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These notes are based on two lectures at IIT-Bombay by Arjun Paul, on
the Restriction Theorems of Mehta-Ramanathan. We follow the treatment
in [HL10], which is the main reference for us.

1. Introduction

1.1.Pure sheaves. Let X be a scheme of finite-type over an algebraically
closed field k. Let E be a coherent sheaf on X. We define dim(E) =
dim(Supp E).

Definition 1.2. E is called pure if for any non trivial coherent subsheaf
0 6= F ⊂ E, we have dim(F ) = dim(E). Given a coherent sheaf E, we
define T (E) as the maximal subsheaf of E of dimension dim(E)− 1. Then
E/T (E) is pure of dimension dim(E).
Remark 1.3.

(1) Recall that a coherent sheaf is torsion-free if ∀ x ∈ X, E⊗OX,x is a
torsion free OX,x module. If X is integral, we have that E is torsion
free iff E is pure of dimension dim(X).

(2) The pure sheaves we will encounter in these notes will always be of
dimension dim X. So from here onwards, by “pure sheaves” we mean
“pure sheaves of dim(X)”. Also whenever the underlying scheme
is integral, we will use “torsion free” sheaves and “pure sheaves”
interchangeably.
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1.4.Semistability. Let X be a projective scheme over an algebraically
closed field k of dimension n. Fix a very ample line bundle OX(1) on X.
For a coherent sheaf E on X we denote by P (E, t) the Hilbert polynomial

of E with respect to OX(1). Let P (E, t) =
∑
i
αi(E)

ti

i!
with αi(E) ∈ Q.

Recall that if d = dim(Supp(E)) then deg P (E, t) = d. In other words,
αi(E) = 0 ∀ i > d and αd(E) 6= 0.

Definition 1.5. If d = dim(Supp E), then the reduced Hilbert polynomial

of E is defined as p(E, t) :=
P (E, t)

αd(E)
.

For two polynomials p1 =
∑

i αi
ti

i!
and p2 =

∑
i βi

ti

i!
in Q[t], we say

p1 > p2 if there exists j ≥ 0 such that for all i > j we have αi = βi and
αj > βj . This is same as saying that p1(n) > p2(n) for n� 0.

Definition 1.6. A coherent sheaf E on X is called semistable (respectively,
stable) with respect to OX(1) if

(1) E is pure of dimension X.
(2) for all proper subsheaves 0 6= F ⊂ E we have p(F ) ≤ p(E) (respec-

tively, p(F ) < p(E)).

Theorem 1.7. [HL10, Theorem 1.3.4] Let E be pure of dimension X. Then
there exists a fitration of E called the Harder-Narasimhan filtration(or HN
filtration)

0 = HN0(E) ( HN1(E) ( . . . ( HNe−1(E) ( HNe(E) = E

satisfing the following two properties:

(1) Each HNi(E)/HNi−1(E) is semistable,
(2) Let pi(E) = p(HNi(E)/HNi−1(E)). Then p1(E) > p2(E) > . . . >

pe(E).

Moreover the above filtration is uniquely determined by the above two prop-
erties.

Next we state a relative version of Theorem 1.7. First we fix some no-
tations. Let f : Y → S be a projective morphism of finite type k-schemes.
For any morphism g : T → S we will denote Y ×S T by YT . If E is a sheaf
over Y then the sheaf (f ×S g)∗E on YT will be denoted by ET .

Theorem 1.8. [HL10, Theorem 2.3.2] Let S be an integral finite type scheme
over k. Let f : Y → S be a projective morphism with a f -very ample line
bundle OY (1). Let E be a coherent sheaf on Y which is flat over S. Assume
that there is a closed point s ∈ S such that Es is pure of dimension Ys. Then
there is a non-empty open set U ⊂ S and a filtration over YU

0 = HN0(EU ) ( HN1(EU ) ( . . . ( HNe−1(EU ) ( HNe(EU ) = EU
such that
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(1) HNi(E)/HNi−1(EU ) is flat over U .
(2) ∀ s ∈ U , Es is pure of dimension Ys
(3) The filtration

0 = HN0(EU )s ( HN1(EU )s ( . . . ( HNe−1(EU )s ( HNe(EU )s = Es
is the HN-filtration of Es.

1.9.µ-semistability. We have the following invariants associated to E.

Definition 1.10. We define

(1) the rank of E as rk(E) :=
αn(E)

αn(OX)
.

(2) the degree of E as deg(E) := αn−1(E)− rk(E).αn−1(OX).

(3) if rk E 6= 0, the slope of E as µ(E) :=
deg E

rk E
.

Remark 1.11.

(1) If X is integral then rk(E) is nothing but the rank of the vector
space Eη over k(η), where η is the generic point of X.

(2) If X is smooth outside a closed subset of codimension ≥ 2 then
deg(E) = deg(det(E)) = ([det(E)] · [OX(1)]n−1).

Definition 1.12. Let E be a coherent sheaf on X. We say that it is µ-
semistable (respectively, stable) with respect to OX(1) if

(1) It is pure of dimension X,
(2) For any subsheaf 0 6= F ⊂ E with rk(F ) < rk(E), we have µ(F ) ≤

µ(E) (respectively, µ(F ) < µ(E)).

Lemma 1.13. E is µ-semistable iff for any pure quotient E → G → 0 we
have µ(E) ≤ µ(G).

Proof. Let us consider an exact sequence

0→ F → E → G→ 0 .

Suppose rk F, rk G > 0. Since deg and rk are additive, we have

(1.14) rk(G)(µ(E)− µ(G)) = rk(F )(µ(F )− µ(E)) .

If E is µ-semistable, then the RHS is ≤ 0 and so it follows that µ(E) ≤ µ(G).
Suppose that for any pure quotient E → G → 0 we have µ(E) ≤ µ(G).

Let F ⊂ E and its quotient be G. If rk(G) = 0, it is immediate from
the definition of degree that deg(G) ≥ 0. Therefore, since rk(F ) = rk(E)
and deg(F ) = deg(E) − deg(G) ≤ deg(E), it follows that µ(F ) ≤ µ(E).
Now suppose rk(G) > 0. Consider the surjection E → G → G/T (G),
where T (G) is the torsion subsheaf of G. Then µ(E) ≤ µ(G/T (G)). Since
deg(T (G)) ≥ 0 we have µ(E) ≤ µ(G/T (G)) ≤ µ(G). Again using 1.14 we
have µ(F ) ≤ µ(E). �

Lemma 1.15. Let E and G are µ-semistable sheaves with µ(E) > µ(G).
Then Hom(E,G) = 0.
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Proof. Let f : E → G be a non-trivial morphism. Then by Lemma 1.13,
µ(E) ≤ µ(f(E)) ≤ µ(G). Hence we arrive at a contradiction. �

The following Lemma will be needed in the proof of Theorem 1.17.

Lemma 1.16. Let E be µ-semistable. Then the slopes µ(HNi(E)/HNi−1(E))
occurring in the HN filtration of E are all equal to µ(E). The slopes µ(HNi(E))
are also equal to the slope µ(E).

Proof. Since E is µ-semistable, from the inclusion HN1(E) ⊂ E we get that
µ(HN1(E)) ≤ µ(E). Similarly, from the quotient E → E/HNe−1(E) we get
µ(E) ≤ µ(E/HNe−1(E)). This shows that µ(HN1(E)) ≤ µ(E/HNe−1(E)).
If we had µ(HN1(E)) < µ(E/HNe−1(E)) then this would mean that p1(E) <
pe(E), which is not possible. Thus, µ(HN1(E)) = µ(E/HNe−1(E)). From
the exact sequence 0 → HNe−1(E) → E → E/HNe−1(E) → 0 it follows
that HNe−1(E) is pure of dimension X and µ-semistable with slope µ(E).
We proceed in the same way replacing E with HNe−1(E). �

Just as in Theorem 1.7, we have the µ-Harder Narasimhan filtration:

Theorem 1.17. Let E be a pure sheaf on X. Then there exists a fitration
of E called the µ-Harder-Narasimhan filtration (or µ-HN filtration)

0 = µ-HN0(E) ( µ-HN1(E) ( . . . ( µ-HNl−1(E) ( µ-HNl(E) = E

satisfing the following two properties:

(1) Each µ-HNi(E)/µ-HNi−1(E) is µ-semistable
(2) Let µi(E) = µ(µ-HNi(E)/µ-HNi−1(E)). Then µ1(E) > µ2(E) >

. . . > µl(E).

Moreover the above filtration is uniquely determined by the above two prop-
erties.

Proof. Let

0 = HN0(E) ( HN1(E) ( . . . ( HNl−1(E) ( HNe(E) = E

be the HN-filtration of E. Let νi denote the slope of HNi(E)/HNi−1(E).
Then we have

ν1 ≥ ν2 ≥ . . . ≥ νe .
Let i1 > i2 > . . . be the indices where there is a strict drop in the slope,
that is,

νij > νij+1 .

Define the µ-HN filtration of E as

µ-HNj(E) := HNij (E) .

Then µ-HNj/µ-HNj−1 is µ-semistable with µ(µ-HNj/µ-HNj−1) = νij .
This follows easily using the HN-filtration and the fact that if 0 → E1 →
E → E2 → 0 is a short exact sequence of µ-semistable sheaves such that E1

and E2 have the same slope, then E is also µ-semistable of same slope.
Suppose we are given a filtration F1 ⊂ F2 ⊂ . . . ⊂ Fr = E which satisfies
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(1) Fi/Fi−1 is µ-semistable, and
(2) µ(F1) > µ(F2/F1) > µ(F3/F2) > . . .

Consider the HN filtration of Fi and Fi−1. Let the length of the HN filtration
of Fi and Fi−1 be fi and fi−1 respectively. By the previous lemma we have

µ(Fi−1/HNfi−1−1(Fi−1)) = µ(Fi−1/Fi−2) > µ(Fi/Fi−1) = µ(HN1(Fi/Fi−1)).

This implies that p(Fi−1/HNfi−1−1(Fi−1)) > p(HN1(Fi/Fi−1)). This shows
that we can “put together” the HN filtrations of Fi/Fi−1. Let gi : Fi →
Fi/Fi−1 and let HN•(Fi/Fi−1) denote the HN filtration of Fi/Fi−1. Then
we have a filtration

Fi−1 ⊂ g−1
i (HN1(Fi/Fi−1)) ⊂ g−1

i (HN2(Fi/Fi−1)) ⊂ . . . ⊂ Fi
Putting these together, it is clear that the graded pieces are semistable and
that the reduced Hilbert polynomials satisfy the strictly decreasing condi-
tion. Thus, this is the HN filtration of E. Now it is clear that the Fi are
precisely the places where the slope strictly drops. �

Theorem 1.18. Let S be an integral finite type scheme over k. Let f : Y →
S be a projective morphism with a f -very ample line bundle OY (1). Let F
be a coherent sheaf on Y which is flat over S. Assume that there is a closed
point s ∈ S such that Fs is pure of dimension Ys. Then exists an non-empty
open set U ⊂ S and a filtration over f−1(U)

0 = µ-HN0(FU ) ( µ-HN1(FU ) ( . . . ( µ-HNl−1(FU ) ( µ-HNl(FU ) = FU
such that

(1) µ-HNi(F)/µ-HNi−1(FU ) is flat over U .
(2) ∀ s ∈ U , Fs is torsion free.
(3) The filtration

0 = µ-HN0(FU )s ( µ-HN1(FU )s ( . . . ( µ-HNl−1(FU )s ( µ-HNl(FU )s = Fs
is the HN-filtration of Fs.

Proof. As we saw in the proof of 1.17, the HN filtration of a torsion-free
coherent sheaf E is a refinement of the µ-HN filtration of E. Hence the
statement follows immediately from Theorem 1.8. �

1.19.µ-Minimal destabilising quotient.
We define E/µ-HNl(E)−1E to be the µ-minimal destabilising quotient

of E. Note that E/µ-HNl(E)−1E is µ-semistable and µ(E/µ-HNl(E)−1E) ≤
µ(E). We define µmin(E) = µl(E) and µmax = µ1(E).

Lemma 1.20. Let E,G be two pure sheaves. Let µmin(E) > µmax(G). Then
Hom(E,G) = 0.

Proof. Let f : E → G be a non-trivial morphism. Let i be such that
f(µ-HNi(E)) = 0 and f(µ-HNi+1(E)) 6= 0. Let j be such that f(µ-HNi+1(E)) *
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µ-HNj(G) and f(µ-HNi+1(E)) ⊆ µ-HNj+1(G). Then we have a non-trivial
map

µ-HNi+1(E)/µ-HNi(E)→ µ-HNj+1(G)/µ-HNj(G)

Now both µ-HNi+1(E)/µ-HNi(E) and µ-HNj+1(G)/µ-HNj(G) are µ-semistable
sheaves of slope µi+1(E) and µj+1(G) respectively and by assumption we
have

µi+1(E) ≥ µmin(E) > µmax(G) ≥ µj+1(G) .

By Lemma 1.15 this morphism is zero and we arrive at a contradiction. �

Theorem 1.21. Let E → G → 0 be a quotient such that G is pure. Then
µmin(E) ≤ µ(G). If µ(G) = µmin(E) then E → G factors as

E → E/µ-HNl(E)−1(E)→ G .

Proof. Let us suppose the contrary, that is,

µ(G) < µmin(E) = µ(E/µ-HNl(E)−1(E)) .

Replacing G by G/µ−HNl(G)−1(G), (since µ(G/µ-HNl(G)−1G) ≤ µ(G)) we
may assume G is µ-semistable. Consider the composition

µ-HNl(E)−1(E)→ E → G .

Note that

µmin(µ-HNl(E)−1(E)) = µl−1(E) > µl(E) = µmin(E) > µ(G) = µmax(G) .

By Lemma 1.20 this composition is zero. Therefore there is a surjection

E/µ-HNl(E)−1(E)→ G→ 0,

which implies that µmin(E) ≤ µ(G). This is a contradiction.
Now suppose µmin(E) = µ(G). If G → G′ is any quotient then applying

the first part of this theorem we have µ(G′) ≥ µmin(E) = µ(G). This implies
G is µ-semistable. Now consider the composition

µ-HNl(E)−1(E)→ E → G .

Note that

µmin(µ-HNl(E)−1(E)) = µl(E)−1 > µl(E) = µmin(E) = µ(G) = µmax(G) .

By Lemma 1.20 we have that the above compostion is zero. Hence E → G
factors as

E → E/µ-HNl(E)−1(E)→ G .

�

Corollary 1.22. Assume X is smooth. Let E → E1 be the µ-minimal
destabilising quotient. Let E → G → 0 be such that µmin(E) = µ(G) and
rk G = rk E1. Then E1

∼= G outside a closed subset of codimension ≥ 2.
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Proof. Let us consider the surjection E → G → G/T (G). Applying the
above theorem, we have that µ(G/T (G)) ≥ µ(E1). On the other hand, we
get that µ(G/T (G)) ≤ µ(G) since T (G) is torsion. Hence we have

µ(E1) = µ(G) = µ(G/T (G)) .

In particular, this implies that codimension of Supp(T (G)) ≥ 2. Again
applying previous theorem, we have

E → G/T (G)

factors as E � E1 � G/T (G). Since both E1 and G/T (G) are torsion free
sheaves of same rank and X is smooth, we have that this is an isomorphism
outside a closed subset of codimension ≥ 2 . �

2. A degeneration argument

Define Πa := P(H0(X,OX(a))∨). Recall that associated to Πa we have a
closed subscheme Za ↪→ X × Πa called the incidence variety which has the
following property: if the p : Za → Πa and q : Za → X are the projections,
then the fibre p−1([D]) = D ↪→ X. To define it in a more formal manner,
let p1 : X × Πa → Πa and q1 : X × Πa → X be the two projections. Then
Za is defined as the zero scheme of the composition

(2.1) p∗1OΠa(−1) ↪→ H0(X,OX(a))⊗OX×Πa → q∗1OX(a)

It is clear that Za has the above property. Define K := ker(H0(X,OX(a))⊗
OX → OX(a)).

Lemma 2.2. Za
q−→ X is isomorphic to the projective bundle P(K∨) → X.

In particular it is smooth and integral.

Proof. Let Y := P(K∨). Note that K ↪→ H0(X,OX(a)) ⊗ OX induces a
closed immersion Y ↪→ X × Πa. By the definition of this closed immersion
the morphism

p∗1OΠa(−1)|Y ↪→ H0(X,OX(a))⊗OX×Πa |Y
factors as

p∗1OΠa(−1)|Y ↪→ q∗1K|Y ↪→ H0(X,OX(a))⊗OX×Πa |Y
Hence the composition 2.1 restricted to Y is zero. Hence Y ↪→ Za.

By definition the following composition is zero.

p∗1OΠa(−1)|Za ↪→ H0(X,OX(a))⊗OZa → q∗1OX(a)|Za
Hence p∗1OΠa(−1)|Za ↪→ H0(X,OX(a))⊗OZa factors as

p∗1OΠa(−1)|Za ↪→ q∗1K ↪→ H0(X,OX(a))⊗OZa
Hence we have a surjection q∗1K

∨|Za → p∗1OΠa(1)|Za → 0 and this defines a
map Za → Y over X. It is easy to see that this is the inverse of Y → Za. �
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Definition 2.3 (Conormal sheaf). Let W ↪→ Z be closed immersion of
finite type schemes over k. Then we define the conormal sheaf CW/Z :=

IW/Z/I2
W/Z , where IW/Z is the ideal sheaf of W in Z.

Remark 2.4. The cotangent sheaf ΩW of W and the conormal sheaf CW/Z
are related by the right exact sequence (Tag 01UZ):

CW/Z → ΩZ |W → ΩW → 0

It is standard that if Z is smooth then W is smooth iff the sequence is
left exact. (One may deduce from this the following more general statement
which we will not need. If W is smooth then the above sequence is left exact
(Tag 01UZ).) In particular, if i : C ↪→ Πa is a smooth closed curve, then the
above sequence is left exact. From the exact sequence it also follows that
CC/Πa is locally free. Let ZC denote the scheme theoretic inverse image of
C. We wish to conclude something about the smooth locus of ZC .

Lemma 2.5. Let C ⊂ U ⊂ Πa be a closed immersion of a smooth curve
into an open subset of Πa. Let z ∈ ZC be a closed point. Then ZC is smooth
at z iff the composition

CC/U |p(z) → ΩU |p(z) → ΩZ |z

is injective.

Proof. Recall that ZC is smooth at z iff dim ΩZC |z = dim(mZC ,z/m
2
ZC ,z

) =
dim OZC ,z. Since p is flat, ZC is equidimensional of dimension n. Hence
dim OZC ,z = n and therefore ZC is smooth at z iff dim ΩZC (z) = n. Recall
that we have we have a commutative diagram whose rows are exact:

0 p∗CC/U p∗ΩU p∗ΩC 0

CZC/Z ΩZ ΩZC 0

∼

Since p is flat we have CZC/Z ∼= p∗CC/U . Restricting to z (and using the top
row is a sequence of locally free sheaves), we get

0 CC/U |p(z) ΩU |p(z) ΩC |p(z) 0

CC/U |z ΩZ |z ΩZC |z 0

=

Comparing the dimensions, we get that ZC is smooth at z iff under the map
ΩU |p(z) → ΩZ |z the subspace CC/U |p(z) maps injectively. �

Corollary 2.6. Assume the hypothesis of Lemma 2.5. If z is a smooth point
of the fibre p−1(p(z)), then ZC is smooth at z.

https://stacks.math.columbia.edu/tag/01UZ
https://stacks.math.columbia.edu/tag/01UZ
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Proof. Let c = p(z) ∈ C and let Zc denote the fiber over c. We have the
exact sequence:

ΩU |p(z) → ΩZ |z → ΩZc |z → 0 .

Since Zc is equidimensional of dimension n− 1 and smooth at z,

dim ΩZc |z = n− 1 .

Hence, the morphism ΩU |p(z) → Ω|z itself is injective, so the statement
follows from Lemma 2.5. �

For this section, let Ua ⊂ Πa be a non-empty subset such that for each
point [D] ∈ Ua, the divisor D is smooth. By [Har77, Chapter 3, Corollary
7.9] each such divisor is connected, and hence integral.

Lemma 2.7. Let D1 ∈ Ua1 , D2 ∈ Ua2 be such that D := D1 +D2 is a SNC
divisor of degree a := a1 +a2. Then ∃ a smooth (non-proper) curve C ↪→ Πa

such that [D] ∈ C, C \ [D] ⊂ Ua and codim(Sing(ZC), ZC) ≥ 3.

Proof. We will in fact show that C can be chosen to be in an open sub-
set of lines passing through [D]. There is a bijection between the set of
lines through [D] ∈ Πa with the one dimensional subspaces in the tangent
space TΠa |[D], which is in bijection with the hyperplanes in ΩΠa |[D], which
is in bijection with the closed points in P(ΩΠa |[D]). Moreover, the set of
hyperplanes H such that the corresponding line through [D] intersects Ua,
corresponds to a non-empty open subset of P(ΩΠa |[D]).

Now let L be any line in Πa passing through [D] and intersecting Ua.
We will denote the corresponding hyperplane in ΩΠa |[D] by H. Define C :=
(L∩Ua)∪{[D]}. For c ∈ C, choosing a small neighbourhood U around c and
applying Corollary 2.6 to the restriction p : ZU \(D1∩D2)→ U , we get that
if z ∈ ZC and z /∈ D1∩D2, then ZC is smooth at z. So Sing(ZC) ⊂ D1∩D2.

Let z ∈ D1 ∩D2. Then p(z) = [D] and z is not a smooth point of D and
hence the following exact sequence is not left exact:

(2.8) ΩΠa |[D] → ΩZ |z → ΩD|z → 0 .

However, ΩD|z being a quotient of ΩX |z has dimension n or n− 1. Since D
is not smooth at z we have dim ΩD|z = n. Therefore

(2.9) dim Im(ΩΠa |[D] → ΩZ |z) = dim Z − n = dim Πa − 1

hence we get that the kernel of the morphism ΩΠa |[D] → ΩZ |z has dimension
1. Observe that CC/U |[D] ⊂ ΩΠa |[D] is precisely the subspace H. By Lemma
2.5, it is enough to find a hyperplane H ⊂ ΩΠa |[D] and points z in each
component of D1∩D2 for which H does not contain the kernel of ΩΠa |[D] →
ΩZ |z. The corresponding line L ⊂ Πa will satisfy the required property.

Now consider the (set theoretically given) morphism

D1 ∩D2 → P(ΩΠa |∨[D])

with
z 7→ Ker(ΩΠa |[D] → ΩZ |z) .
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More precisely, consider equation (2.8) on D1 ∩ D2. We get an exact
sequence

0→ K → ΩΠa |[D] ⊗OD1∩D2 → ΩZ |D1∩D2 → ΩD|D1∩D2 → 0 .

Since D1 ∩D2 is smooth and the rank of ΩD|D1∩D2 is constant at all closed
points, it follows that this is locally free. It follows that all sheaves in the
above are locally free and that K is a line bundle on D1 ∩D2. Taking dual
we get a line bundle quotient of ΩΠa |∨[D] which defines the above morphism.

Since OX(1) is very ample, dim Πa ≥ n+ 1. Therefore

dim P(ΩΠa([D])∨) ≥ n > n− 2 = dim (D1 ∩D2)

For each irreducible component of D1 ∩ D2, fix a closed point. Hence,
we can find a hyperplane H ⊂ P(ΩΠa([D])∨) such that H does not contain
the images of these points. Finding such a hyperplane in P(ΩΠa([D])∨) is
equivalent to finding a hyperplane in ΩΠa([D]) having the required property.

This proves that Sing(ZC) does not contain any irreducible component of
D1 ∩D2, which shows that codim(Sing(ZC), ZC) ≥ 3. �

Although this is not required in the proof of the restriction theorems, we
mention some properties of the scheme ZC .

Lemma 2.10. The scheme ZC is irreducible, Cohen-Macaulay, integral and
normal.

Proof. Since ZC → C is flat and proper, every irreducible component of ZC
will map surjectively onto C. Since the general fiber of this map is irre-
ducible, it follows that ZC is irreducible. By Corollary to [Mat86, Theorem
23.3] we have that ZC is Cohen-Macauley. Thus, it satisfies Serre’s condi-
tion S2. Also since codim(Sing(ZC), ZC) ≥ 3 it satisfies Serre’s condition
R1. Hence, ZC is an integral and normal scheme. �

For the next two lemmas we fix a smooth curve C ⊂ Πa as in Lemma 2.7.

Lemma 2.11. Let q∗E|ZC\[D]
→ GC\[D] → 0 be a quotient over ZC\[D] such

that GC\[D] is flat over C \ [D]. Then this quotient extends uniquely to a
quotient q∗E|ZC → GC → 0 over ZC such that GC is flat over C.

Proof. The quotient
q∗E|ZC\[D]

→ GC\[D] → 0

induces a map C \ [D]→ QuotZa/Πa(q∗E,P ) where P is the Hilbert polyno-

mial of GC\[D]|D′ for [D′] ∈ Ua. Since C is smooth and QuotZa/Πa(q∗E,P )

is proper, this map extends and we get a flat quotient q∗E|C → GC over C.
�

Let GC be a coherent sheaf over ZC which is flat over C. Since GC is flat,
we have that ∀[D′] ∈ C the polynomial P (GC |D′) is independent of D′. In
particular, the rank and degree are independent of D′. We denote this rank
by r. Define G := GC |D, Ḡ := G/T (G) and ḠDi := Ḡ|Di . Then we have
the following lemma.
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Lemma 2.12. Assume r 6= 0. Then we have

(1) r = rk(Ḡ) = rk(ḠD1/T (ḠD1)) = rk(ḠD2/T (ḠD2))
(2) µ(G) ≥ µ(Ḡ) ≥ µ(ḠD1/T (ḠD1)) + µ(ḠD2/T (ḠD2))
(3) Assume that µ(G) = µ(ḠD1/T (ḠD1)) + µ(ḠD2/T (ḠD2)). Let U ⊂

Zreg
C denote the open subset over which GC is locally free of rank r.

There is a closed subset Ds ⊂ D such that codim(Ds, D) ≥ 2 and
D \Ds ⊂ U .

Proof. Proof of (1). By definition dim(T (G)) ≤ n−2. Therefore αn−1(G) =
αn−1(Ḡ). Hence

(2.13) r = rk(G) =
αn−1(G)

αn−1(OD)
=

αn−1(Ḡ)

αn−1(OD)

and µ = µ(G) ≥ µ(Ḡ). We first relate the rank and degree of Ḡ with the
rank and degree of ḠD1 and ḠD2 . Consider the exact sequence:

0→ OD → OD1 ⊕OD2 → OD1∩D2 → 0

Tensoring with Ḡ we get

0→ K̄ → Ḡ→ ḠD1 ⊕ ḠD2 → ḠD1∩D2 → 0 .

Notice that when we restrict this to the open subset D1 \ D2 we see that
K̄|D1\D2

= 0. Similarly, for the other open set D2 \D1. This shows that K̄

is supported on a closed subset of dimension ≤ n−2. But since Ḡ is pure of
dimension n− 1, it follows that K̄ = 0 and the following sequence is exact

0→ Ḡ→ ḠD1 ⊕ ḠD2 → ḠD1∩D2 → 0

is exact on D.
Therefore we get that

P (Ḡ) = P (ḠD1) + P (ḠD2)− P (ḠD1∩D2) .

From this we get that

(2.14) αn−1(Ḡ) = αn−1(ḠD1) + αn−1(ḠD2) .

Also we have

(2.15) αn−1(OD) = αn−1(OD1) + αn−1(OD2) .

We have already seen that ZC is integral. Therefore dimk(GC |z) = r for
a general closed point z ∈ ZC , and dimkGC |z′ ≥ r for any closed point
z′ ∈ ZC . Since Di is integral, we have that for a general point z′i ∈ Di

rk(ḠDi) = dimk(ḠDi |z′) .

Since dim(T (G)) ≤ n− 2, G and Ḡ are equal over a non-empty open subset
of Di. Hence for a general z′ ∈ Di

rk(ḠDi) = rk(GDi) = dimk(GDi |z′)
= dimk(GC |z′) ≥ r .
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In other words, (using equation (2.13))

r =
αn−1(G)

αn−1(OD)
=

αn−1(Ḡ)

αn−1(OD)
≤ αn−1(ḠD1)

αn−1(OD1)
,
αn−1(ḠD2)

αn−1(OD2)
.

If
αn−1(ḠD1)

αn−1(OD1)
6= αn−1(ḠD2)

αn−1(OD2)
,

then dividing (2.14) by (2.15) we get that

r =
αn−1(Ḡ)

αn−1(OD)
> min

{
αn−1(ḠD1)

αn−1(OD1)
,
αn−1(ḠD2)

αn−1(OD2)

}
which gives a contradiction. Thus, we get that

(2.16) r =
αn−1(G)

αn−1(OD)
=

αn−1(Ḡ)

αn−1(OD)
=
αn−1(ḠD1)

αn−1(OD1)
=
αn−1(ḠD2)

αn−1(OD2)
.

Hence we get

r = rk(G) = rk(Ḡ) = rk(ḠD1) = rk(ḠD2) .

From this (1) follows.

Proof of (2). Now we look at the slope.

µ(Ḡ) =
deg(Ḡ)

r

=
αn−2(Ḡ)

r
− αn−2(OD)

=
αn−2(Ḡ)

r
− (αn−2(OD1) + αn−2(OD2)− αn−2(OD1∩D2))

=
deg(ḠD1)

r
+

deg(ḠD2)

r
− αn−2(OD1∩D2)

r
(rk(ḠD1∩D2)− r)

= µ(ḠD1) + µ(ḠD2)− αn−2(OD1∩D2)

r
(rk(ḠD1∩D2)− r)(2.17)

Define a filtration

T ′(ḠDi) ⊂ T (ḠDi) ⊂ ḠDi
on ḠDi as follows. Let T (ḠDi) be the largest torsion subsheaf and T ′(ḠDi)
is the torsion subsheaf which is supported on D1 ∩D2.

Define Gi := ḠDi/T
′(ḠDi). We will relate the degree (or slope) of ḠDi

and Gi and then use (2.17) to compare the degrees of Gi and Ḡ . Consider
the short exact sequence

(2.18) 0→ T ′(ḠDi)→ ḠDi → Gi → 0 .

Thus, we have

αn−2(ḠDi) = αn−2(Gi) + αn−2(T ′(ḠDi)) .
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Dividing by r we get

(2.19) µ(ḠDi) = µ(Gi) +
αn−2(T ′(ḠDi))

r
.

Restricting equation (2.18) to D1 ∩D2 we get an exact sequence

(2.20) T ′(ḠDi)|D1∩D2 → ḠDi |D1∩D2 → Gi|D1∩D2 → 0 .

If η is the generic point of D1 ∩D2 then ODi,η is a discrete valuation ring.
Therefore the localisation Gi,η of Gi at η being a torsion free module is in
fact free. This shows two things, first that

rk(Gi|D1∩D2) = dimk(η)Gi ⊗ k(η) = rankODi,ηGi,η = rk(Gi) = r .

Second that the sequence (2.20) is left exact when we tensor with OD1∩D2,η.
Thus, we conclude that

rk(T ′(ḠDi)|D1∩D2) = rk(ḠDi |D1∩D2)− rk(Gi|D1∩D2)

= rk(ḠDi |D1∩D2)− rk(Gi)

= rk(ḠDi |D1∩D2)− r .
Therefore we have

rk(T ′(ḠDi)|D1∩D2) =
αn−2(T ′(ḠDi))

αn−2(OD1∩D2)
= rk(ḠDi |D1∩D2)− r .

Thus, using this we rewrite equation (2.19) as

µ(Gi) = µ(ḠDi)− αn−2(OD1∩D2)
rk(ḠDi |D1∩D2)− r

r
.

Substituting this into equation (2.17) we get

(2.21) µ(Ḡ) = µ(G1) + µ(G2) + αn−2(OD1∩D2)
rk(ḠD1∩D2)− r

r
.

Since rk(ḠD1) = r, for any closed point z ∈ D1, dimk(ḠD1 ⊗ k(z)) ≥ r.
Since D1 ∩D2 is integral, rk(GD1∩D2) ≥ r. Hence we have

µ(Ḡ) ≥ µ(G1) + µ(G2) ≥ µ(ḠD1/T (ḠD1)) + µ(ḠD2/T (ḠD2))

This completes the proof of (2).

Proof of (3). We continue with notation as above. Let us assume that we
have equality

µ(G) = µ(Ḡ) = µ(G1) + µ(G2) = µ(ḠD1/T (ḠD1)) + µ(ḠD2/T (ḠD2))

(a) Since µ(G) = µ(G/T (G)), we get that Supp(T (G)) ⊂ D is a closed
subset whose codimension in D is ≥ 2.

(b) Using (2.21) we get rk(ḠD1∩D2) = r. Using (2.17), we get µ(Ḡ) =
µ(ḠD1) +µ(ḠD2). Since µ(Ḡ) = µ(ḠDi/T (ḠD1)) +µ(ḠDi/T (ḠDi)) and
µ(ḠDi) ≥ µ(ḠDi/T (ḠDi)), we get µ(ḠDi) = µ(ḠDi/T (ḠDi)). It follows
that Supp(T (ḠDi)) ⊂ Di is a closed subset whose codimension in Di is
≥ 2.
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(c) Since ḠDi/T (ḠDi) is torsion free on Di, it is locally free on an open
subset whose complement in Di has codimension ≥ 2. From this and
the previous point we conclude that ḠDi is locally free on an open subset
whose complement in Di has codimension ≥ 2.

(d) Since codim(ZC \Zreg
C , ZC) ≥ 3, it follows that codim(D \Zreg

C , D) ≥ 2.

Thus, we have obtained some closed subsets of D, each of which has codi-
mension ≥ 2 in D. Let Ds be the union of all these. Let z ∈ D \ Ds be
a closed point, and assume z ∈ D1 (the same argument holds for z ∈ D2).
We claim that GC is locally free in a neighbourhood of z. We already know
that r = rk(GC) = rk(ḠDi), see equation (2.16). Then

dimk(GC ⊗ k(z)) = dimk(GC |D ⊗ k(z))

(using definition of G we get)

= dimk(G⊗ k(z))

(since in a nbd of z, using (a), we have G = Ḡ)

= dimk(Ḡ⊗ k(z))

(since z ∈ D1 we get)

= dimk(ḠD1 ⊗ k(z))

= r .

The local ring OZreg
C ,z is integral. If η denotes the generic point, then the

above shows that

dimk(η)GC ⊗ k(η) = dimk(GC ⊗ k(z)) = r .

It follows that GC is locally free in a neighbourhood of z. This proves that
D \Ds ⊂ U . This completes the proof of (3). �

3. µ-Semistable Restriction Theorem

In this section we will prove the µ-semistable restriction theorem [MR82,
Theorem 6.1].

Theorem 3.1. Let X be a smooth projective variety of dimension n ≥ 2
over an algebraically closed field k. Let OX(1) be a very ample line bundle
on X. Let E be a µ-semistable sheaf on X. Then there is an integer a0 such
that for all a ≥ a0 there is a non-empty open set Ua ⊂ P(H0(X,OX(a))∨)
such that for all [D] ∈ Ua the divisor D is smooth and E|D is µ-semistable
with respect to OX(1)|D.

Lemma 3.2. For each a ≥ 1 there exists an open set Ua ⊂ Πa and a quotient
q∗E|ZUa → Fa → 0 over ZUa := p−1(Ua) such that

(1) each [D] ∈ Ua is smooth and integral.
(2) Fa is Ua-flat.
(3) E|D is torsion-free.
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(4) For D ∈ Ua, E|D → Fa|D is the µ-minimal destabilising sheaf of
E|D.

Proof. The first assertion is just Bertini’s theorem. The rest of the claims
will follow from Theorem 1.18 once we show that q∗E is flat over Πa and E|D
is torsion-free for atleast one D ∈ Πa. The latter fact follows from [HL10,
Corollary 1.1.14(ii)] and [HL10, Lemma 1.1.12]. Let [D] ∈ Πa. Note that the

map E(−a)
⊗D−−→ E is injective since locally it is given by multiplication of

a non-zero element and E is torsion free. Hence we have an exact sequence

0→ E(−a)→ E → E|D → 0

Therefore P (E|D) = P (E) − P (E(−a)), that is, the Hilbert polynomial of
q∗E restricted to any closed fibre of p is constant. Hence q∗E is flat over
Πa. �

Since Fa is flat over Ua, both rk(Fa|D) and deg(Fa|D) are independent of
[D] ∈ Ua. We define r(a) := rk(Fa|D) and µ(a) := µ(Fa|D).

Since Za is smooth, we have the line bundle det(Fa) over ZUa and it can
be extended it to a line bundle Q over Za. Now Za ∼= P(K∨) and it follows
from the proof of Lemma 2.2 that under this isomorphism p∗OΠa(1) ∼=
OP(K∨)(1). Hence we can decompose Q uniquely as Q = q∗La ⊗ p∗M with
La ∈ Pic X, M∈ Pic Πa. By Lemma 3.3 if a ≥ 3 then La does not depend
on the choice of the extension Q.

Lemma 3.3. Let a ≥ 3. Let L′, L′′ ∈ Pic X such that L′|D ∼= L′′|D for [D]
in a non-empty open set in Πa. Then L′ ∼= L′′.

Proof. Define L := L′⊗ (L′′)−1. Then q∗L|D ∼= OD ∀ D ∈ U , where U is an
open set in Πa. In particular, we get h0(D, q∗L|D) = h0(D, q∗L|D) = 1 ∀D ∈
U . Now the proof of Lemma 3.2 shows that q∗L is flat over Πa. Applying
semicontinuity theorem, we get h0(D, q∗L|D) = h0(D, q∗L|D) = 1 ∀ D ∈ Πa.
If D is integral, this implies that q∗L|D ∼= OD. By [MR82, Lemma 2.1.3(ii)]
the set of integral divisors is open in Πa. Let us denote this open set by Ba.

Let B′a be the open set in Πa parametrizing smooth divisors. By [Har77,
Chapter 3, Corollary 7.9] each such divisor is connected, and hence integral.
Thus, ∅ $ B′a ⊂ Ba. From the proof of [Har77, Chapter 2, Theorem 8.18] it
follows that Πa\B′a is irreducible. By [MR82, Lemma 2.1.3(ii)] this inclusion
is strict. Therefore we get that codim(Πa \Ba,Πa) ≥ 2.

Now consider the sheaf p∗q
∗L. By Grauert’s theorem p∗q

∗L|Ba is a line
bundle on Ba. Let N ∈ Pic Πa be such that N|Ba ∼= p∗q

∗L|Ba . This
induces an isomorphism p∗N → q∗L on p−1(Ba). Since p is flat, codim(Za \
p−1(Ba), Za) ≥ 2. Therefore p∗N ∼= q∗L. But by Lemma 2.2 we have
Pic Za = p∗Pic Πa ⊕ q∗Pic X. This implies N = OΠa and L = OX . �

Next we will prove the following two statements in the form of various
lemmas:

(1) ∃ 0 < r ≤ rk(E) such that for all a� 0 we have r(a) = r.
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(2) ∃ L ∈ Pic X such that for all a� 0 we have L ∼= La.
As the first step towards proving these statements, we will prove a Lemma
which shows how the numbers µ(a1), µ(a2), µ(a1+a2), r(a1), r(a2), r(a1+a2)
are related.

Lemma 3.4. Let a = a1 + a2. Then µ(a) ≥ µ(a1) + µ(a2). In case of
equality, we have r(a) ≤ min{r(a1), r(a2)}.

Proof. Fix D1 ∈ Ua1 . By Bertini’s theorem there exists D2 ∈ Ua2 such that
D = D1 + D2 is a simple normal crossing divisor. By Lemma 2.7 choose
a C ⊂ Πa such that [D] ∈ C and C \ [D] ⊂ Ua and consider the quotient
q∗E|ZC\[D]

→ Fa|ZC\[D]
→ 0. By Lemma 2.11 this extends to a flat quotient

q∗E|ZC → FC → 0. Let F := FC |D. Then µ(F ) = µ(a). Let F̄ := F/T (F ).
Applying Lemma 2.12 we have

µ(a) ≥ µ(F̄D1/T (F̄D1)) + µ(F̄D2/T (F̄D2)) .

Since F̄Di/T (F̄Di) is a torsion free quotient of E|Di , by Theorem 1.21 we
have µ(ai) ≤ µ(F̄D1/T (F̄D1)) and the first statement follows.

If equality happens then we get µ(F̄Di/T (F̄Di)) = µ(ai) = µmin(E|Di).
Now we apply Theorem 1.21, which shows that r(a) = rk(F̄Di/T (F̄Di)) ≤
r(ai). �

Corollary 3.5. r(a) and
µ(a)

a
are constant for a� 0.

Proof. Since

µ(a)

a
=

deg(Fa|D)

a · r(a)
=

deg(La|D)

a · r(a)
=

deg(La)
r(a)

∈ Z
rk(E)!

,

it follows it belongs to a discrete set. Here by deg(La) we mean the degree
of the line bundle La on X computed with respect to OX(1). Moreover,
µ(ED) = aµ(E). Since µ(ED) ≥ µ(a) it follows that µ(a)/a is bounded
above by µ(E). Thus, it attains a maximum at some b0. That is,

µ(b0)

b0
= max{µ(b)

b
| b ≥ 2} .

Now consider the second set

µ(b1)

b1
= max{µ(b)

b
| b ≥ 2, (b, b0) = 1} .

Clearly, µ(b1)/b1 ≤ µ(b0)/b0 and b1 is coprime to b0. Let b = β1b1 + β0b0 be
such that b is coprime to b0 and βi ≥ 1. Then by Lemma 3.4

µ(b) ≥ β1µ(b1) + β0µ(b0)

= β1b1
µ(b1)

b1
+ β0b0

µ(b0)

b0

≥ β1b1
µ(b1)

b1
+ β0b0

µ(b1)

b1
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This shows that µ(b)/b ≥ µ(b1)/b1. But since b is coprime to b0, it follows
that µ(b)/b = µ(b1)/b1. But this shows that µ(b0)/b0 = µ(b1)/b1. Since
every b sufficiently large can be written as a positive linear combination of
b0 and b1, it follows that µ(a)/a is constant for a ≥ a0. Let λ = µ(a)/a.
Then

µ(a1) + µ(a2)

a1 + a2
=
λ(a1 + a2)

a1 + a2
=
µ(a)

a
Since a = a1 + a2 it follows that

(3.6) µ(a) = µ(a1) + µ(a2) .

Now from Lemma 3.4 it follows that r(a) ≤ min{r(a1), r(a2)}. So if we take
a ≥ 2a0, we see that r(a) ≤ min{r(a0), r(a− a0)} ≤ r(a0). Let a1 ≥ 2a0 be
the number at which the minimum is attained. Let a ≥ 2a1. Then we get
that r(a) ≤ min{r(a1), r(a − a1)} ≤ r(a1). This shows that r(a) = r(a1).
This proves that r(a) is eventually constant. �

Lemma 3.7. ∃ L ∈ Pic X such that La ∼= L for a� 0.

Proof. Let us choose d0 ≥ 3 such that for a ≥ d0 both r(a) and µ(a)/a are
constant. Define r := r(a). Let a ≥ 2d0. Choose a1 = d0 and a2 = a− d0 ≥
d0. Let the notation be as in Lemma 3.4. Let U ⊂ Zreg

C be the locus of
points where FC is locally free. Then using Lemma 2.12 (3) we see that
codim(D \ U,D) ≥ 2.

By intersecting U with fibers of the map p : Zreg
C → C one checks that

codim(Zreg
C \ U,Zreg

C ) ≥ 2. Consider the line bundle A := det(FC |U ) on
U . Since Zreg

C is smooth, this extends uniquely to a line bundle on Zreg
C .

By [Har77, Chapter II, Exc. 5.15] we can extend A by a coherent sheaf Ã
over ZC . Notice that we can assume Ã is torsion free (if not, replace Ã by

Ã/T (Ã). Since A is torsion-free, Ã|Zreg
C

= A.) Thus, it is C-flat.

Alternatively, we can do the following. Recall that ZC is normal and
integral. Now let j : Zreg

C → ZC be the inclusion. Define Ã := j∗A. If

Spec R ⊂ ZC is an affine open subset, then Ã(Spec R) = A(U ∩ Spec R).
Now (U ∩ Spec R) ⊂ U is an open set whose complement has codimension
≥ 2 in Spec R. Since R is normal, we have O(U ∩ Spec R) = R. Now
since A is coherent over Zreg

C , A(U ∩ Spec R) is finitely generated over

O(U ∩ Spec R) = R. Hence Ã is a coherent sheaf over ZC . The above

argument also shows that Ã is in fact torsion free. Thus, it is C-flat.
We need to make an observation about restricting Ã to Di \ Ds. Since

Di \Ds ⊂ U (using FC is locally free on U), it follows that

Ã|Di\Ds = A|Di\Ds(3.8)

= det(F̄Di |Di\Ds)
= det((F̄Di/T (F̄Di))|Di\Ds)

Now F̄Di/T (F̄Di) is a quotient of E|Di with

µ(F̄Di/T (F̄Di)) = µ(ai) = µmin(E|Di) ,
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and rk(F̄Di/T (F̄Di)) = r = r(a) = r(ai). Now we apply Corollary 1.22,
which shows that Fai |Di and F̄Di/T (F̄Di) agree on an open subset of Di

whose complement has codimension ≥ 2. In particular, they have the same
determinant. This proves that

det((F̄Di/T (F̄Di))|Di\Ds) = Lai .

Thus, we get

Ã|Di\Ds ∼= Lai |Di\Ds .

It is clear that for a point [D′] ∈ C \ [D]

Ã|D′ ∼= La|D′ .

Recall p : ZC → C. Consider p∗(L∨a ⊗Ã). Since h0(D′,L∨a ⊗Ã|D′) = 1, it

follows by semi-continuity that h0(D,L∨a ⊗ Ã|D) ≥ 1. Let φ : La|D → Ã|D
be a non-zero map. It has to be non-zero restricted to one of the Di, say
D1. So we have a non-zero map φ : La|D1 → Ã|D1 . But we have seen above

that Ã|D1\Ds
∼= La1 |D1\Ds . Thus, we have a non-zero map φ : La|D1\Ds →

La1 |D1\Ds . We claim that both La and La1 have the same degree on X and
so they have the same degree on D1. Note that

µ(a) = µ(Fa|D′) =
deg(La|D′)

r(a)
=
adeg(La)
r(a)

.

Thus,

deg(La) =
r(a)µ(a)

a
=
r(a1)µ(a1)

a1
= deg(La1) .

Since D1 \ Ds is an open subset whose complement has codimension ≥ 2
in D, this proves that φ : La|D1 → La1 |D1 is an isomorphism. Restrict this
isomorphism to a point z ∈ (D1 ∩D2) \Ds. This shows that the restriction
of φ : La|D2 → La2 |D2 is non-zero and so this is also an isomorphism by the
same reason.

We can fix D2 and vary D1 in an open set and apply the above argument.
Then this shows that La|D1

∼= La1 |D1 for D1 varying in an open subset of
|O(a1)|. Applying Lemma 3.3 we see that La ∼= La1 . This proves that all
the La are isomorphic for a ≥ 2d0. �

To summarize, we have proved the following. For each a � 0, we have
a non-empty open set Ua ⊂ P(H0(X,OX(a))∨) such that each [D] ∈ Ua is
smooth and integral and E|D is torsion free on D. Over ZUa we have a
quotient q∗E → Fa → 0 such that

(1) Fa is Ua-flat.
(2) For D ∈ Ua, Fa|D is the µ-minimal destabilising quotient of E|D. In

particular, it is torsion free and µ(Fa|D) ≤ µ(E|D).
(3) We have an integer 0 < r ≤ rk E such that rk Fa = r for a� 0.
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(4) There exists L ∈ Pic(X) such that (det Fa)|D ∼= L|D for a � 0. In
particular,

(3.9) deg L =
deg L|D

a
=

deg(Fa|D)

a
=
rµ(Fa|D)

a
=
rµ(a)

a

Lemma 3.10. Suppose we are given an infinite set N ⊂ N such that for
each a ∈ N , we have a non-empty open set Wa ⊂ P(H0(X,OX(a))∨) with
each [D′] ∈ Wa is smooth and integral. Moreover, also assume that over
ZWa we have a quotient q∗E → Ga → 0 such that

(1) E|D′ is torsion free ∀[D′] ∈Wa.
(2) Ga is Wa-flat.
(3) Ga|D′ is torsion-free and rk(Ga|D′) = r ∀ a ∈ N, ∀[D′] ∈Wa.
(4) There exists L ∈ Pic(X) such that det(Ga)|D′ ∼= L|D′ for ∀ a ∈ N .

Then ∃ an open set X ′ ⊂ X with codim(X \ X ′, X) ≥ 2 and quotient
E|X′ → FX′ → 0 over X ′ with det(FX′) = L.

Proof. Fix a ∈ N and [D′] ∈Wa. Then we have the quotient E|D′ → Ga|D′ .
Let U ′ ⊂ D′ be the largest open set over which E|D′ and Ga|D′ are locally
free. Since both are assumed to be torsion-free and D′ is smooth, we have
codim(D′ \ U ′, D′) ≥ 2. We have a surjection over U ′ :

(3.11) E|U ′ Ga|U ′ 0

We will show that there is an a � 0 in N such that the quotient 3.11
extends to a quotient E|X′ → FX′ of locally free sheaves over a large open
set U ′ ⊂ X ′ ⊂ X and det(FX′) = L.

Note that a quotient as in 3.11 induces a morphism

U ′ −→ Gr(EU ′ , r) .

Consider the composite of the above with the Plucker embedding U ′ →
Gr(EU ′ , r) → P(

∧r EU ′). By definition it is defined by taking r-th exterior
power of 3.11:∧r(E|U ′)

∧r(Ga|U ′) = det(Ga)|U ′ = L|U ′

Since D′ is smooth, codim(D′ \ U ′, D′) ≥ 2 and L|D′ is locally free, this
extends to a homomorphism σD′ :

∧r(E|D′)→ L|D′ . This is clear if E|D′ is
locally free. If not, then we may take a resolution of the type OD′(−β)⊕s →
OD′(−α)⊕t → F → 0, and use the commutative diagram

0 // HomD′(F ,L) //

��

HomD′(OD′(−α)⊕t,L) //

o
��

HomD′(OD′(−β)⊕s,L)

o
��

0 // HomU ′(F ,L) // HomU ′(OD′(−α)⊕t,L) // HomU ′(OD′(−β)⊕s,L)

Consider the exact sequence

0→ L(−a)→ L → L|D′ → 0 .
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Applying Hom(
∧r E, ) we get:

0→ Hom(
r∧
E,L(−a))→ Hom(

r∧
E,L)→Hom(

r∧
E, LD′)

→Ext1(
r∧
E,L(−a)) .

Now

Ext1(
r∧
E,L(−a)) =Hn−1(X,

r∧
E ⊗ ωX ⊗ L(a))∨

=0 for a� 0

Hence we get that σD′ extends to σ :
∧r E → L.

Define X ′ ⊂ X as the open set where E is locally free and σ is a surjection.
Since X is smooth, E is torsion free, it follows that if ED′ is locally free at
a point z ∈ D′, then E is locally free at z ∈ X. This shows U ′ ⊂ X ′. The
restriction σX′ := σ|X′ defines a map X ′ → P(

∧r EX′) which extends the
map U ′ → P(

∧r EU ′).
Next we show that codim(X \X ′, X) ≥ 2. If not, let Z ′ ⊂ X \X ′ be a

divisor. Clearly, since D′ is ample, the intersection D′ ∩ Z ′ is a divisor in
D′. Moreover,

∧r E → L is not surjective on D′ ∩ Z ′. But this will imply
that codim(D′ \ U ′, D′) = 1, which is a contradiction.

Moreover, replacing X ′ by the open set X ′ \ (D′ \U ′) we can assume that
X ′ ∩D′ = U ′. Since D′ \ U ′ has codimension ≥ 2 in D′, the complement of
this modified X ′ again has codimension ≥ 2 in X.

Next we want to show that for a� 0 the morphism X ′ → P(
∧r EX′) fac-

tors as X ′ → Gr(EX′ , r) ↪→ P(
∧r EX′), that is, that we have a commutative

diagram

U ′ X ′

Gr(EX′ , r)

Recall that P(
∧r EX′) is the relative Proj associated to the graded sheaf of

OX′-algebra S•(
∧r EX′). Let I ⊂ S•(

∧r EX′) be the graded sheaf of ideals
associated to the closed subscheme Gr(EX′ , r) ↪→ P(

∧r EX′). Since I is
finitely generated and graded, we can assume that Iν := I ∩ Sν(

∧r EX′),
for ν ≤ ν0, generate I as an S•(

∧r EX′)-module.
The map σX′ is induced by the following homomorphism of OX′-algebras.

(3.12) S•(
r∧
E|X′) =

⊕
ν≥0

Sν(
r∧
E|X′)

⊕νψν−−−→
⊕
ν≥0

Lν |X′
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Thus, σX′ : X ′ → P(
∧r EX′) may be written as

Proj(
⊕
ν≥0

Lν |X′) Proj(S•(
∧r E|X′))

X ′ P(
∧r E|X′)

∼ ∼

Thus, σX′ factors through Gr(EX′ , r) iff the image of I|X′ under the homo-
morphism 3.12 is zero. Since I|X′ is generated by Iν |X′ for ν ≤ ν0, it is
enough to show that the maps ψν : Iν |X′ → Lν |X′ are zero for ν ≤ ν0. Since
U ′ already factors through Gr(EU ′ , r), we have ψν |U ′ = 0. Now consider the
exact sequence over X:

0→ Lν(−a)→ Lν → Lν |D′ → 0

Restricting this exact sequence to X ′ and using the fact that U ′ = X ′ ∩D′
we have an exact sequence over X ′:

0→ Lν(−a)|X′ → Lν |X′ → Lν |U ′ → 0

Applying Hom(Iν |X′ , ) we get the left exact sequence

0→ Hom(Iν |X′ ,Lν(−a)|X′)→ Hom(Iν |X′ ,Lν |X′)→ Hom(Iν |X′ ,Lν |U ′)
since ψν |U ′ is zero, we get ψ ∈ Hom(Iν |X′ ,Lν(−a)|X′). Taking a surjection
of the typeOX′(−t)⊕s � Iν |X′ , we easily see that, Hom(Iν |X′ ,Lν(−a)|X′) =
0 for a� 0.

Therefore, by choosing a � 0 in N , we see that the morphism X ′ →
P(
∧r EX′) factors through a morphism X ′ → Gr(EX′ , r). In other words,

we have a quotient of locally free sheaves

E|X′ → FX′ → 0

such that its r-th exterior power is the morphism
∧r E|X′ → L|X′ → 0 �

Proof of Theorem 3.1. Choose a0 � 0 as in Lemma 3.7. We claim that the
restriction of E to a general hypersurface D′ of degree ≥ a0 is µ-semistable.
Assume that this is not the case. Then the slope

µ(a) = µ(Fa|D′) < µ(E|D′) .
Taking N = N≥a0 , Wa = Ua, Ga = Fa and L = La in Lemma 3.10, we

get a locally free quotient EX′ → FX′ → 0 where X ′ ⊂ X is an open set
such that codimX(X \X ′) ≥ 2, det(FX′) = L and rk(FX′) = r. Since E is
µ-semistable we get that (see equation (3.9))

µ(E) ≤ µ(FX′) =
deg(L)

r
=
µ(a)

a
.

Hence µ(a) ≥ a.µ(E) = µ(E|D′) for [D′] ∈ Ua. This gives

µ(a) < µ(E|D′) ≤ µ(a),

a contradiction. �
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4. Fields of definitions

Lemma 4.1. Let k ⊂ K be a Galois extension and let G = Gal(K/k). Let
V be a K-vector space and let WK ⊂ V ⊗K be a subspace which is invariant
under G. Then there is a subspace W ⊂ V such that WK = W ⊗K.

Proof. The inclusion WK ⊂ V ⊗ K is a G-equivariant map of K vector

spaces. Denote the quotient by Q. Then the natural map V ⊗ K π−→ Q is
G-equivariant and a map of K vector spaces. Let ei, for i ∈ I, be a k basis
for V . Then the K span of the images π(ei) is equal to Q. Thus, we may
find a subset J ⊂ I such that π(ej), for j ∈ J , is a basis for Q as a K-vector
space. Now consider the map⊕

j∈J
ej ⊗K → Q .

This map is G-equivariant and an isomorphism of K-vector spaces. Thus,
we have found a subspace V ′ ⊂ V (the k span of ej for j ∈ J) such that

V ⊗K ∼= V ′ ⊗K
⊕

WK .

The isomorphism is G equivariant. Taking G invariants on both sides we
get

V ∼= V ′ ⊗ (WK)G .

Now it follows easily that (WK)G ⊗ K → WK is an isomorphism. This
completes the proof of the lemma. �

Definition 4.2. Let k ⊂ E be fields. A k-derivation of E is a k-linear map
D : E → E which satisfies the Leibniz rule, that is, D(ef) = eD(f)+fD(e).

Since D(1.1) = D(1) + D(1) it follows that D(1) = 0 and so D(k) = 0.
The set of derivations is denoted Derk(E). It is a Lie algebra under the Lie
bracket [D1, D2] = D1 ◦D2 −D2 ◦D1.

Lemma 4.3. Let k be a field of char p > 0 and let k ⊂ E be a purely
inseparable extension of degree p. If β ∈ E is such that D(β) = 0 for all
D ∈ Derk(E) then β ∈ k.

Proof. Clearly E = k[T ]/(T p − α) for some α ∈ k. It is easily checked that
the map defined as

D : k[T ]→ k[T ] D(T i) := iT i−1 i > 0

and extended k-linearly, descends to E and defines a k-derivation on E. Let
β ∈ E be such that D(β) = 0. Let f(T ) ∈ k[T ] be a lift of β such that the
degree of f(T ) < p. Since D(β) = 0, it follows that D(f(T )) = (T p−α)g(T ).
Looking at the degree we see that D(f(T )) = 0. This forces that f(T ) =
h(T p), but again looking at the degree we see that f(T ) is a constant. Thus,
β ∈ k. �
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Lemma 4.4. Let k ⊂ K be a purely inseparable extension. Let V be a sheaf
over Xk and let WK ⊂ V⊗K be a subsheaf. Assume that HomXK (WK , (VK/WK)) =
0. Then there is a subsheaf W ⊂ V such that WK = W ⊗K.

Proof. We will first show that for every D ∈ Derk(K) we have D(WK) ⊂
WK . For this consider the map

ψ : WK ⊂ VK
D−→ VK → VK/WK .

This map is K-linear since

ψ(λw) = D(λw) modWK

= D(λ)w + λD(w) modWK

= λD(w) modWK

= λψ(w)

In the above we have used that D(λ) ∈ K and so D(λ)w ∈ WK . Since
HomXK (WK , (VK/WK)) = 0 it follows that D(WK) ⊂ WK . We have a
short exact sequence

0→WK → V ⊗K → Q→ 0

where Q is a K-vector space and also a Derk(K)-module. Let ei, for i ∈ I,
be a k basis for V . Then the K span of the images π(ei) is equal to Q.
Thus, we may find a subset J ⊂ I such that π(ej), for j ∈ J , is a basis for
Q as a K-vector space. Now consider the map⊕

j∈J
ej ⊗K → Q .

This is an isomorphism of K-vector spaces such that the diagram⊕
j∈J ej ⊗K //

D

��

Q

D

��⊕
j∈J ej ⊗K // Q

commutes for all D ∈ Derk(K). Thus, we have found a subspace V ′ ⊂ V
(the k span of ej for j ∈ J) such that

V ⊗K ∼= V ′ ⊗K
⊕

WK .

This isomorphism respects the action of Derk(K) on both sides. There is a
field K1 such that k ⊂ K1 ⊂ K and [K : K1] = p. Let A denote the algebra
DerK1(K). Then A ⊂ Derk(K). Taking the elements on both sides which
are annihilated by A we get that

V ⊗k K1
∼= V ′ ⊗k K1

⊕
W1

Here we have used the previous Lemma. Clearly, W1⊗K1K →WK is an iso-
morphism. We have thus descendedWK toK1. Since HomXK (WK , (VK/WK)) =
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0 it follows that HomXK1
(W1, (VK1/W1)) = 0. Proceeding in this fashion

we descend WK to W ⊂ V . �

5. Socle and extended socle for semistable sheaves

All the results in this section can be found in [HL10, Section 1.5]. How-
ever, we mention them to motivate the results in the next section.

Definition 5.1. Let E be a semistable sheaf on X. The socle is defined
to be the largest polystable sheaf (defined over X) which is contained in E
and has the same reduced Hilbert polynomial as E. We denote the socle by
Soc(E). (See [HL10, Lemma 1.5.5])

Definition 5.2. Let E be a semistable sheaf on X. The extended socle is
the largest subsheaf F ⊂ E with the same reduced Hilbert polynomial as E
such that graded pieces appearing in a Jordan Holder filtration of F are the
same as the graded pieces appearing in the socle.

Lemma 5.3. The socle and extended socle are invariant under automor-
phisms of X and E. (See [HL10, Lemma 1.5.9])

Lemma 5.4. The extended socle satisfies HomX(F,E/F ) = 0.

Proof. If F = E then there is nothing to prove. Let us assume that there
is a non-zero homomorphism ϕ : F → E/F , and let W ⊂ E/F denote the
image. Let W1 denote the preimage of W in E. One easily checks that the
reduced Hilbert polynomial of W1 is the same as that of E and that W1 is
semistable. Moreover, F $ W1 and every graded piece of W1 in a Jordan
Holder filtration is a graded piece appearing in a Jordan Holder filtration
of F or in a Jordan Holder filtration of W . But since W is a quotient of
F , the graded pieces appearing in a Jordan Holder filtration of W1 already
appear as graded pieces in the Jordan Holder filtration of F . Thus, F $W1

is semistable, with the same graded pieces in a Jordan Holder filtration as
that of Soc(E) and has the same reduced Hilbert polynomial as E. This
contradicts the maximality of F . �

Lemma 5.5. Let E be a stable sheaf on Xk. Let k ⊂ K be an algebraic
extension. Then the extended socle of EK is equal to EK .

Proof. Suppose the extended socle is FK $ EK . By Lemma 5.4 we know
that HomXK (FK , EK/FK) = 0. Since the extended socle is invariant under
automorphisms of XK and EK it follows that it is invariant under Gal(K/k).
By Lemma 4.1 and Lemma 4.4 it follows that there is a subsheaf F $ E
such that FK = F ⊗K. But this contradicts the stability of E since we get
a destabilizing sheaf. �

Lemma 5.6. If E is simple, semistable and equals its extended socle then
E is stable.
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Proof. Let E → F be a quotient such that F is stable and 0 < rk(F ) <
rk(E). Since E is its own extended socle, it follows that F appears in
Soc(E). Thus, there is a map E → F ⊂ E. Since E is simple, it follows
that E ∼= F , which is a contradiction. �

Lemma 5.7. Let E be a semistable and simple sheaf. Then E is stable iff
E is geometrically stable.

Proof. Let k ⊂ K denote the algebraic closure. Assume EK is stable. Then
it is clear that E is stable. Conversely, assume that E is stable. Since EK
is simple and semistable, by the previous lemma it suffices to show that EK
equals its own extended socle. But this has been proved in Lemma 5.5. �

6. Socle and extended socle for µ-semistable sheaves

We need to modify the discussion in the preceding section for the proof
of the µ-stable restriction theorem. We briefly discuss this. Most of this
section is contained in [HL10, Section 1.6].

Definition 6.1. Let E be a µ-semistable sheaf. A µ-Jordan Holder filtration
for E is a filtration 0 $ E1 $ E2 $ . . . $ Er = E such that µ(Ei+1/Ei) =
µ(E).

We remark that we do not require that the sheaves Ei+1/Ei are torsion
free. However, it is easily checked that the torsion in Ei+1/Ei will be in
codimension ≥ 2. It is also easily checked that given two Jordan Holder
filtrations Ei and E′j , there is an open subset U with codim(X \ U,X) ≥ 2,

such that when restricted to U , the sheaves ⊕iEi+1/Ei and ⊕iE′i+1/E
′
i are

isomorphic. Let S := {F |F ⊂ E , µ(F ) = µ(E) , F is µ-stable }. Let F0

be a subsheaf of E, of largest possible rank, such that F0 is a direct sum
of sheaves in S. Let F̃0 be the saturation of F0, that is, the kernel of the
map E → E/F0 → (E/F0)/T (E/F0). One easily checks that if F ⊂ E is

any µ-stable sheaf with µ(F ) = µ(E), then F ⊂ F̃0. Thus, we may also

characterize F̃0 as the saturation of the sum of all µ-stable subsheaves of E
with slope µ(E). Define the socle of E to be Soc(E) := F̃0.

It is clear that if K/k is a Galois extension and EK is µ-semistable on
XK , then Soc(EK) is invariant under Gal(K/k).

Next we define the extended socle for a µ-semistable sheaf E. Consider
the collection of sheaves F ⊂ E which satisfy the following conditions

(1) Soc(E) ⊂ F
(2) Let Fi be a µ-Jordan Holder filtration for F . Then each Fi+1/Fi

agrees with a graded piece in the µ-Jordan Holder filtration of Soc(E)
on some open subset U such that codim(X \ U,X) ≥ 2.

Let F be a maximal sheaf in this collection. If F1 and F2 are two such
maximal sheaves, then one easily proves that Hom(F1, E/F2) = 0. This
shows that there is a unique maximal sheaf which satisfies these proper-
ties. Define this to be the extended socle of E. It is clear that F satisfies
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Hom(F,E/F ) = 0. It is also clear that if K/k is a Galois extension and EK
is µ-semistable on XK , then the extended socle is invariant under Gal(K/k).

Lemma 6.2. Let E be a µ-stable sheaf on Xk. Let k ⊂ K be the algebraic
closure. Then the extended socle of EK is equal to EK .

Proof. Suppose the extended socle is FK $ EK . From the above discussion
we know that HomXK (FK , EK/FK) = 0. Let L be the separable closure of
k in K. By Lemma 4.4 it follows that there is a subsheaf FL $ EL such
that FK = FL ⊗L K.

Tha Galois group Gal(L/k) acts on EL. Let us check that g(FL) = FL.
Note that g(FL) ⊗L K = g(FL ⊗L K) = g(FK) = FK . This forces that
g(FL) = FL. By Lemma 4.1 it follows that there is a subsheaf F $ E such
that FL = F ⊗k L. But this contradicts the stability of E since we get a
destabilizing sheaf. �

Lemma 6.3. Let X be a normal and integral scheme. If E is reflexive,
simple, µ-semistable and equals its extended socle then E is µ-stable.

Proof. Let E → F be a quotient such that F is µ-stable and 0 < rk(F ) <
rk(E). Since E is its own extended socle, it follows that there is a large
open subset U such that FU appears in Soc(E)U . Thus, there is a map
EU → FU ⊂ EU . Since E is reflexive on a normal and integral scheme it
satisfies Serre’s condition S2. Using [Har77, Chapter III, Ex. 2.3, Ex 3.4]
it follows that Hom(E,E)→ HomU (E,E) is surjective. Since EU is simple,
we get a contradiction. �

Remark 6.4. Since E is torsion free, it follows that Hom(E,E) is torsion
free. Again applying [Har77, Chapter III, Ex. 2.3, Ex 3.4] we have shown
in the above lemma that the sheaf Hom(E,E) is reflexive if E is reflexive
on a normal and integral scheme.

Lemma 6.5. Let X be a normal and integral scheme. Let E be a reflexive,
µ-semistable and simple sheaf. Then E is µ-stable iff E is geometrically
µ-stable.

Proof. Let k ⊂ K denote the algebraic closure. Assume EK is µ-stable.
Then it is clear that E is µ-stable. Conversely, assume that E is µ-stable.
Since EK is reflexive, simple and µ-semistable, by the previous lemma it
suffices to show that EK equals its own extended socle. But this has been
proved in Lemma 6.2. �

7. Openness of certain loci

Lemma 7.1. Let k be a field. Let Y be a projective k-scheme with a fixed
very ample line bundle OY (1). Let F be a coherent sheaf on Y such that
Supp(F) = Y . Let reg(F) ≤ ρ and dim F = dim Y = d. Let V be a vector
space of dimension P (F , ρ) and define G := V ⊗OPdk

(−ρ) on Pdk. Then we
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have an inclusion of sets of polynomials

{P (F ) | F → F → 0, F is pure, µ̂(P (F )) ≤ λ} ⊂
{P (G) | G → G→ 0, G is pure, µ̂(P (G)) ≤ λ} .

Proof. Let q : F → F → 0 be a pure quotient on Y . We want to construct
a quotient q′ : G → G → 0 on Pd such that G is pure and P (G) = P (F ).
We have the closed immersion Y ↪→ PNk given by OY (1). Choose a linear

subspace L ⊂ PNk of dimension N −d− 1 which is disjoint from Y . Then we

have the projection PNk \L→ Pdk. Denote the composition Y ↪→ PN \L→ Pd
by π. Then π is finite and π∗OPd(1) = OY (1). Hence, π∗q is surjective.
Therefore, by projection formula and finiteness of π, we have

P (π∗F) = P (F), P (π∗F ) = P (F ), reg(π∗F) = reg(F) ≤ ρ .
Using this last equality we get a surjection H0(Pd, π∗F(ρ)) ⊗ OPd(−ρ) →
π∗(F). Again using reg(π∗F) ≤ ρ we have H i(Pd, π∗F(ρ)) = 0 ∀ i > 0.
Hence H0(Pd, π∗F(ρ)) = P (π∗F , ρ) = P (F , ρ). Therefore, we get a quotient

H0(Pd, π∗F(ρ))⊗OPd(−ρ)→ π∗(F)→ π∗F

It is clear that π∗F is pure. Since P (π∗F ) = P (F ) it follows that µ̂(P (π∗F )) =
µ̂(P (F )) ≤ λ. �

Proposition 7.2. [HL10, Proposition 2.3.1] Let f : Z → S be a projective
morphism of k-schemes of finite type. Let F be a coherent sheaf on Z which
is flat over S. Further assume that Supp(F) = Z. Then the following
subsets of S are open

(1) Usim = {s ∈ S | Fk(s) is simple on Zk(s)}
(2) Upr = {s ∈ S | Fk(s) is pure on Zk(s)}
(3) Ust = {s ∈ S | F

k(s)
is stable on Z

k(s)
}

(4) Uss = {s ∈ S | Fk(s) is semistable on Zk(s)}
(5) Uµ−ss = {s ∈ S | Fk(s) is µ-semistable on Zk(s)}
(6) Uµ−st = {s ∈ S | F

k(s)
is µ-stable on Z

k(s)
}

Proof. The statement (1) in the proposition is a consequence of semi-continuity
for relative Ext sheaves.

Let Z ↪→ S × Pmk be an embedding and consider the pullback of O(1) to
Z. The Hilbert polynomial of Fk(s), with respect to O(1) is independent of
s ∈ S. We denote this Hilbert polynomial by P and the reduced Hilbert

polynomial by p. Recall that we defined αi(P ) as the coefficient of
ti

i!
in P i.e.

P (t) =
∑
αi(P )

ti

i!
. If P (t) is a degree d polynomial, then µ̂(P ) :=

αd−1(P )

αd(P )
.

Define A to be the set of polynomials P (F ′, t), where F ′ is a sheaf satis-
fying the following three conditions

(a) There is a point s ∈ S such that F
k(s)
→ F ′ is a quotient on Z

k(s)

(b) F ′ is pure of dimension d = dim(Z
k(s)

)
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(c) µ̂(P (F ′)) ≤ µ̂(P )

We will first show that A is finite. Since the set {Fk(s)|s ∈ S} is bounded,
by [HL10, Lemma 1.7.6] there is ρ such that reg(Fk(s)) ≤ ρ. This shows
that for every s ∈ S, the regularity of the sheaf F

k(s)
on Z

k(s)
is ≤ ρ. It is

clear that Supp(F
k(s)

) = Z
k(s)

. Hence by Lemma 7.1 we have

{P (F ′) | F
k(s)
→ F ′ → 0, F ′ is pure on Z

k(s)
, µ̂(P (F ′)) ≤ λ} ⊂

{P (G) | G
k(s)
→ G→ 0, G is pure on Pd

k(s)
, µ̂(P (G)) ≤ λ} .

But every polynomial in the latter set already occurs in the set

{P (G) | Gk̄ → G→ 0, G is pure over Pdk̄, µ̂(P (G)) ≤ λ}

since every k(s) point of a Quot scheme factors through a k̄ point. Thus, A
is contained in the set

{P (G) | Gk̄ → G→ 0, G is pure on Pdk̄, µ̂(P (G)) ≤ µ̂(P )} .

By [HL10, Lemma 1.7.9] we have that A is finite.
To prove (2)-(6) we will consider each of the following sets:

(2) A2 := {P ′ ∈ A |αd(P ′) = αd(P ) and P 6= P ′}
(3) A3 := {P ′ ∈ A | p′ ≤ p and αd(P

′) < αd(P )}
(4) A4 := {P ′ ∈ A | p′ < p and αd(P

′) < αd(P )}
(5) A5 := {P ′ ∈ A | µ̂(P ′) < µ̂(P ) and αd(P

′) < αd(P )}
(6) A6 := {P ′ ∈ A | µ̂(P ′) ≤ µ̂(P ) and αd(P

′) < αd(P )}
Each of the above is a finite set since A is finite. For each 2 ≤ i ≤ 6 we
consider the morphism

Qi :=
⊔

P ′∈Ai

QuotZ/S(F , P ′)→ S

Let Si be the image of this morphism. It is closed since the above morphism
is projective. We claim that S \(Si∪S2) is precisely the set in U in assertion
(i) in the statement of the proposition. Here we only prove (2), (5) and (6).

Proof of (2). Let s ∈ S \ U2, that is, T (Fk(s)) 6= 0. Therefore, we
have the quotient Fk(s) → Fk(s)/T (Fk(s)) =: F ′ such that F ′ is pure,
µ̂(P (F ′)) ≤ µ̂(P ) and αd(F ) = αd(F

′). Thus, P (F ′) ∈ A2 and we get a
k(s) point of Q2 whose image is in S2. This shows that S \ Upr ⊂ S2.

Conversely, start with s ∈ S2. This means that there is a k(s) point of

Q2 which maps to the given k(s) point of S2. This implies that there is
a quotient F

k(s)
→ F ′ on Z

k(s)
with deg P (F ′) = d, αd(P (F ′)) = αd(P )

and P (F ′) 6= P . Thus, the kernel of F
k(s)
→ F ′ is a non-trivial sheaf of

dimension ≤ d − 1. Therefore, F
k(s)

is not pure and so Fk(s) is not pure.

This shows that S2 ⊂ S \ Upr.
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Proof of (5). Let s ∈ S \ Uµ−ss, that is, Fk(s) is not µ-semistable. By
definition we can have two situations:

(a) Fk(s) is not pure
(b) Fk(s) is pure and ∃ a quotient F ′ of over Zk(s) such that F ′ is pure of

dimension d, αd(P (F ′)) < αd(P ) and µ̂(P (F ′)) < µ̂(P ).

By (2), (a) implies that s ∈ S2 and (b) implies P (F ′) ∈ A5, giving a k(s)
point of Q5, which in turn implies s ∈ S5. This proves that S \ Uµ−ss ⊂
S2 ∪ S5.

Now suppose s ∈ S2 ∪ S5. If s ∈ S2, then by (2) Fk(s) is not pure and
hence not µ-semistable. So assume s ∈ S5 \ S2. By (2) we have that Fk(s)

is pure. There ∃ a quotient F
k(s)
→ F ′ over Z

k(s)
with deg P (F ′) = d and

µ̂(P (F ′)) < µ̂(P ). Therefore we get that F
k(s)

is not µ-semistable. Because

of the existence and uniqueness of Harder-Narasimhan filtration, we have
that Fk(s) is not µ-semistable. This shows that S2 ∪ S5 ⊂ S \ Uµ−ss.

Proof of (6). Let s ∈ S \Uµ−st, that is, F
k(s)

is not µ-stable. Again we have

two cases:

(a) F
k(s)

is not pure, which implies Fk(s) is not pure

(b) Fk(s) is pure. ∃ a pure quotient F
k(s)

→ F ′ over Z
k(s)

such that

µ̂(P (F ′)) ≤ µ̂(P ) and 0 < αd(P (F ′)) < αd(P ).

In case (a) s ∈ S2 and in case (b) s ∈ S6. This proves that S\Uµ−st ⊂ S2∪S6.
Now suppose s ∈ S2∪S6. If s ∈ S2 then Fk(s) is not pure and hence F

k(s)
is

not pure and so not µ-stable. Let s ∈ S6 \S2. Then ∃ a quotient F
k(s)
→ F ′

over Z
k(s)

with deg P (F ′) = d, αd(P (F ′)) < αd(P ) and µ̂(P (F ′)) ≤ µ̂(P ).

Therefore, F
k(s)

is not µ-stable. This proves that S2 ∪ S6 ⊂ S \ Uµ−st.

The other cases are dealt with similarly. The proposition is proved since the
set Si ∪ S2 is closed. �

8. Stable Restriction Theorem

In this section we will prove the µ-stable restriction theorem [MR84, The-
orem 4.3].

Theorem 8.1. Let X be a smooth projective variety of dimension n ≥ 2
over an algebraically closed field k. Let OX(1) be a very ample line bundle
on X. Let E be a µ-stable sheaf on X. Then there is an integer a0 such
that for all a ≥ a0 there is a non-empty open set Ua ⊂ Πa such that for
all [D] ∈ Ua the divisor D is smooth and E|D is µ-stable with respect to
OX(1)|D.

We will prove this theorem by contradiction, that is, we will assume that
there are infinitely many a for which E|D is not µ-stable a general D ∈ Πa.
From this we will construct a set N ⊂ N with the following properties. For
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each a ∈ N , we have a non-empty open set Wa ⊂ P(H0(X,OX(a))∨) such
that

(1) each [D] ∈Wa is smooth and integral.
(2) For D ∈Wa, E|D is µ-semistable.

Over ZWa we have a quotient q∗E → Ha → 0 such that

(1) Ha is Wa-flat.
(2) For D ∈Wa, Ha|D is torsion-free and µ(Ha|D) = µ(E|D).
(3) We have an integer 0 < r < rk E such that rk Ha = r ∀ a ∈ N.
(4) There exists L ∈ Pic X such that ∀ a ∈ N, det(Ha)|D ∼= L|D.

Then we will apply Lemma 3.10 to get a contradiction.

Lemma 8.2. Let F be a reflexive sheaf on a smooth projective variety X
over an algebraically closed field. Then H1(X,F (−a)) = 0 for a� 0.

Proof. For a reflexive sheaf there is a short exact 0 → F → F0 → G →
0 where F0 is a direct sum of line bundles OX(b). The Lemma follows
from the long exact cohomology sequence and Serre duality (Exti(A,B) =
Extn−i(B,A⊗ ωX)∨). �

Lemma 8.3. Let E be reflexive. There is an a0 depending on E such that
the following happens. If a ≥ a0 is such that E|D is not µ-stable for a general
D ∈ Πa, then we have a non-empty open set Wa ⊂ P(H0(X,OX(a))∨) such
that

(1) each [D] ∈Wa is smooth and integral.
(2) For D ∈Wa, E|D is µ-semistable.

and over ZWa we have a quotient q∗E → Ha → 0 such that

(1) Ha is Wa-flat.
(2) For D ∈Wa, Ha|D is torsion-free and µ(Ha|D) = µ(E|D).

Proof. Tensoring the following short exact sequence (defined by a general
section of |OX(a)| and using Lemma [HL10, Lemma 1.1.12]) withHom(E,E)

0→ OX(−a)→ OX → OD → 0,

taking cohomology and applying Remark 6.4, Lemma 8.2, we see that there
is a0 � 0 (and larger than the one appearing in Theorem 3.1) such that for
a ≥ a0 we have End(E) → End(E|D) is an isomorphism. Thus, the sheaf
E|D is simple.

Now consider the family Za → Πa and recall that q∗E is flat over Πa.
By Theorem 3.1 we know that if [D] ∈ Ua then E|D is µ-semistable. From
Proposition 7.2 it follows that over the generic point η ∈ Πa, q

∗Ek(η) is
simple and µ-semistable.

By [HL10, Corollary 1.1.14 (ii)] E|D is reflexive for general [D]. It follows
from [Gro64, Theorem 12.2.1(v)] and the criterion that on a normal and
integral scheme reflexive is equivalent to S2, that the set

Uref = {s ∈ S | q∗Ek(s) is reflexive on Zk(s)}
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is open in S. Thus, q∗Ek(η) is also reflexive.
Let us assume that E|D is not µ-stable for general [D] ∈ Πa. This is

equivalent to saying that the set Uµ−st in Proposition 7.2 is empty, that

is, q∗Ek(η) ⊗ k(η) is not µ-stable. Since q∗Ek(η) is reflexive, simple and µ-
semistable it follows, using Lemma 6.5, that q∗Ek(η) is not µ-stable. Take
quotient by the extended socle and extend it to a quotient q∗E → Ha → 0
[Har77, Chapter II, Exc. 5.15(d)] on Za. Going modulo torsion we may
assume that Ha is torsion free on Za. Using generic flatness and Proposition
7.2, we get that ∃ Wa ⊂ Πa over which Ha has the required properties. �

Taking determinant of Ha, as described in the para preceding Lemma 3.3,
we get a line bundle La ∈ Pic X.

Lemma 8.4. Let E be reflexive and let a0 be as in Lemma 8.3. Let D1 be
a general hypersurface of degree a1 ≥ a0 such that E|D1 is µ-stable. Then
for every a ≥ 2a1 and general D of degree a, we have that E|D is µ-stable.

Proof. Suppose a ≥ 2a1 be such that E|D′ is not µ-stable for a general
[D′] ∈ Πa. By Lemma 8.3, we have a flat quotient q∗E|Wa → Ha → 0.
Fix D1 ∈ Πa1 and D2 ∈ Πa−a1 be such that E|Di is µ-semistable and
D := D1 + D2 is a SNC divisor. Let C ⊂ Πa such that [D] ∈ C and
C \ [D] ⊂ Wa be as in Lemma 2.7. Restrict q∗E|Wa → Ha → 0 to ZC\[D]

and by Lemma 2.11, this extends to a C-flat quotient HC over ZC . Define
H := HC |D and H̄ := H/T (H). By Lemma 2.12, we get

µ(E|D′) = µ(H) ≥ µ(H̄D1/T (H̄D1)) + µ(H̄D2/T (H̄D2))

Since E|D1 and E|D2 are µ-semistable, we have

µ(H̄Di/T (H̄D1)) ≥ µ(E|Di)

Now since µ(E|D) = µ(E|D1) +µ(E|D2) (recall from equation (3.6)), we get
that

µ(H̄Di/T (H̄Di)) = µ(E|Di)
Also by Lemma 2.12, we know that the rank of H̄Di/T (H̄Di) is equal to
rk(Ha) < rk(E). Hence this contradicts the assumption that E|D1 is µ-
stable. �

We continue our discussion with the additional assumption that E is
reflexive. This assumption will be removed in the end. Let us now assume
that there is no a0 such that for general hypersurface D of degree a ≥ a0,
the restriction E|D is µ-stable. In view of the previous Lemma, this means
that for every a ≥ a0, the restriction E|D is not µ-stable. Thus, we get
a quotient Ha and a line bundle La ∈ Pic X. Let a ≥ 2a0. We want to
understand what happens when we restrict La to the general hypersurface
D0 of degree a0.

Lemma 8.5. The restriction of La to D0 is the determinant of a destabi-
lizing quotient of E|D0.
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Proof. For this we proceed with the construction of the sheaf Ã on ZC as
done in the proof of Lemma 3.7. Note that equation (3.8) holds. Now
H̄Di/T (H̄Di) is a quotient of E|Di with

µ(H̄Di/T (H̄Di)) = µ(E|Di) = aiµ(E) .

Thus, we get that Ã|Di\Ds is the determinant of a destabilizing quotient of
E|Di .

It is clear that for a point [D′] ∈ C \ [D]

Ã|D′ ∼= La|D′ .
Let p : ZC → C. Consider p∗(L∨a ⊗ Ã). Since h0(D′,L∨a ⊗ Ã|D′) = 1, it

follows by semi-continuity that h0(D,L∨a ⊗ Ã|D) ≥ 1. Let φ : La|D → Ã|D
be a non-zero map. It has to be non-zero restricted to one of the Di, say
D1. So we have a non-zero map φ : La|D1 → Ã|D1 . But we have seen above

that Ã|Di\Ds ∼= det((H̄Di/T (H̄Di))|Di\Ds). Thus, we have a non-zero map

φ : La|D1\Ds → det((H̄D1/T (H̄D1))|D1\Ds). Let us compute degrees of both.
Let D′ be a general hypersurface of degree a.

deg(La|D′) = rk(Ha|D′)µ(Ha|D′)
= rk(Ha)µ(E|D′)
= a rk(Ha)µ(E)

Since deg(La|D′) = adeg(La), we get that

(8.6) deg(La) = rk(Ha)µ(E)

from which we deduce that

deg(La|D1) = a1 rk(Ha)µ(E) .

Similarly,

deg((H̄D1/T (H̄D1))|D1\Ds) = rk(H̄D1/T (H̄D1))µ(H̄D1/T (H̄D1))

= a1rk(H̄D1/T (H̄D1))µ(E) .

By Lemma 2.12 we have

rk(Ha) = rk(HC) = rk(HC |D) = rk(H̄D1/T (H̄D1)) .

It follows that both line bundles have same degree. Thus, the map φ :
La|D1 → det(H̄D1/T (H̄D1)) is an isomorphism.

Take D1 = D0 and take D2 to be a general hypersurface of degree a− a0.
This shows that when we restrict La to D0, we get the determinant of one
of the destabilizing quotients of E|D0 . �

The set consisting of determinants of the destabilizing quotients of E|D0

has cardinality at most 2rk(E). This set will be denoted by TD0 . Let m =

2rk(E) + 1. Suppose we have distinct integers a1, a2, . . . , am ≥ 2a0. Define
the set W (i, j) ⊂ Wa0 as follows. Let [D′] ∈ Wa0 . We say [D′] ∈ W (i, j) if
Lai |D′ ∼= Laj |D′ . Since TD′ has cardinality m − 1, it is clear that [D′] is in
W (i, j) for some pair (i, j) with i 6= j. Thus, Wa0 = ∪i 6=jW (i, j) and so one
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of the W (i, j) is Zariski dense in Wa0 . This forces that Lai |D′ ∼= Laj |D′ for
all [D′] ∈Wa0 , by Lemma 3.3.

We put an equivalence relation on N≥2a0 as follows. Define a ∼ b if
La|D′ ∼= Lb|D′ for all [D′] ∈ Wa0 . Given any subset S ⊂ N≥2a0 such that
#S = m, we get that two of its elements are equivalent. This shows that
there are at most m− 1 equivalence classes, and so at least one equivalence
class has infinite cardinality. Call this equivalence class N1. Then N1 has
the property that for every a, b ∈ N1, and for [D′] ∈ Wa0 , the bundles
La|D′ ∼= Lb|D′ , that is, La ∼= Lb =: L.

Further we may find an infinite subset N ⊂ N1 such that for every a ∈ N ,
the rank rk(Ha) is constant. This set N is the set which satisfies the criterion
in the para just before Lemma 8.3. Now we may apply Lemma 3.10.

Proof of Theorem 8.1. Let E be a reflexive sheaf. Applying Lemma 3.10
we get a quotient E|X′ → HX′ such that det(HX′) = L and rk(HX′) =
rk(Ha) < rk(E) for a ∈ N . It follows from equation (8.6) that µ(HX′) =
µ(EX′). This contradicts the stability of E. Thus, we have proved the
following, there is an integer a0 such that for a reflexive µ-stable sheaf E,
the restriction E|D, to a general hypersurface of degree a ≥ a0, is µ-stable.

Now let E be a µ-stable sheaf on X. Then E∨∨ is a reflexive µ-stable
sheaf. Let T denote the cokernel of the map E → E∨∨. It is supported on a
closed subset of X codimension ≥ 2. Restricting this to a general D we get

E|D → E∨∨|D → T |D → 0 .

Since D is general, the two sheaves on the left are torsion free and T |D is
supported on a closed set in D of codimension ≥ 2. Thus, E|D and E∨∨|D
are isomorphic on a large open set. Since E∨∨|D is µ-stable, it follows that
E|D is µ-stable. This completes the proof of the theorem. �

9. Narasimhan-Seshadri Theorem in higher dimensions

Throughout this section we assume that k = C. Let X be a algebraic
variety over C. Then X(C) has a structure of an analytic variety, which is
denoted by Xh. If X is projective, by GAGA, the two categories Coh(X)
and Coh(Xh) are equivalent. For a sheaf F ∈ Coh(X) we denote the corre-
sponding sheaf in Coh(Xh) by Fh.

In [NS65], the following theorem was proved:

Theorem 9.1. [NS65, §12, Corollary 1] Let X be a smooth projective curve
of genus ≥ 2. Then a vector bundle E of degree zero on X is stable if and
only if Eh arises from an irreducible unitary representation of the funda-
mental group π1(Xh).

Combining [Don85, Thm. 1] with [Kob87, Chapter IV, Propn. 4.13] and
[Kob87, Chapter I, Propn. 4.21] the above theorem was extended to the
case of smooth projective surfaces.
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Theorem 9.2. Let X be a smooth projective surface over C. Let H be an
ample line bundle on X. Let V be a vector bundle with c1(V ) = 0 and
c2(V ) = 0 (ci(V ) ∈ H2i(X,C)). Then V is µH-stable iff V h comes from an
irreducible unitary representation of the fundamental group π1(Xh).

In [MR84, §5], as an easy and remarkable consequence of Theorem 8.1,
Theorem 9.1 was extended to any dimension using Theorem 9.1, Theorem
9.2. In this section we sketch how to do this.

Theorem 9.3. Let X be a projective nonsingular variety over C of dimen-
sion n. Let H be an ample line bundle on X. Let V be a vector bundle on
X with c1(V ) = 0 and c2(V ).Hn−2 = 0. Then V is µH-stable iff V h comes
from an irreducible unitary representation of the fundamental group π1(Xh).

Proof. Let V h come from an irreducible unitary representation of the fun-
damental group ρ : π1(Xh)→ Ur. By Bertini’s theorem, the intersection of
n−1 general members of |aH| for a� 0 is a smooth projective curve C. By
Lefschetz hyperplane theorem for fundamental groups π1(Ch) → π1(Xh) is
surjective. Hence the representation π1(Ch) → π1(Xh) → Ur is irreducible
and unitary. Since the restriction V |Ch is associated to this representation,
by Theorem 9.1, we get that V |C is stable. The µH -stability of V easily
follows from the µ-stability of V |C .

We will prove the converse by induction on dimension of X. The base
case is when dimension of X is 2, whence it is Theorem 9.2. Let V be
µH -stable on X. Let S denote the set of isomorphism classes of µH -stable
vector bundles W with ci(W ) = 0 ∀ i > 0 and rk W = rk V . By [HL10,
Theorem 3.3.7] S is bounded. Hence the set of isomorphism classes of vector
bundles ωX ⊗W∨ ⊗ V with W µH -stable, ci(W ) = 0 ∀ i > 0 and rk W =
rk V is bounded. In particular by [HL10, Lemma 1.7.6], the regularity of
these bundles are uniformly bounded and by [HL10, Lemma 1.7.2] there
exists l1 ∈ N such that ∀ l ≥ l1 and W ∈ S, Hn−1(ωX ⊗W∨ ⊗ V (l)) =
0. By Serre duality we get H1(X,V ∨ ⊗W (−l)) = 0. Therefore the map
Hom(V,W )→ Hom(V |D,W |D) is surjective for D any member of |lH|. Fix
such a D which is smooth and such that V |D is µH -stable. By induction
hypothesis, there is an irreducible representation ρ : π1(Dh)→ Ur such that
the associated bundle is (V |D)h. Since the natural map π1(Dh) → π1(Xh)
is an isomorphism, it follows that we get a representation ρ : π1(Xh)→ Ur.
Let Vρ denote the associated bundle. It follows from Chern-Weil theory
that the Chern classes of Vρ vanish. By the first part Vρ is µH -stable on X.
Thus, Vρ ∈ S. Since Hom(V, Vρ) → Hom(V |D, Vρ|D) is surjective, we get a
non-trivial homomorphism V → Vρ. Since both of these are µH -stable of
slope 0 we get that this homomorphism is infact an isomorphism. �
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et des morphismes de schémas. I. Inst. Hautes Études Sci. Publ. Math., (20):259,
1964.

[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg,
1977. Graduate Texts in Mathematics, No. 52.

[HL10] Daniel Huybrechts and Manfred Lehn. The geometry of moduli spaces of sheaves.
Cambridge Mathematical Library. Cambridge University Press, Cambridge, sec-
ond edition, 2010.

[Kob87] Shoshichi Kobayashi. Differential geometry of complex vector bundles, volume 15
of Publications of the Mathematical Society of Japan. Princeton University Press,
Princeton, NJ; Princeton University Press, Princeton, NJ, 1987. Kanô Memorial
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