(E_{X^{\prime}}, r\right) \hookrightarrow \mathbb{P}\left(\bigwedge^{r} E_{X^{\prime}}\right)$, that is, that we have a commutative diagram

Recall that $\mathbb{P}\left(\bigwedge^{r} E_{X^{\prime}}\right)$ is the relative Proj associated to the graded sheaf of $\mathcal{O}_{X^{\prime}}$-algebra $S^{\bullet}\left(\bigwedge^{r} E_{X^{\prime}}\right)$. Let $\mathcal{I} \subset S^{\bullet}\left(\bigwedge^{r} E_{X^{\prime}}\right)$ be the graded sheaf of ideals associated to the closed subscheme $\operatorname{Gr}\left(E_{X^{\prime}}, r\right) \hookrightarrow \mathbb{P}\left(\bigwedge^{r} E_{X^{\prime}}\right)$. Since \mathcal{I} is finitely generated and graded, we can assume that $\mathcal{I}_{\nu}:=\mathcal{I} \cap S^{\nu}\left(\bigwedge^{r} E_{X^{\prime}}\right)$, for $\nu \leq \nu_{0}$, generate \mathcal{I} as an $S^{\bullet}\left(\bigwedge^{r} E_{X^{\prime}}\right)$-module.

The map $\sigma_{X^{\prime}}$ is induced by the following homomorphism of $\mathcal{O}_{X^{\prime}}$-algebras.

$$
\begin{equation*}
S^{\bullet}\left(\left.\bigwedge^{r} E\right|_{X^{\prime}}\right)=\left.\bigoplus_{\nu \geq 0} S^{\nu}\left(\left.\bigwedge^{r} E\right|_{X^{\prime}}\right) \xrightarrow{\oplus_{\nu} \psi_{\nu}} \bigoplus_{\nu \geq 0} \mathcal{L}^{\nu}\right|_{X^{\prime}} \tag{3.12}
\end{equation*}
$$

Thus, $\sigma_{X^{\prime}}: X^{\prime} \rightarrow \mathbb{P}\left(\bigwedge^{r} E_{X^{\prime}}\right)$ may be written as

Thus, $\sigma_{X^{\prime}}$ factors through $\operatorname{Gr}\left(E_{X^{\prime}}, r\right)$ iff the image of $\left.\mathcal{I}\right|_{X^{\prime}}$ under the homomorphism 3.12 is zero. Since $\left.\mathcal{I}\right|_{X^{\prime}}$ is generated by $\left.\mathcal{I}_{\nu}\right|_{X^{\prime}}$ for $\nu \leq \nu_{0}$, it is enough to show that the maps $\psi_{\nu}:\left.\left.\mathcal{I}_{\nu}\right|_{X^{\prime}} \rightarrow \mathcal{L}^{\nu}\right|_{X^{\prime}}$ are zero for $\nu \leq \nu_{0}$. Since U^{\prime} already factors through $\operatorname{Gr}\left(E_{U^{\prime}}, r\right)$, we have $\left.\psi_{\nu}\right|_{U^{\prime}}=0$. Now consider the exact sequence over X :

$$
\left.0 \rightarrow \mathcal{L}^{\nu}(-a) \rightarrow \mathcal{L}^{\nu} \rightarrow \mathcal{L}^{\nu}\right|_{D^{\prime}} \rightarrow 0
$$

Restricting this exact sequence to X^{\prime} and using the fact that $U^{\prime}=X^{\prime} \cap D^{\prime}$ we have an exact sequence over X^{\prime} :

$$
\left.\left.\left.0 \rightarrow \mathcal{L}^{\nu}(-a)\right|_{X^{\prime}} \rightarrow \mathcal{L}^{\nu}\right|_{X^{\prime}} \rightarrow \mathcal{L}^{\nu}\right|_{U^{\prime}} \rightarrow 0
$$

Applying $\operatorname{Hom}\left(\left.\mathcal{I}_{\nu}\right|_{X^{\prime}},\right)$ we get the left exact sequence

$$
0 \rightarrow \operatorname{Hom}\left(\left.\mathcal{I}_{\nu}\right|_{X^{\prime}},\left.\mathcal{L}^{\nu}(-a)\right|_{X^{\prime}}\right) \rightarrow \operatorname{Hom}\left(\left.\mathcal{I}_{\nu}\right|_{X^{\prime}},\left.\mathcal{L}^{\nu}\right|_{X^{\prime}}\right) \rightarrow \operatorname{Hom}\left(\left.\mathcal{I}_{\nu}\right|_{X^{\prime}},\left.\mathcal{L}^{\nu}\right|_{U^{\prime}}\right)
$$

since $\left.\psi_{\nu}\right|_{U^{\prime}}$ is zero, we get $\psi \in \operatorname{Hom}\left(\left.\mathcal{I}_{\nu}\right|_{X^{\prime}},\left.\mathcal{L}^{\nu}(-a)\right|_{X^{\prime}}\right)$. Taking a surjection of the type $\left.\mathcal{O}_{X^{\prime}}(-t)^{\oplus s} \rightarrow \mathcal{I}_{\nu}\right|_{X^{\prime}}$, we easily see that, $\operatorname{Hom}\left(\left.\mathcal{I}_{\nu}\right|_{X^{\prime}},\left.\mathcal{L}^{\nu}(-a)\right|_{X^{\prime}}\right)=$ 0 for $a \gg 0$.

Therefore, by choosing $a \gg 0$ in N, we see that the morphism $X^{\prime} \rightarrow$ $\mathbb{P}\left(\bigwedge^{r} E_{X^{\prime}}\right)$ factors through a morphism $X^{\prime} \rightarrow \operatorname{Gr}\left(E_{X^{\prime}}, r\right)$. In other words, we have a quotient of locally free sheaves

$$
\left.E\right|_{X^{\prime}} \rightarrow F_{X^{\prime}} \rightarrow 0
$$

such that its r-th exterior power is the morphism $\left.\left.\bigwedge^{r} E\right|_{X^{\prime}} \rightarrow \mathcal{L}\right|_{X^{\prime}} \rightarrow 0$
Proof of Theorem 3.1. Choose $a_{0} \gg 0$ as in Lemma 3.7. We claim that the restriction of E to a general hypersurface D^{\prime} of degree $\geq a_{0}$ is μ-semistable. Assume that this is not the case. Then the slope

$$
\mu(a)=\mu\left(\left.F_{a}\right|_{D^{\prime}}\right)<\mu\left(\left.E\right|_{D^{\prime}}\right) .
$$

Taking $N=\mathbb{N}_{\geq a_{0}}, W_{a}=U_{a}, G_{a}=F_{a}$ and $\mathcal{L}=\mathcal{L}_{a}$ in Lemma 3.10, we get a locally free quotient $E_{X^{\prime}} \rightarrow F_{X^{\prime}} \rightarrow 0$ where $X^{\prime} \subset X$ is an open set such that $\operatorname{codim}_{X}\left(X \backslash X^{\prime}\right) \geq 2, \operatorname{det}\left(F_{X^{\prime}}\right)=\mathcal{L}$ and $\operatorname{rk}\left(F_{X^{\prime}}\right)=r$. Since E is μ-semistable we get that (see equation (3.9))

$$
\mu(E) \leq \mu\left(F_{X^{\prime}}\right)=\frac{\operatorname{deg}(\mathcal{L})}{r}=\frac{\mu(a)}{a} .
$$

Hence $\mu(a) \geq a . \mu(E)=\mu\left(\left.E\right|_{D^{\prime}}\right)$ for $\left[D^{\prime}\right] \in U_{a}$. This gives

$$
\mu(a)<\mu\left(\left.E\right|_{D^{\prime}}\right) \leq \mu(a),
$$

a contradiction.

4. Fields of definitions

Lemma 4.1. Let $k \subset K$ be a Galois extension and let $G=\operatorname{Gal}(K / k)$. Let V be a K-vector space and let $W_{K} \subset V \otimes K$ be a subspace which is invariant under G. Then there is a subspace $W \subset V$ such that $W_{K}=W \otimes K$.

Proof. The inclusion $W_{K} \subset V \otimes K$ is a G-equivariant map of K vector spaces. Denote the quotient by Q. Then the natural map $V \otimes K \xrightarrow{\pi} Q$ is G-equivariant and a map of K vector spaces. Let e_{i}, for $i \in I$, be a k basis for V. Then the K span of the images $\pi\left(e_{i}\right)$ is equal to Q. Thus, we may find a subset $J \subset I$ such that $\pi\left(e_{j}\right)$, for $j \in J$, is a basis for Q as a K-vector space. Now consider the map

$$
\bigoplus_{j \in J} e_{j} \otimes K \rightarrow Q
$$

This map is G-equivariant and an isomorphism of K-vector spaces. Thus, we have found a subspace $V^{\prime} \subset V$ (the k span of e_{j} for $j \in J$) such that

$$
V \otimes K \cong V^{\prime} \otimes K \bigoplus W_{K}
$$

The isomorphism is G equivariant. Taking G invariants on both sides we get

$$
V \cong V^{\prime} \otimes\left(W_{K}\right)^{G}
$$

Now it follows easily that $\left(W_{K}\right)^{G} \otimes K \rightarrow W_{K}$ is an isomorphism. This completes the proof of the lemma.

Definition 4.2. Let $k \subset E$ be fields. A k-derivation of E is a k-linear map $D: E \rightarrow E$ which satisfies the Leibniz rule, that is, $D(e f)=e D(f)+f D(e)$.

Since $D(1.1)=D(1)+D(1)$ it follows that $D(1)=0$ and so $D(k)=0$. The set of derivations is denoted $\operatorname{Der}_{k}(E)$. It is a Lie algebra under the Lie bracket $\left[D_{1}, D_{2}\right]=D_{1} \circ D_{2}-D_{2} \circ D_{1}$.

Lemma 4.3. Let k be a field of char $p>0$ and let $k \subset E$ be a purely inseparable extension of degree p. If $\beta \in E$ is such that $D(\beta)=0$ for all $D \in \operatorname{Der}_{k}(E)$ then $\beta \in k$.

Proof. Clearly $E=k[T] /\left(T^{p}-\alpha\right)$ for some $\alpha \in k$. It is easily checked that the map defined as

$$
D: k[T] \rightarrow k[T] \quad D\left(T^{i}\right):=i T^{i-1} \quad i>0
$$

and extended k-linearly, descends to E and defines a k-derivation on E. Let $\beta \in E$ be such that $D(\beta)=0$. Let $f(T) \in k[T]$ be a lift of β such that the degree of $f(T)<p$. Since $D(\beta)=0$, it follows that $D(f(T))=\left(T^{p}-\alpha\right) g(T)$. Looking at the degree we see that $D(f(T))=0$. This forces that $f(T)=$ $h\left(T^{p}\right)$, but again looking at the degree we see that $f(T)$ is a constant. Thus, $\beta \in k$.

Lemma 4.4. Let $k \subset K$ be a purely inseparable extension. Let V be a sheaf over X_{k} and let $W_{K} \subset V \otimes K$ be a subsheaf. Assume that $\operatorname{Hom}_{X_{K}}\left(W_{K},\left(V_{K} / W_{K}\right)\right)=$ 0 . Then there is a subsheaf $W \subset V$ such that $W_{K}=W \otimes K$.

Proof. We will first show that for every $D \in \operatorname{Der}_{k}(K)$ we have $D\left(W_{K}\right) \subset$ W_{K}. For this consider the map

$$
\psi: W_{K} \subset V_{K} \xrightarrow{D} V_{K} \rightarrow V_{K} / W_{K} .
$$

This map is K-linear since

$$
\begin{aligned}
\psi(\lambda w) & =D(\lambda w) \quad \bmod W_{K} \\
& =D(\lambda) w+\lambda D(w) \quad \bmod W_{K} \\
& =\lambda D(w) \quad \bmod W_{K} \\
& =\lambda \psi(w)
\end{aligned}
$$

In the above we have used that $D(\lambda) \in K$ and so $D(\lambda) w \in W_{K}$. Since $\operatorname{Hom}_{X_{K}}\left(W_{K},\left(V_{K} / W_{K}\right)\right)=0$ it follows that $D\left(W_{K}\right) \subset W_{K}$. We have a short exact sequence

$$
0 \rightarrow W_{K} \rightarrow V \otimes K \rightarrow Q \rightarrow 0
$$

where Q is a K-vector space and also a $\operatorname{Der}_{k}(K)$-module. Let e_{i}, for $i \in I$, be a k basis for V. Then the K span of the images $\pi\left(e_{i}\right)$ is equal to Q. Thus, we may find a subset $J \subset I$ such that $\pi\left(e_{j}\right)$, for $j \in J$, is a basis for Q as a K-vector space. Now consider the map

$$
\bigoplus_{j \in J} e_{j} \otimes K \rightarrow Q
$$

This is an isomorphism of K-vector spaces such that the diagram

commutes for all $D \in \operatorname{Der}_{k}(K)$. Thus, we have found a subspace $V^{\prime} \subset V$ (the k span of e_{j} for $j \in J$) such that

$$
V \otimes K \cong V^{\prime} \otimes K \bigoplus W_{K}
$$

This isomorphism respects the action of $\operatorname{Der}_{k}(K)$ on both sides. There is a field K_{1} such that $k \subset K_{1} \subset K$ and $\left[K: K_{1}\right]=p$. Let A denote the algebra $\operatorname{Der}_{K_{1}}(K)$. Then $A \subset \operatorname{Der}_{k}(K)$. Taking the elements on both sides which are annihilated by A we get that

$$
V \otimes_{k} K_{1} \cong V^{\prime} \otimes_{k} K_{1} \bigoplus W_{1}
$$

Here we have used the previous Lemma. Clearly, $W_{1} \otimes_{K_{1}} K \rightarrow W_{K}$ is an isomorphism. We have thus descended W_{K} to K_{1}. Since $\operatorname{Hom}_{X_{K}}\left(W_{K},\left(V_{K} / W_{K}\right)\right)=$

0 it follows that $\operatorname{Hom}_{X_{K_{1}}}\left(W_{1},\left(V_{K_{1}} / W_{1}\right)\right)=0$. Proceeding in this fashion we descend W_{K} to $W \subset V$.

5. Socle and extended socle for semistable sheaves

All the results in this section can be found in [HL10, Section 1.5]. However, we mention them to motivate the results in the next section.

Definition 5.1. Let E be a semistable sheaf on X. The socle is defined to be the largest polystable sheaf (defined over X) which is contained in E and has the same reduced Hilbert polynomial as E. We denote the socle by $\operatorname{Soc}(E)$. (See [HL10, Lemma 1.5.5])

Definition 5.2. Let E be a semistable sheaf on X. The extended socle is the largest subsheaf $F \subset E$ with the same reduced Hilbert polynomial as E such that graded pieces appearing in a Jordan Holder filtration of F are the same as the graded pieces appearing in the socle.

Lemma 5.3. The socle and extended socle are invariant under automorphisms of X and E. (See [HL10, Lemma 1.5.9])

Lemma 5.4. The extended socle satisfies $\operatorname{Hom}_{X}(F, E / F)=0$.
Proof. If $F=E$ then there is nothing to prove. Let us assume that there is a non-zero homomorphism $\varphi: F \rightarrow E / F$, and let $W \subset E / F$ denote the image. Let W_{1} denote the preimage of W in E. One easily checks that the reduced Hilbert polynomial of W_{1} is the same as that of E and that W_{1} is semistable. Moreover, $F \varsubsetneqq W_{1}$ and every graded piece of W_{1} in a Jordan Holder filtration is a graded piece appearing in a Jordan Holder filtration of F or in a Jordan Holder filtration of W. But since W is a quotient of F, the graded pieces appearing in a Jordan Holder filtration of W_{1} already appear as graded pieces in the Jordan Holder filtration of F. Thus, $F \varsubsetneqq W_{1}$ is semistable, with the same graded pieces in a Jordan Holder filtration as that of $\operatorname{Soc}(E)$ and has the same reduced Hilbert polynomial as E. This contradicts the maximality of F.

Lemma 5.5. Let E be a stable sheaf on X_{k}. Let $k \subset K$ be an algebraic extension. Then the extended socle of E_{K} is equal to E_{K}.

Proof. Suppose the extended socle is $F_{K} \varsubsetneqq E_{K}$. By Lemma 5.4 we know that $\operatorname{Hom}_{X_{K}}\left(F_{K}, E_{K} / F_{K}\right)=0$. Since the extended socle is invariant under automorphisms of X_{K} and E_{K} it follows that it is invariant under $\operatorname{Gal}(K / k)$. By Lemma 4.1 and Lemma 4.4 it follows that there is a subsheaf $F \varsubsetneqq E$ such that $F_{K}=F \otimes K$. But this contradicts the stability of E since we get a destabilizing sheaf.

Lemma 5.6. If E is simple, semistable and equals its extended socle then E is stable.

Proof. Let $E \rightarrow F$ be a quotient such that F is stable and $0<\operatorname{rk}(F)<$ $\operatorname{rk}(E)$. Since E is its own extended socle, it follows that F appears in $\operatorname{Soc}(E)$. Thus, there is a map $E \rightarrow F \subset E$. Since E is simple, it follows that $E \cong F$, which is a contradiction.

Lemma 5.7. Let E be a semistable and simple sheaf. Then E is stable iff E is geometrically stable.

Proof. Let $k \subset K$ denote the algebraic closure. Assume E_{K} is stable. Then it is clear that E is stable. Conversely, assume that E is stable. Since E_{K} is simple and semistable, by the previous lemma it suffices to show that E_{K} equals its own extended socle. But this has been proved in Lemma 5.5.

6. Socle and extended socle for μ-SEMISTABLE SHEAVES

We need to modify the discussion in the preceding section for the proof of the μ-stable restriction theorem. We briefly discuss this. Most of this section is contained in [HL10, Section 1.6].

Definition 6.1. Let E be a μ-semistable sheaf. A μ-Jordan Holder filtration for E is a filtration $0 \varsubsetneqq E_{1} \varsubsetneqq E_{2} \varsubsetneqq \ldots \varsubsetneqq E_{r}=E$ such that $\mu\left(E_{i+1} / E_{i}\right)=$ $\mu(E)$.

We remark that we do not require that the sheaves E_{i+1} / E_{i} are torsion free. However, it is easily checked that the torsion in E_{i+1} / E_{i} will be in codimension ≥ 2. It is also easily checked that given two Jordan Holder filtrations E_{i} and E_{j}^{\prime}, there is an open subset U with $\operatorname{codim}(X \backslash U, X) \geq 2$, such that when restricted to U, the sheaves $\oplus_{i} E_{i+1} / E_{i}$ and $\oplus_{i} E_{i+1}^{\prime} / E_{i}^{\prime}$ are isomorphic. Let $S:=\{F \mid F \subset E, \mu(F)=\mu(E), F$ is μ-stable $\}$. Let F_{0} be a subsheaf of E, of largest possible rank, such that F_{0} is a direct sum of sheaves in S. Let \tilde{F}_{0} be the saturation of F_{0}, that is, the kernel of the $\operatorname{map} E \rightarrow E / F_{0} \rightarrow\left(E / F_{0}\right) / T\left(E / F_{0}\right)$. One easily checks that if $F \subset E$ is any μ-stable sheaf with $\mu(F)=\mu(E)$, then $F \subset \tilde{F}_{0}$. Thus, we may also characterize \tilde{F}_{0} as the saturation of the sum of all μ-stable subsheaves of E with slope $\mu(E)$. Define the socle of E to be $\operatorname{Soc}(E):=\tilde{F}_{0}$.

It is clear that if K / k is a Galois extension and E_{K} is μ-semistable on X_{K}, then $\operatorname{Soc}\left(E_{K}\right)$ is invariant under $\operatorname{Gal}(K / k)$.

Next we define the extended socle for a μ-semistable sheaf E. Consider the collection of sheaves $F \subset E$ which satisfy the following conditions
(1) $\operatorname{Soc}(E) \subset F$
(2) Let F_{i} be a μ-Jordan Holder filtration for F. Then each F_{i+1} / F_{i} agrees with a graded piece in the μ-Jordan Holder filtration of $\operatorname{Soc}(E)$ on some open subset U such that $\operatorname{codim}(X \backslash U, X) \geq 2$.
Let F be a maximal sheaf in this collection. If F_{1} and F_{2} are two such maximal sheaves, then one easily proves that $\operatorname{Hom}\left(F_{1}, E / F_{2}\right)=0$. This shows that there is a unique maximal sheaf which satisfies these properties. Define this to be the extended socle of E. It is clear that F satisfies
$\operatorname{Hom}(F, E / F)=0$. It is also clear that if K / k is a Galois extension and E_{K} is μ-semistable on X_{K}, then the extended socle is invariant under $\operatorname{Gal}(K / k)$.

Lemma 6.2. Let E be a μ-stable sheaf on X_{k}. Let $k \subset K$ be the algebraic closure. Then the extended socle of E_{K} is equal to E_{K}.

Proof. Suppose the extended socle is $F_{K} \varsubsetneqq E_{K}$. From the above discussion we know that $\operatorname{Hom}_{X_{K}}\left(F_{K}, E_{K} / F_{K}\right)=0$. Let L be the separable closure of k in K. By Lemma 4.4 it follows that there is a subsheaf $F_{L} \varsubsetneqq E_{L}$ such that $F_{K}=F_{L} \otimes_{L} K$.

Tha Galois group $\operatorname{Gal}(L / k)$ acts on E_{L}. Let us check that $g\left(F_{L}\right)=F_{L}$. Note that $g\left(F_{L}\right) \otimes_{L} K=g\left(F_{L} \otimes_{L} K\right)=g\left(F_{K}\right)=F_{K}$. This forces that $g\left(F_{L}\right)=F_{L}$. By Lemma 4.1 it follows that there is a subsheaf $F \varsubsetneqq E$ such that $F_{L}=F \otimes_{k} L$. But this contradicts the stability of E since we get a destabilizing sheaf.

Lemma 6.3. Let X be a normal and integral scheme. If E is reflexive, simple, μ-semistable and equals its extended socle then E is μ-stable.

Proof. Let $E \rightarrow F$ be a quotient such that F is μ-stable and $0<\operatorname{rk}(F)<$ $\operatorname{rk}(E)$. Since E is its own extended socle, it follows that there is a large open subset U such that F_{U} appears in $\operatorname{Soc}(E)_{U}$. Thus, there is a map $E_{U} \rightarrow F_{U} \subset E_{U}$. Since E is reflexive on a normal and integral scheme it satisfies Serre's condition S_{2}. Using [Har77, Chapter III, Ex. 2.3, Ex 3.4] it follows that $\operatorname{Hom}(E, E) \rightarrow \operatorname{Hom}_{U}(E, E)$ is surjective. Since E_{U} is simple, we get a contradiction.

Remark 6.4. Since E is torsion free, it follows that $\mathcal{H o m}(E, E)$ is torsion free. Again applying [Har77, Chapter III, Ex. 2.3, Ex 3.4] we have shown in the above lemma that the sheaf $\mathcal{H o m}(E, E)$ is reflexive if E is reflexive on a normal and integral scheme.

Lemma 6.5. Let X be a normal and integral scheme. Let E be a reflexive, μ-semistable and simple sheaf. Then E is μ-stable iff E is geometrically μ-stable.

Proof. Let $k \subset K$ denote the algebraic closure. Assume E_{K} is μ-stable. Then it is clear that E is μ-stable. Conversely, assume that E is μ-stable. Since E_{K} is reflexive, simple and μ-semistable, by the previous lemma it suffices to show that E_{K} equals its own extended socle. But this has been proved in Lemma 6.2.

7. Openness of certain loci

Lemma 7.1. Let k be a field. Let Y be a projective k-scheme with a fixed very ample line bundle $\mathcal{O}_{Y}(1)$. Let \mathcal{F} be a coherent sheaf on Y such that $\operatorname{Supp}(\mathcal{F})=Y . \operatorname{Let} \operatorname{reg}(\mathcal{F}) \leq \rho$ and $\operatorname{dim} \mathcal{F}=\operatorname{dim} Y=d$. Let V be a vector space of dimension $P(\mathcal{F}, \rho)$ and define $\mathcal{G}:=V \otimes \mathcal{O}_{\mathbb{P}_{k}^{d}}(-\rho)$ on \mathbb{P}_{k}^{d}. Then we
have an inclusion of sets of polynomials

$$
\begin{aligned}
\{P(F) \mid \mathcal{F} \rightarrow F \rightarrow 0, & F \text { is pure, } \widehat{\mu}(P(F)) \leq \lambda\} \subset \\
& \{P(G) \mid \mathcal{G} \rightarrow G \rightarrow 0, G \text { is pure, } \widehat{\mu}(P(G)) \leq \lambda\} .
\end{aligned}
$$

Proof. Let $q: \mathcal{F} \rightarrow F \rightarrow 0$ be a pure quotient on Y. We want to construct a quotient $q^{\prime}: \mathcal{G} \rightarrow G \rightarrow 0$ on \mathbb{P}^{d} such that G is pure and $P(G)=P(F)$. We have the closed immersion $Y \hookrightarrow \mathbb{P}_{k}^{N}$ given by $\mathcal{O}_{Y}(1)$. Choose a linear subspace $L \subset \mathbb{P}_{k}^{N}$ of dimension $N-d-1$ which is disjoint from Y. Then we have the projection $\mathbb{P}_{k}^{N} \backslash L \rightarrow \mathbb{P}_{k}^{d}$. Denote the composition $Y \hookrightarrow \mathbb{P}^{N} \backslash L \rightarrow \mathbb{P}^{d}$ by π. Then π is finite and $\pi^{*} \mathcal{O}_{\mathbb{P}^{d}}(1)=\mathcal{O}_{Y}(1)$. Hence, $\pi_{*} q$ is surjective. Therefore, by projection formula and finiteness of π, we have

$$
P\left(\pi_{*} \mathcal{F}\right)=P(\mathcal{F}), P\left(\pi_{*} F\right)=P(F), \operatorname{reg}\left(\pi_{*} \mathcal{F}\right)=\operatorname{reg}(\mathcal{F}) \leq \rho .
$$

Using this last equality we get a surjection $H^{0}\left(\mathbb{P}^{d}, \pi_{*} \mathcal{F}(\rho)\right) \otimes \mathcal{O}_{\mathbb{P}^{d}}(-\rho) \rightarrow$ $\pi_{*}(\mathcal{F})$. Again using $\operatorname{reg}\left(\pi_{*} \mathcal{F}\right) \leq \rho$ we have $H^{i}\left(\mathbb{P}^{d}, \pi_{*} \mathcal{F}(\rho)\right)=0 \forall i>0$. Hence $H^{0}\left(\mathbb{P}^{d}, \pi_{*} \mathcal{F}(\rho)\right)=P\left(\pi_{*} \mathcal{F}, \rho\right)=P(\mathcal{F}, \rho)$. Therefore, we get a quotient

$$
H^{0}\left(\mathbb{P}^{d}, \pi_{*} \mathcal{F}(\rho)\right) \otimes \mathcal{O}_{\mathbb{P}^{d}}(-\rho) \rightarrow \pi_{*}(\mathcal{F}) \rightarrow \pi_{*} F
$$

It is clear that $\pi_{*} F$ is pure. Since $P\left(\pi_{*} F\right)=P(F)$ it follows that $\widehat{\mu}\left(P\left(\pi_{*} F\right)\right)=$ $\widehat{\mu}(P(F)) \leq \lambda$.

Proposition 7.2. [HL10, Proposition 2.3.1] Let $f: Z \rightarrow S$ be a projective morphism of k-schemes of finite type. Let \mathcal{F} be a coherent sheaf on Z which is flat over S. Further assume that $\operatorname{Supp}(\mathcal{F})=Z$. Then the following subsets of S are open
(1) $U_{\text {sim }}=\left\{s \in S \mid \mathcal{F}_{k(s)}\right.$ is simple on $\left.Z_{k(s)}\right\}$
(2) $U_{\mathrm{pr}}=\left\{s \in S \mid \mathcal{F}_{k(s)}\right.$ is pure on $\left.Z_{k(s)}\right\}$
(3) $U_{\text {st }}=\left\{s \in S \mid \mathcal{F}_{\overline{k(s)}}\right.$ is stable on $\left.Z_{\overline{k(s)}}\right\}$
(4) $U_{\mathrm{ss}}=\left\{s \in S \mid \mathcal{F}_{k(s)}\right.$ is semistable on $\left.Z_{k(s)}\right\}$
(5) $U_{\mu-\mathrm{ss}}=\left\{s \in S \mid \mathcal{F}_{k(s)}\right.$ is μ-semistable on $\left.Z_{k(s)}\right\}$
(6) $U_{\mu-s t}=\left\{s \in S \mid \mathcal{F}_{\overline{k(s)}}\right.$ is μ-stable on $\left.Z_{\overline{k(s)}}\right\}$

Proof. The statement (1) in the proposition is a consequence of semi-continuity for relative Ext sheaves.

Let $Z \hookrightarrow S \times P_{k}^{m}$ be an embedding and consider the pullback of $\mathcal{O}(1)$ to Z. The Hilbert polynomial of $\mathcal{F}_{k(s)}$, with respect to $\mathcal{O}(1)$ is independent of $s \in S$. We denote this Hilbert polynomial by P and the reduced Hilbert polynomial by p. Recall that we defined $\alpha_{i}(P)$ as the coefficient of $\frac{t^{i}}{i!}$ in P i.e. $P(t)=\sum \alpha_{i}(P) \frac{t^{i}}{i!}$. If $P(t)$ is a degree d polynomial, then $\widehat{\mu}(P):=\frac{\alpha_{d-1}(P)}{\alpha_{d}(P)}$.

Define A to be the set of polynomials $P\left(F^{\prime}, t\right)$, where F^{\prime} is a sheaf satisfying the following three conditions
(a) There is a point $s \in S$ such that $\mathcal{F}_{\overline{k(s)}} \rightarrow F^{\prime}$ is a quotient on $Z_{\overline{k(s)}}$
(b) F^{\prime} is pure of dimension $d=\operatorname{dim}\left(Z_{\overline{k(s)}}\right)$
(c) $\widehat{\mu}\left(P\left(F^{\prime}\right)\right) \leq \widehat{\mu}(P)$

We will first show that A is finite. Since the set $\left\{\mathcal{F}_{k(s)} \mid s \in S\right\}$ is bounded, by [HL10, Lemma 1.7.6] there is ρ such that $\operatorname{reg}\left(\mathcal{F}_{k(s)}\right) \leq \rho$. This shows that for every $s \in S$, the regularity of the sheaf $\mathcal{F}_{\overline{k(s)}}$ on $Z_{\overline{k(s)}}$ is $\leq \rho$. It is clear that $\operatorname{Supp}\left(\mathcal{F}_{\overline{k(s)}}\right)=Z_{\overline{k(s)}}$. Hence by Lemma 7.1 we have

$$
\begin{aligned}
\left\{P\left(F^{\prime}\right) \mid \mathcal{F}_{\overline{k(s)}}\right. & \left.\rightarrow F^{\prime} \rightarrow 0, F^{\prime} \text { is pure on } Z_{\overline{k(s)}}, \widehat{\mu}\left(P\left(F^{\prime}\right)\right) \leq \lambda\right\} \subset \\
& \left\{P(G) \mid \mathcal{G}_{\overline{k(s)}} \rightarrow G \rightarrow 0, G \text { is pure on } \mathbb{P}_{\overline{k(s)}}, \widehat{\mu}(P(G)) \leq \lambda\right\} .
\end{aligned}
$$

But every polynomial in the latter set already occurs in the set

$$
\left\{P(G) \mid \mathcal{G}_{\bar{k}} \rightarrow G \rightarrow 0, G \text { is pure over } \mathbb{P}_{\bar{k}}^{d}, \widehat{\mu}(P(G)) \leq \lambda\right\}
$$

since every $\overline{k(s)}$ point of a Quot scheme factors through a \bar{k} point. Thus, A is contained in the set

$$
\left\{P(G) \mid \mathcal{G}_{\bar{k}} \rightarrow G \rightarrow 0, G \text { is pure on } \mathbb{P}_{\bar{k}}^{d}, \widehat{\mu}(P(G)) \leq \widehat{\mu}(P)\right\} .
$$

By [HL10, Lemma 1.7.9] we have that A is finite.
To prove (2)-(6) we will consider each of the following sets:
(2) $A_{2}:=\left\{P^{\prime} \in A \mid \alpha_{d}\left(P^{\prime}\right)=\alpha_{d}(P)\right.$ and $\left.P \neq P^{\prime}\right\}$
(3) $A_{3}:=\left\{P^{\prime} \in A \mid p^{\prime} \leq p\right.$ and $\left.\alpha_{d}\left(P^{\prime}\right)<\alpha_{d}(P)\right\}$
(4) $A_{4}:=\left\{P^{\prime} \in A \mid p^{\prime}<p\right.$ and $\left.\alpha_{d}\left(P^{\prime}\right)<\alpha_{d}(P)\right\}$
(5) $A_{5}:=\left\{P^{\prime} \in A \mid \widehat{\mu}\left(P^{\prime}\right)<\widehat{\mu}(P)\right.$ and $\left.\alpha_{d}\left(P^{\prime}\right)<\alpha_{d}(P)\right\}$
(6) $A_{6}:=\left\{P^{\prime} \in A \mid \widehat{\mu}\left(P^{\prime}\right) \leq \widehat{\mu}(P)\right.$ and $\left.\alpha_{d}\left(P^{\prime}\right)<\alpha_{d}(P)\right\}$

Each of the above is a finite set since A is finite. For each $2 \leq i \leq 6$ we consider the morphism

$$
\mathrm{Q}_{i}:=\bigsqcup_{P^{\prime} \in A_{i}} \operatorname{Quot}_{Z / S}\left(\mathcal{F}, P^{\prime}\right) \rightarrow S
$$

Let S_{i} be the image of this morphism. It is closed since the above morphism is projective. We claim that $S \backslash\left(S_{i} \cup S_{2}\right)$ is precisely the set in U in assertion (i) in the statement of the proposition. Here we only prove (2), (5) and (6).

Proof of (2). Let $s \in S \backslash U_{2}$, that is, $T\left(\mathcal{F}_{k(s)}\right) \neq 0$. Therefore, we have the quotient $\mathcal{F}_{k(s)} \rightarrow \mathcal{F}_{k(s)} / T\left(\mathcal{F}_{k(s)}\right)=: F^{\prime}$ such that F^{\prime} is pure, $\widehat{\mu}\left(P\left(F^{\prime}\right)\right) \leq \widehat{\mu}(P)$ and $\alpha_{d}(F)=\alpha_{d}\left(F^{\prime}\right)$. Thus, $P\left(F^{\prime}\right) \in A_{2}$ and we get a $k(s)$ point of Q_{2} whose image is in S_{2}. This shows that $S \backslash U_{\mathrm{pr}} \subset S_{2}$.

Conversely, start with $s \in S_{2}$. This means that there is a $\overline{k(s)}$ point of Q_{2} which maps to the given $\overline{k(s)}$ point of S_{2}. This implies that there is a quotient $\mathcal{F}_{\overline{k(s)}} \rightarrow F^{\prime}$ on $Z_{\overline{k(s)}}$ with $\operatorname{deg} P\left(F^{\prime}\right)=d, \alpha_{d}\left(P\left(F^{\prime}\right)\right)=\alpha_{d}(P)$ and $P\left(F^{\prime}\right) \neq P$. Thus, the kernel of $\mathcal{F}_{\overline{k(s)}} \rightarrow F^{\prime}$ is a non-trivial sheaf of dimension $\leq d-1$. Therefore, $\mathcal{F}_{\overline{k(s)}}$ is not pure and so $\mathcal{F}_{k(s)}$ is not pure. This shows that $S_{2} \subset S \backslash U_{\text {pr }}$.

Proof of (5). Let $s \in S \backslash U_{\mu \text {-ss }}$, that is, $\mathcal{F}_{k(s)}$ is not μ-semistable. By definition we can have two situations:
(a) $\mathcal{F}_{k(s)}$ is not pure
(b) $\mathcal{F}_{k(s)}$ is pure and \exists a quotient F^{\prime} of over $Z_{k(s)}$ such that F^{\prime} is pure of dimension $d, \alpha_{d}\left(P\left(F^{\prime}\right)\right)<\alpha_{d}(P)$ and $\widehat{\mu}\left(P\left(F^{\prime}\right)\right)<\widehat{\mu}(P)$.
By (2), (a) implies that $s \in S_{2}$ and (b) implies $P\left(F^{\prime}\right) \in A_{5}$, giving a $k(s)$ point of Q_{5}, which in turn implies $s \in S_{5}$. This proves that $S \backslash U_{\mu-\mathrm{ss}} \subset$ $S_{2} \cup S_{5}$.

Now suppose $s \in S_{2} \cup S_{5}$. If $s \in S_{2}$, then by (2) $\mathcal{F}_{k(s)}$ is not pure and hence not μ-semistable. So assume $s \in S_{5} \backslash S_{2}$. By (2) we have that $\mathcal{F}_{k(s)}$ is pure. There \exists a quotient $\mathcal{F}_{\overline{k(s)}} \rightarrow F^{\prime}$ over $Z_{\overline{k(s)}}$ with $\operatorname{deg} P\left(F^{\prime}\right)=d$ and $\widehat{\mu}\left(P\left(F^{\prime}\right)\right)<\widehat{\mu}(P)$. Therefore we get that $\mathcal{F}_{\overline{k(s)}}$ is not μ-semistable. Because of the existence and uniqueness of Harder-Narasimhan filtration, we have that $\mathcal{F}_{k(s)}$ is not μ-semistable. This shows that $S_{2} \cup S_{5} \subset S \backslash U_{\mu \text {-ss }}$.

Proof of (6). Let $s \in S \backslash U_{\mu-\text { st }}$, that is, $\mathcal{F}_{\overline{k(s)}}$ is not μ-stable. Again we have two cases:
(a) $\mathcal{F}_{\overline{k(s)}}$ is not pure, which implies $\mathcal{F}_{k(s)}$ is not pure
(b) $\mathcal{F}_{k(s)}$ is pure. \exists a pure quotient $\mathcal{F}_{\overline{k(s)}} \rightarrow F^{\prime}$ over $Z_{\overline{k(s)}}$ such that $\widehat{\mu}\left(P\left(F^{\prime}\right)\right) \leq \widehat{\mu}(P)$ and $0<\alpha_{d}\left(P\left(F^{\prime}\right)\right)<\alpha_{d}(P)$.
In case (a) $s \in S_{2}$ and in case (b) $s \in S_{6}$. This proves that $S \backslash U_{\mu-\text { st }} \subset S_{2} \cup S_{6}$. Now suppose $s \in S_{2} \cup S_{6}$. If $s \in S_{2}$ then $\mathcal{F}_{k(s)}$ is not pure and hence $\mathcal{F}_{\overline{k(s)}}$ is not pure and so not μ-stable. Let $s \in S_{6} \backslash S_{2}$. Then \exists a quotient $\mathcal{F}_{\overline{k(s)}} \rightarrow F^{\prime}$ over $Z_{\overline{k(s)}}$ with $\operatorname{deg} P\left(F^{\prime}\right)=d, \alpha_{d}\left(P\left(F^{\prime}\right)\right)<\alpha_{d}(P)$ and $\widehat{\mu}\left(P\left(F^{\prime}\right)\right) \leq \widehat{\mu}(P)$. Therefore, $\mathcal{F}_{\overline{k(s)}}$ is not μ-stable. This proves that $S_{2} \cup S_{6} \subset S \backslash U_{\mu \text {-st }}$.

The other cases are dealt with similarly. The proposition is proved since the set $S_{i} \cup S_{2}$ is closed.

8. Stable Restriction Theorem

In this section we will prove the μ-stable restriction theorem [MR84, Theorem 4.3].

Theorem 8.1. Let X be a smooth projective variety of dimension $n \geq 2$ over an algebraically closed field k. Let $\mathcal{O}_{X}(1)$ be a very ample line bundle on X. Let E be a μ-stable sheaf on X. Then there is an integer a_{0} such that for all $a \geq a_{0}$ there is a non-empty open set $U_{a} \subset \Pi_{a}$ such that for all $[D] \in U_{a}$ the divisor D is smooth and $\left.E\right|_{D}$ is μ-stable with respect to $\left.\mathcal{O}_{X}(1)\right|_{D}$.

We will prove this theorem by contradiction, that is, we will assume that there are infinitely many a for which $\left.E\right|_{D}$ is not μ-stable a general $D \in \Pi_{a}$. From this we will construct a set $N \subset \mathbb{N}$ with the following properties. For
each $a \in N$, we have a non-empty open set $W_{a} \subset \mathbb{P}\left(H^{0}\left(X, \mathcal{O}_{X}(a)\right)^{\vee}\right)$ such that
(1) each $[D] \in W_{a}$ is smooth and integral.
(2) For $D \in W_{a},\left.E\right|_{D}$ is μ-semistable.

Over $Z_{W_{a}}$ we have a quotient $q^{*} E \rightarrow H_{a} \rightarrow 0$ such that
(1) H_{a} is W_{a}-flat.
(2) For $D \in W_{a},\left.H_{a}\right|_{D}$ is torsion-free and $\mu\left(\left.H_{a}\right|_{D}\right)=\mu\left(\left.E\right|_{D}\right)$.
(3) We have an integer $0<r<\mathrm{rk} E$ such that rk $H_{a}=r \forall a \in N$.
(4) There exists $\mathcal{L} \in \operatorname{Pic} X$ such that $\forall a \in N$, $\left.\left.\operatorname{det}\left(H_{a}\right)\right|_{D} \cong \mathcal{L}\right|_{D}$.

Then we will apply Lemma 3.10 to get a contradiction.
Lemma 8.2. Let F be a reflexive sheaf on a smooth projective variety X over an algebraically closed field. Then $H^{1}(X, F(-a))=0$ for $a \gg 0$.

Proof. For a reflexive sheaf there is a short exact $0 \rightarrow F \rightarrow F_{0} \rightarrow G \rightarrow$ 0 where F_{0} is a direct sum of line bundles $\mathcal{O}_{X}(b)$. The Lemma follows from the long exact cohomology sequence and Serre duality $\left(\operatorname{Ext}^{i}(A, B)=\right.$ $\left.\operatorname{Ext}^{n-i}\left(B, A \otimes \omega_{X}\right)^{\vee}\right)$.

Lemma 8.3. Let E be reflexive. There is an a_{0} depending on E such that the following happens. If $a \geq a_{0}$ is such that $\left.E\right|_{D}$ is not μ-stable for a general $D \in \Pi_{a}$, then we have a non-empty open set $W_{a} \subset \mathbb{P}\left(H^{0}\left(X, \mathcal{O}_{X}(a)\right)^{\vee}\right)$ such that
(1) each $[D] \in W_{a}$ is smooth and integral.
(2) For $D \in W_{a},\left.E\right|_{D}$ is μ-semistable.
and over $Z_{W_{a}}$ we have a quotient $q^{*} E \rightarrow H_{a} \rightarrow 0$ such that
(1) H_{a} is W_{a}-flat.
(2) For $D \in W_{a},\left.H_{a}\right|_{D}$ is torsion-free and $\mu\left(\left.H_{a}\right|_{D}\right)=\mu\left(\left.E\right|_{D}\right)$.

Proof. Tensoring the following short exact sequence (defined by a general section of $\left|\mathcal{O}_{X}(a)\right|$ and using Lemma [HL10, Lemma 1.1.12]) with $\mathcal{H o m}(E, E)$

$$
0 \rightarrow \mathcal{O}_{X}(-a) \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{D} \rightarrow 0
$$

taking cohomology and applying Remark 6.4, Lemma 8.2, we see that there is $a_{0} \gg 0$ (and larger than the one appearing in Theorem 3.1) such that for $a \geq a_{0}$ we have $\operatorname{End}(E) \rightarrow \operatorname{End}\left(\left.E\right|_{D}\right)$ is an isomorphism. Thus, the sheaf $\left.E\right|_{D}$ is simple.

Now consider the family $Z_{a} \rightarrow \Pi_{a}$ and recall that $q^{*} E$ is flat over Π_{a}. By Theorem 3.1 we know that if $[D] \in U_{a}$ then $\left.E\right|_{D}$ is μ-semistable. From Proposition 7.2 it follows that over the generic point $\eta \in \Pi_{a}, q^{*} E_{k(\eta)}$ is simple and μ-semistable.

By [HL10, Corollary 1.1.14 (ii)] $\left.E\right|_{D}$ is reflexive for general [D]. It follows from [Gro64, Theorem 12.2.1(v)] and the criterion that on a normal and integral scheme reflexive is equivalent to S_{2}, that the set

$$
U_{\text {ref }}=\left\{s \in S \mid q^{*} E_{k(s)} \text { is reflexive on } Z_{k(s)}\right\}
$$

is open in S. Thus, $q^{*} E_{k(\eta)}$ is also reflexive.
Let us assume that $\left.E\right|_{D}$ is not μ-stable for general $[D] \in \Pi_{a}$. This is equivalent to saying that the set $U_{\mu-s t}$ in Proposition 7.2 is empty, that is, $q^{*} E_{k(\eta)} \otimes \overline{k(\eta)}$ is not μ-stable. Since $q^{*} E_{k(\eta)}$ is reflexive, simple and μ semistable it follows, using Lemma 6.5, that $q^{*} E_{k(\eta)}$ is not μ-stable. Take quotient by the extended socle and extend it to a quotient $q^{*} E \rightarrow H_{a} \rightarrow 0$ [Har77, Chapter II, Exc. 5.15(d)] on Z_{a}. Going modulo torsion we may assume that H_{a} is torsion free on Z_{a}. Using generic flatness and Proposition 7.2, we get that $\exists W_{a} \subset \Pi_{a}$ over which H_{a} has the required properties.

Taking determinant of H_{a}, as described in the para preceding Lemma 3.3, we get a line bundle $\mathcal{L}_{a} \in \operatorname{Pic} X$.

Lemma 8.4. Let E be reflexive and let a_{0} be as in Lemma 8.3. Let D_{1} be a general hypersurface of degree $a_{1} \geq a_{0}$ such that $\left.E\right|_{D_{1}}$ is μ-stable. Then for every $a \geq 2 a_{1}$ and general D of degree a, we have that $\left.E\right|_{D}$ is μ-stable.

Proof. Suppose $a \geq 2 a_{1}$ be such that $\left.E\right|_{D^{\prime}}$ is not μ-stable for a general $\left[D^{\prime}\right] \in \Pi_{a}$. By Lemma 8.3, we have a flat quotient $\left.q^{*} E\right|_{W_{a}} \rightarrow H_{a} \rightarrow 0$. Fix $D_{1} \in \Pi_{a_{1}}$ and $D_{2} \in \Pi_{a-a_{1}}$ be such that $\left.E\right|_{D_{i}}$ is μ-semistable and $D:=D_{1}+D_{2}$ is a SNC divisor. Let $C \subset \Pi_{a}$ such that $[D] \in C$ and $C \backslash[D] \subset W_{a}$ be as in Lemma 2.7. Restrict $\left.q^{*} E\right|_{W_{a}} \rightarrow H_{a} \rightarrow 0$ to $Z_{C \backslash[D]}$ and by Lemma 2.11, this extends to a C-flat quotient H_{C} over Z_{C}. Define $H:=\left.H_{C}\right|_{D}$ and $\bar{H}:=H / T(H)$. By Lemma 2.12, we get

$$
\mu\left(\left.E\right|_{D^{\prime}}\right)=\mu(H) \geq \mu\left(\bar{H}_{D_{1}} / T\left(\bar{H}_{D_{1}}\right)\right)+\mu\left(\bar{H}_{D_{2}} / T\left(\bar{H}_{D_{2}}\right)\right)
$$

Since $\left.E\right|_{D_{1}}$ and $\left.E\right|_{D_{2}}$ are μ-semistable, we have

$$
\mu\left(\bar{H}_{D_{i}} / T\left(\bar{H}_{D_{1}}\right)\right) \geq \mu\left(\left.E\right|_{D_{i}}\right)
$$

Now since $\mu\left(\left.E\right|_{D}\right)=\mu\left(\left.E\right|_{D_{1}}\right)+\mu\left(\left.E\right|_{D_{2}}\right)$ (recall from equation (3.6)), we get that

$$
\mu\left(\bar{H}_{D_{i}} / T\left(\bar{H}_{D_{i}}\right)\right)=\mu\left(\left.E\right|_{D_{i}}\right)
$$

Also by Lemma 2.12, we know that the rank of $\bar{H}_{D_{i}} / T\left(\bar{H}_{D_{i}}\right)$ is equal to $\operatorname{rk}\left(H_{a}\right)<\operatorname{rk}(E)$. Hence this contradicts the assumption that $\left.E\right|_{D_{1}}$ is μ stable.

We continue our discussion with the additional assumption that E is reflexive. This assumption will be removed in the end. Let us now assume that there is no a_{0} such that for general hypersurface D of degree $a \geq a_{0}$, the restriction $\left.E\right|_{D}$ is μ-stable. In view of the previous Lemma, this means that for every $a \geq a_{0}$, the restriction $\left.E\right|_{D}$ is not μ-stable. Thus, we get a quotient H_{a} and a line bundle $\mathcal{L}_{a} \in \operatorname{Pic} X$. Let $a \geq 2 a_{0}$. We want to understand what happens when we restrict \mathcal{L}_{a} to the general hypersurface D_{0} of degree a_{0}.

Lemma 8.5. The restriction of \mathcal{L}_{a} to D_{0} is the determinant of a destabilizing quotient of $\left.E\right|_{D_{0}}$.

Proof. For this we proceed with the construction of the sheaf $\tilde{\mathcal{A}}$ on Z_{C} as done in the proof of Lemma 3.7. Note that equation (3.8) holds. Now $\bar{H}_{D_{i}} / T\left(\bar{H}_{D_{i}}\right)$ is a quotient of $\left.E\right|_{D_{i}}$ with

$$
\mu\left(\bar{H}_{D_{i}} / T\left(\bar{H}_{D_{i}}\right)\right)=\mu\left(\left.E\right|_{D_{i}}\right)=a_{i} \mu(E) .
$$

Thus, we get that $\left.\tilde{\mathcal{A}}\right|_{D_{i} \backslash D_{s}}$ is the determinant of a destabilizing quotient of $\left.E\right|_{D_{i}}$.

It is clear that for a point $\left[D^{\prime}\right] \in C \backslash[D]$

$$
\left.\left.\tilde{\mathcal{A}}\right|_{D^{\prime}} \cong \mathcal{L}_{a}\right|_{D^{\prime}}
$$

Let $p: Z_{C} \rightarrow C$. Consider $p_{*}\left(\mathcal{L}_{a}^{\vee} \otimes \tilde{\mathcal{A}}\right)$. Since $h^{0}\left(D^{\prime},\left.\mathcal{L}_{a}^{\vee} \otimes \tilde{\mathcal{A}}\right|_{D^{\prime}}\right)=1$, it follows by semi-continuity that $h^{0}\left(D,\left.\mathcal{L}_{a}^{\vee} \otimes \tilde{\mathcal{A}}\right|_{D}\right) \geq 1$. Let $\phi:\left.\left.\mathcal{L}_{a}\right|_{D} \rightarrow \tilde{\mathcal{A}}\right|_{D}$ be a non-zero map. It has to be non-zero restricted to one of the D_{i}, say D_{1}. So we have a non-zero map $\phi:\left.\left.\mathcal{L}_{a}\right|_{D_{1}} \rightarrow \tilde{\mathcal{A}}\right|_{D_{1}}$. But we have seen above that $\left.\tilde{\mathcal{A}}\right|_{D_{i} \backslash D_{s}} \cong \operatorname{det}\left(\left.\left(\bar{H}_{D_{i}} / T\left(\bar{H}_{D_{i}}\right)\right)\right|_{D_{i} \backslash D_{s}}\right)$. Thus, we have a non-zero map $\phi:\left.\mathcal{L}_{a}\right|_{D_{1} \backslash D_{s}} \rightarrow \operatorname{det}\left(\left.\left(\bar{H}_{D_{1}} / T\left(\bar{H}_{D_{1}}\right)\right)\right|_{D_{1} \backslash D_{s}}\right)$. Let us compute degrees of both. Let D^{\prime} be a general hypersurface of degree a.

$$
\begin{aligned}
\operatorname{deg}\left(\left.\mathcal{L}_{a}\right|_{D^{\prime}}\right) & =\operatorname{rk}\left(\left.H_{a}\right|_{D^{\prime}}\right) \mu\left(\left.H_{a}\right|_{D^{\prime}}\right) \\
& =\operatorname{rk}\left(H_{a}\right) \mu\left(\left.E\right|_{D^{\prime}}\right) \\
& =a \operatorname{rk}\left(H_{a}\right) \mu(E)
\end{aligned}
$$

Since $\operatorname{deg}\left(\left.\mathcal{L}_{a}\right|_{D^{\prime}}\right)=a \operatorname{deg}\left(\mathcal{L}_{a}\right)$, we get that

$$
\begin{equation*}
\operatorname{deg}\left(\mathcal{L}_{a}\right)=\operatorname{rk}\left(H_{a}\right) \mu(E) \tag{8.6}
\end{equation*}
$$

from which we deduce that

$$
\operatorname{deg}\left(\left.\mathcal{L}_{a}\right|_{D_{1}}\right)=a_{1} \operatorname{rk}\left(H_{a}\right) \mu(E) .
$$

Similarly,

$$
\begin{aligned}
\operatorname{deg}\left(\left.\left(\bar{H}_{D_{1}} / T\left(\bar{H}_{D_{1}}\right)\right)\right|_{D_{1} \backslash D_{s}}\right) & =\operatorname{rk}\left(\bar{H}_{D_{1}} / T\left(\bar{H}_{D_{1}}\right)\right) \mu\left(\bar{H}_{D_{1}} / T\left(\bar{H}_{D_{1}}\right)\right) \\
& =a_{1} \operatorname{rk}\left(\bar{H}_{D_{1}} / T\left(\bar{H}_{D_{1}}\right)\right) \mu(E) .
\end{aligned}
$$

By Lemma 2.12 we have

$$
\operatorname{rk}\left(H_{a}\right)=\operatorname{rk}\left(H_{C}\right)=\operatorname{rk}\left(\left.H_{C}\right|_{D}\right)=\operatorname{rk}\left(\bar{H}_{D_{1}} / T\left(\bar{H}_{D_{1}}\right)\right) .
$$

It follows that both line bundles have same degree. Thus, the map ϕ : $\left.\mathcal{L}_{a}\right|_{D_{1}} \rightarrow \operatorname{det}\left(\bar{H}_{D_{1}} / T\left(\bar{H}_{D_{1}}\right)\right)$ is an isomorphism.

Take $D_{1}=D_{0}$ and take D_{2} to be a general hypersurface of degree $a-a_{0}$. This shows that when we restrict \mathcal{L}_{a} to D_{0}, we get the determinant of one of the destabilizing quotients of $\left.E\right|_{D_{0}}$.

The set consisting of determinants of the destabilizing quotients of $\left.E\right|_{D_{0}}$ has cardinality at most $2^{\mathrm{rk}(E)}$. This set will be denoted by $T_{D_{0}}$. Let $m=$ $2^{\mathrm{rk}(E)}+1$. Suppose we have distinct integers $a_{1}, a_{2}, \ldots, a_{m} \geq 2 a_{0}$. Define the set $W(i, j) \subset W_{a_{0}}$ as follows. Let $\left[D^{\prime}\right] \in W_{a_{0}}$. We say $\left[D^{\prime}\right] \in W(i, j)$ if $\left.\left.\mathcal{L}_{a_{i}}\right|_{D^{\prime}} \cong \mathcal{L}_{a_{j}}\right|_{D^{\prime}}$. Since $T_{D^{\prime}}$ has cardinality $m-1$, it is clear that $\left[D^{\prime}\right]$ is in $W(i, j)$ for some pair (i, j) with $i \neq j$. Thus, $W_{a_{0}}=\cup_{i \neq j} W(i, j)$ and so one
of the $W(i, j)$ is Zariski dense in $W_{a_{0}}$. This forces that $\left.\left.\mathcal{L}_{a_{i}}\right|_{D^{\prime}} \cong \mathcal{L}_{a_{j}}\right|_{D^{\prime}}$ for all $\left[D^{\prime}\right] \in W_{a_{0}}$, by Lemma 3.3.

We put an equivalence relation on $\mathbb{N} \geq 2 a_{0}$ as follows. Define $a \sim b$ if $\left.\left.\mathcal{L}_{a}\right|_{D^{\prime}} \cong \mathcal{L}_{b}\right|_{D^{\prime}}$ for all $\left[D^{\prime}\right] \in W_{a_{0}}$. Given any subset $S \subset \mathbb{N}_{\geq 2 a_{0}}$ such that $\# S=m$, we get that two of its elements are equivalent. This shows that there are at most $m-1$ equivalence classes, and so at least one equivalence class has infinite cardinality. Call this equivalence class N_{1}. Then N_{1} has the property that for every $a, b \in N_{1}$, and for $\left[D^{\prime}\right] \in W_{a_{0}}$, the bundles $\left.\left.\mathcal{L}_{a}\right|_{D^{\prime}} \cong \mathcal{L}_{b}\right|_{D^{\prime}}$, that is, $\mathcal{L}_{a} \cong \mathcal{L}_{b}=: \mathcal{L}$.

Further we may find an infinite subset $N \subset N_{1}$ such that for every $a \in N$, the rank $\operatorname{rk}\left(H_{a}\right)$ is constant. This set N is the set which satisfies the criterion in the para just before Lemma 8.3. Now we may apply Lemma 3.10.

Proof of Theorem 8.1. Let E be a reflexive sheaf. Applying Lemma 3.10 we get a quotient $\left.E\right|_{X^{\prime}} \rightarrow H_{X^{\prime}}$ such that $\operatorname{det}\left(H_{X^{\prime}}\right)=\mathcal{L}$ and $\operatorname{rk}\left(H_{X^{\prime}}\right)=$ $\operatorname{rk}\left(H_{a}\right)<\operatorname{rk}(E)$ for $a \in N$. It follows from equation (8.6) that $\mu\left(H_{X^{\prime}}\right)=$ $\mu\left(E_{X^{\prime}}\right)$. This contradicts the stability of E. Thus, we have proved the following, there is an integer a_{0} such that for a reflexive μ-stable sheaf E, the restriction $\left.E\right|_{D}$, to a general hypersurface of degree $a \geq a_{0}$, is μ-stable.

Now let E be a μ-stable sheaf on X. Then $E^{\vee V}$ is a reflexive μ-stable sheaf. Let T denote the cokernel of the map $E \rightarrow E^{\vee \vee}$. It is supported on a closed subset of X codimension ≥ 2. Restricting this to a general D we get

$$
\left.\left.\left.E\right|_{D} \rightarrow E^{\vee \vee}\right|_{D} \rightarrow T\right|_{D} \rightarrow 0
$$

Since D is general, the two sheaves on the left are torsion free and $\left.T\right|_{D}$ is supported on a closed set in D of codimension ≥ 2. Thus, $\left.E\right|_{D}$ and $\left.E^{\vee \vee}\right|_{D}$ are isomorphic on a large open set. Since $\left.E^{\vee \vee}\right|_{D}$ is μ-stable, it follows that $\left.E\right|_{D}$ is μ-stable. This completes the proof of the theorem.

9. Narasimhan-Seshadri Theorem in higher dimensions

Throughout this section we assume that $k=\mathbb{C}$. Let X be a algebraic variety over \mathbb{C}. Then $X(\mathbb{C})$ has a structure of an analytic variety, which is denoted by X^{h}. If X is projective, by GAGA, the two categories $\operatorname{Coh}(X)$ and $\operatorname{Coh}\left(X^{h}\right)$ are equivalent. For a sheaf $\mathcal{F} \in \operatorname{Coh}(X)$ we denote the corresponding sheaf in $\operatorname{Coh}\left(X^{h}\right)$ by \mathcal{F}^{h}.

In [NS65], the following theorem was proved:
Theorem 9.1. [NS65, §12, Corollary 1] Let X be a smooth projective curve of genus ≥ 2. Then a vector bundle E of degree zero on X is stable if and only if E^{h} arises from an irreducible unitary representation of the fundamental group $\pi_{1}\left(X^{h}\right)$.

Combining [Don85, Thm. 1] with [Kob87, Chapter IV, Propn. 4.13] and [Kob87, Chapter I, Propn. 4.21] the above theorem was extended to the case of smooth projective surfaces.

Theorem 9.2. Let X be a smooth projective surface over \mathbb{C}. Let H be an ample line bundle on X. Let V be a vector bundle with $c_{1}(V)=0$ and $c_{2}(V)=0\left(c_{i}(V) \in H^{2 i}(X, \mathbb{C})\right)$. Then V is μ_{H}-stable iff V^{h} comes from an irreducible unitary representation of the fundamental group $\pi_{1}\left(X^{h}\right)$.

In [MR84, §5], as an easy and remarkable consequence of Theorem 8.1, Theorem 9.1 was extended to any dimension using Theorem 9.1, Theorem 9.2. In this section we sketch how to do this.

Theorem 9.3. Let X be a projective nonsingular variety over \mathbb{C} of dimension n. Let H be an ample line bundle on X. Let V be a vector bundle on X with $c_{1}(V)=0$ and $c_{2}(V) \cdot H^{n-2}=0$. Then V is μ_{H}-stable iff V^{h} comes from an irreducible unitary representation of the fundamental group $\pi_{1}\left(X^{h}\right)$.
Proof. Let V^{h} come from an irreducible unitary representation of the fundamental group $\rho: \pi_{1}\left(X^{h}\right) \rightarrow \mathrm{U}_{\mathrm{r}}$. By Bertini's theorem, the intersection of $n-1$ general members of $|a H|$ for $a \gg 0$ is a smooth projective curve C. By Lefschetz hyperplane theorem for fundamental groups $\pi_{1}\left(C^{h}\right) \rightarrow \pi_{1}\left(X^{h}\right)$ is surjective. Hence the representation $\pi_{1}\left(C^{h}\right) \rightarrow \pi_{1}\left(X^{h}\right) \rightarrow \mathrm{U}_{r}$ is irreducible and unitary. Since the restriction $\left.V\right|_{C^{h}}$ is associated to this representation, by Theorem 9.1, we get that $\left.V\right|_{C}$ is stable. The μ_{H}-stability of V easily follows from the μ-stability of $\left.V\right|_{C}$.

We will prove the converse by induction on dimension of X. The base case is when dimension of X is 2 , whence it is Theorem 9.2. Let V be μ_{H}-stable on X. Let \mathcal{S} denote the set of isomorphism classes of μ_{H}-stable vector bundles W with $c_{i}(W)=0 \forall i>0$ and rk $W=$ rk V. By [HL10, Theorem 3.3.7] \mathcal{S} is bounded. Hence the set of isomorphism classes of vector bundles $\omega_{X} \otimes W^{\vee} \otimes V$ with $W \mu_{H}$-stable, $c_{i}(W)=0 \forall i>0$ and rk $W=$ rk V is bounded. In particular by [HL10, Lemma 1.7.6], the regularity of these bundles are uniformly bounded and by [HL10, Lemma 1.7.2] there exists $l_{1} \in \mathbb{N}$ such that $\forall l \geq l_{1}$ and $W \in \mathcal{S}, H^{n-1}\left(\omega_{X} \otimes W^{\vee} \otimes V(l)\right)=$ 0 . By Serre duality we get $H^{1}\left(X, V^{\vee} \otimes W(-l)\right)=0$. Therefore the map $\operatorname{Hom}(V, W) \rightarrow \operatorname{Hom}\left(\left.V\right|_{D},\left.W\right|_{D}\right)$ is surjective for D any member of $|l H|$. Fix such a D which is smooth and such that $\left.V\right|_{D}$ is μ_{H}-stable. By induction hypothesis, there is an irreducible representation $\rho: \pi_{1}\left(D^{h}\right) \rightarrow \mathrm{U}_{\mathrm{r}}$ such that the associated bundle is $\left(\left.V\right|_{D}\right)^{h}$. Since the natural map $\pi_{1}\left(D^{h}\right) \rightarrow \pi_{1}\left(X^{h}\right)$ is an isomorphism, it follows that we get a representation $\rho: \pi_{1}\left(X^{h}\right) \rightarrow U_{r}$. Let V_{ρ} denote the associated bundle. It follows from Chern-Weil theory that the Chern classes of V_{ρ} vanish. By the first part V_{ρ} is μ_{H}-stable on X. Thus, $V_{\rho} \in \mathcal{S}$. Since $\operatorname{Hom}\left(V, V_{\rho}\right) \rightarrow \operatorname{Hom}\left(\left.V\right|_{D},\left.V_{\rho}\right|_{D}\right)$ is surjective, we get a non-trivial homomorphism $V \rightarrow V_{\rho}$. Since both of these are μ_{H}-stable of slope 0 we get that this homomorphism is infact an isomorphism.

References

[Don85] S. K. Donaldson. Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles. Proc. London Math. Soc. (3), 50(1):1-26, 1985.
[Gro64] A. Grothendieck. Éléments de qéométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I. Inst. Hautes Etudes Sci. Publ. Math., (20):259, 1964.
[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52.
[HL10] Daniel Huybrechts and Manfred Lehn. The geometry of moduli spaces of sheaves. Cambridge Mathematical Library. Cambridge University Press, Cambridge, second edition, 2010.
[Kob87] Shoshichi Kobayashi. Differential geometry of complex vector bundles, volume 15 of Publications of the Mathematical Society of Japan. Princeton University Press, Princeton, NJ; Princeton University Press, Princeton, NJ, 1987. Kanô Memorial Lectures, 5 .
[Mat86] Hideyuki Matsumura. Commutative ring theory, volume 8 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid.
[MR84] V. B. Mehta and A. Ramanathan. Restriction of stable sheaves and representations of the fundamental group. Invent. Math., 77(1):163-172, 1984.
[MR82] V. B. Mehta and A. Ramanathan. Semistable sheaves on projective varieties and their restriction to curves. Math. Ann., 258(3):213-224, 1981/82.
[NS65] M. S. Narasimhan and C. S. Seshadri. Stable and unitary vector bundles on a compact Riemann surface. Ann. of Math. (2), 82:540-567, 1965.

