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Abstract. We prove that a double cover of P2 ramified along a general
smooth curve B of degree 2s, for s ≥ 3, supports a rank 2 special Ulrich
bundle.

1. Introduction

Throughout this paper we work over the field of complex numbers C.
Let X be a d-dimensional smooth projective variety. Unless mentioned
otherwise, OX(1) will always denote an ample and globally generated line
bundle on X.

Definition 1.1. A locally free sheaf (vector bundle) E on X is said to be
Ulrich with respect to OX(1) (or simply Ulrich when the bundle OX(1) is
understood) if the following two conditions are satisfied

(1) H i(X,E(−i)) = 0 for all i > 0 ,
(2) Hj(X,E(−j − 1)) = 0 for all j < n .

We refer the reader to [AK17, §2] for basic definitions. In the litera-
ture authors usually define Ulrich with respect to a very ample line bundle,
kindly see the next section for some remarks related to this. A conjecture of
Eisenbud and Schreyer [ESW03] states that every smooth projective variety
supports an Ulrich bundle. Several people have constructed Ulrich bundles
on particular varieties and we list a few. They have been shown to exist
on complete intersections by [HUB91], on curves and del Pezzo surfaces
by [ESW03], on K3 surfaces by [AFO17] and [Fae19], on abelian surfaces
by [Bea16], on ruled surfaces by [ACMR18], on regular surface by [Cas17],
[Cas21], on surfaces with pg = 0 and q = 1 by [Cas19], on surfaces of max-
imal Albanese dimension and some irregular surfaces by [Lop19], [Lop21].
The above list is far from being complete and we refer the reader to the
above papers, for example [Cas19], and the references therein for more re-
sults. In [CH20, Theorem 4.3] the authors show, over the field of complex
numbers, the existence of Ulrich bundles of rank two in a sufficiently ample
embedding.

Recently Narayanan and Parameswaran [NP19] studied the existence of
Ulrich line bundles on a double plane π : X → P2 branched along a smooth
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curve B ⊂ P2 of degree 2s. In [NP19, Theorem 1.5], they prove that for
each s ≥ 3, there are special classes of double planes which admit Ulrich line
bundles. In [NP19, Theorem 1.4] they show that a double plane branched
along a generic smooth curve of degree 2s, where s ≥ 3, does not support
an Ulrich line bundle.

Let X be a surface and let KX be the canonical line bundle. An Ulrich
bundle E of rank 2, with respect to OX(1), is called special Ulrich if it also
satisfies det(E) ∼= KX ⊗OX(3). Let π : X → P2 be a degree 2 cover which
is branched along a smooth curve B ⊂ P2 of degree 2s. For such a map
denote OX(1) := π∗OP2(1) and by an Ulrich (respectively, special Ulrich)
bundle on X we will always mean Ulrich (respectively, special Ulrich) with
respect to OX(1). In this note we show the following.

Theorem 1.2. Let π : X → P2 be a double cover branched along a generic
smooth curve B ⊂ P2 of degree 2s, where s ≥ 3. Then X admits a special
rank 2 Ulrich bundle.

To prove the above result we use two inputs. The first is the well known
correspondence between zero dimensional subschemes satisfying the Cayley-
Bacharach property and global sections of a rank 2 vector bundle, see [TV00,
§5]. Let F be the degree 2s homogeneous polynomial which defines B. Using
[TV00] we first prove

Theorem 1.3 (Theorem 2.7). Let π : X → P2 be a degree 2 cover which
is branched along a smooth curve B ⊂ P2 of degree 2s, where s ≥ 3. Let
F denote the polynomial of degree 2s which defines B. Assume that there
are two polynomials F1 and F2 of degree s such that F ∈ (F1, F2). Then X
supports a special Ulrich bundle of rank 2.

The second input is the first point in [CCG08, Theorem 5.1] which enables
us to conclude that for the general degree 2s hypersurface F we can find
degree s hypersurfaces F1 and F2 such that F ∈ (F1, F2). We do not know
if this holds for all smooth degree 2s hypersurfaces.

It has been brought to our attention that Mohan Kumar, P. Narayanan
and A.J. Parameswaran have proved, using a different method, that every
double plane cover supports a rank 2 Ulrich bundle.

Acknowledgements. We thank Enrico Carlini and Luca Chiantini for
several helpful discussions related to their article [CCG08]. We thank Gi-
anfranco Casnati for several useful comments. We thank the referee for an
extremely careful reading of this article and for numerous useful suggestions
which have improved the exposition.

2. Existence of Ulrich bundles

To show that a bundle E on X is Ulrich we will use the following criterion.
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Lemma 2.1. Let X be a d-dimensional smooth projective variety and let
π : X → Pd be a surjective and finite map of degree e. A bundle E on X is

Ulrich with respect to π∗OPd(1) if and only if π∗E ∼= Oe·rank(E)

Pd .

Proof. Let us first assume that π∗E ∼= Oe rank(E)

Pd . Since the map is finite,

and using projection formula, we have H i(X,E(k)) = H i(Pd, π∗E(k)) for all

i, k ∈ Z. Since π∗E ∼= Oe rank(E)

Pd it is clear that the conditions in Definition
1.1 are satisfied.

Conversely, assume that E satisfies the conditions in Definition 1.1. Then
it follows that π∗E and (π∗E)∨ are 0-regular of rank e · rank(E). Thus,
both of them are m-regular for all m ≥ 0. From this it easily follows that
H i(Pd, π∗E(k)) = 0 for all k ∈ Z and for all 1 ≤ i ≤ d − 1, that is, π∗E is
an ACM bundle. Now applying Horrocks criterion, see [Hor64] or [OSS11,
Theorem 2.3.1] where it is stated more precisely, we get that π∗E is a direct
sum of line bundles. If OPd(a) is a summand of π∗E then we get that
H i(Pd,OPd(a − i)) = 0 for all i > 0 and Hj(Pd,OPd(a − j − 1)) = 0 for all
j < d. In particular, by taking i = d and j = 0 it follows that a = 0. This

shows that π∗E ∼= Oe·rank(E)

Pd . �

As mentioned before, authors usually define Ulrich bundles with respect
to very ample line bundles. However, the existence of an Ulrich bundle with
respect to an ample and globally generated line bundle L ensures that there
are Ulrich bundles with respect to L⊗n for all n > 0, see [AK17, Proposition
3] and the remarks following it.

2.2. Double covers of P2. We briefly recall the main properties of double
covers which we will use. A general reference for this is [BHPV04, §17].
Let B ⊂ P2 be a smooth curve of degree 2s defined by a homogeneous
polynomial F . Let π : X → P2 be the double cover of P2 branched along
B, the construction of which we briefly explain for the benefit of the reader.
Let A denote the total space of the line bundle A = OP2(s), π : A→ P2 the
projection and

(2.3) T ∈ H0(A, π∗A)

be the tautological section. Define X to be the subvariety of A defined by
the section T 2 − π∗F ∈ H0(A, π∗A⊗2) = H0(A, π∗OP2(2s)). We will abuse
notation and denote the composite X ⊂ A → P2 also by π. Then π is a
finite map of degree 2 between projective varieties. We list the important
properties of double covers that we will use, see [BHPV04, Lemma 17.1,
Lemma 17.2].

(1) If B is smooth then X is smooth, this is explained in the sentence
preceding [BHPV04, Lemma 17.1].

(2) Let R ⊂ X denote the reduced divisor π−1(B). Then π∗OP2(s) ∼=
OX(R).

(3) The canonical bundle KX
∼= OX(s− 3).
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(4) π∗OX = OP2 ⊕OP2(−s).
2.4. Existence of Ulrich bundles. In this section we shall prove that a
general double plane cover supports a special Ulrich bundle of rank 2. We
will use the result in [TV00, Theorem 10] to construct a rank 2 bundle on
X. For the benefit of the reader we state the main result from [TV00] that
we need, but first we recall some definitions from [TV00, page 2]. Given a
subscheme Z2 ⊂ Z1, the “complement” Z of Z2 in Z1 is the canonical closed
subscheme Z ⊂ Z1 with sheaf of ideals IZ = [IZ1 : IZ2 ], that is, for any open
set U ⊂ X, we define

IZ(U) := {g ∈ OX(U) | gIZ2(U) ⊂ IZ1(U)} .
We call Z the residual subscheme of Z2 in Z1 and denote it by Z = Z1−Z2

in the statement of the next theorem, which is [TV00, Theorem 10]. There
are three equivalences, but we state only two of these.

Theorem 2.5 (Theorem 10, [TV00]). Let X be a complex smooth projective
variety of dimension n ≥ 2. Let Z ⊂ X be a subscheme of pure codimension
2. Then the following are equivalent:

(1) Z is the zero subscheme of a section of a rank 2 vector bundle E.
(2) There are hypersurfaces D1, D2, D3 such that D1 and D2 have no com-

mon components, Z = D1∩D2−D1∩D2∩D3 and such that D1∩D2∩D3

is of pure codimension 2 and is Cohen-Macaulay.

Further, if (1) and (2) hold then det(E) ≡ OX(D1 +D2 −D3).

With notation as above let E be the bundle which sits in the following
short exact syzygy sequence, this is explained just before [TV00, Theorem
10].

(2.6) 0→ E(−D1 −D2)→
⊕
i

OX(−Di)→ ID1∩D2∩D3 → 0 .

Theorem 2.7. Let π : X → P2 be a degree 2 cover which is branched along a
smooth curve B ⊂ P2 of degree 2s, where s ≥ 3. Let F denote the polynomial
of degree 2s which defines B. Assume that there are two polynomials F1 and
F2 of degree s such that F ∈ (F1, F2). Then X supports a special Ulrich
bundle of rank 2.

Proof. First let us note that there is no non-constant polynomial H which
divides both F1 and F2, or else H will divide F , contradicting the smooth-
ness of B. Thus, the subscheme of P2 defined by the ideal (F1, F2) is 0-
dimensional and is contained in B. We denote this by Z ′ the subscheme
defined by the ideal (F1, F2). Consider the scheme theoretic inverse image
Z1 := π−1(Z ′).

For i = 1, 2 take Hi = π∗Fi ∈ H0(X,OX(s)). If Di denotes the divisor
defined by Hi then Z1 = D1 ∩ D2 in the notation of Theorem 2.5. Take
H3 = T ∈ H0(X,OX(s)) (see equation (2.3), by abuse of notation we denote
the restriction of T to X also by T ) and Z2 to be the subscheme of Z1 defined
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by H3, thus, Z2 = D1∩D2∩D3, where D3 is the divisor defined by H3. Let
us compute the ideal IZ := [IZ1 : IZ2 ].

If x, y, z are homogeneous coordinates on P2 then let C[x, y] (we abuse
notation here and denote the affine coordinates also by x and y) denote the
coordinate ring of the open set {z 6= 0}. Denote by f the equation F in
C[x, y], similarly, for the other polynomials. The inverse image of this open
set in X has coordinate ring

C[x, y, t]/(t2 − f) .

The ideal IZ1 = (f1, f2) and the ideal IZ2 = (f1, f2, t). If I ⊂ J are two
ideals in a ring then it is clear that I ⊂ [I : J ]. Thus, IZ1 ⊂ IZ . We
claim that t ∈ [IZ1 : IZ2 ]. An element of IZ2 looks like λf1 +µf2 + θt. Since
t2 = f ∈ (f1, f2) it follows that t(λf1+µf2+θt) ∈ IZ1 that is, t ∈ [IZ1 : IZ2 ].
Thus, IZ = (f1, f2, t). In particular, Z = Z2 = D1 ∩D2 ∩D3. Thus, in the
notation from [TV00, §1, page 2], we may write

Z = D1 ∩D2 −D1 ∩D2 ∩D3 .

Moreover, D1 ∩ D2 ∩ D3 is of pure codimension 2 and is Cohen-Macaulay
(since both depth and dimension are 0). Thus, there is a bundle E which
sits in the short exact sequence (2.6) and has a global section

(2.8) OX → E
whose vanishing gives Z. The line bundles OX(Di) are all isomorphic to
OX(s). Thus, det(E) = OX(s). Twisting the short exact sequence (2.6) by
OX(2s) we get a short exact sequence

(2.9) 0→ E → OX(s)⊕3 → IZ(2s)→ 0 .

Consider the commutative diagram

0 // IZ′ //

i
��

OP2 //

π#

��

OZ′

��

// 0

0 // π∗IZ // π∗OX // π∗OZ // 0 .

In the notation we used above, the coordinate ring of Z ′ is C[x, y]/(f1, f2)
and the coordinate ring of Z is C[x, y, t]/(f1, f2, t) ∼= C[x, y]/(f1, f2). Thus,
the right vertical arrow is an isomorphism, which proves that the cokernel
of π# and i are isomorphic.

Let σ denote the involution of X interchanging the two sheets of the
double cover. One has the trace map Tr : π∗OX → OP2 defined as follows.
Let U ⊂ P2 be open and let f ∈ OX(π−1(U)). Define Tr(f) := f + f ◦ σ ∈
OP2(U). Now if f ∈ OX(π−1(U)) and f vanishes at a point p ∈ Z, then
since Z ⊂ B and σ is the identity on B, it follows that f ◦ σ also vanishes
at p. From this it is clear that Tr maps π∗IZ to IZ′ .

The map Tr gives a splitting of the map π#. Since Tr maps π∗IZ to IZ′

it follows that Tr gives a splitting of the map i. Thus, π∗IZ is isomorphic to
the direct sum of IZ′ and the cokernel of i. We saw above that the cokernel
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of π# and the cokernel of i are isomorphic. Since π∗OX = OP2 ⊕OP2(−s),
see property (4) in subsection 2.2, it follows that the cokernel of π# is
isomorphic to OP2(−s). Thus, it follows that

(2.10) π∗IZ ∼= IZ′ ⊕OP2(−s) .

Thus, we have

(2.11) h0(X, IZ(2s)) = h0(P2, IZ′(2s)) + h0(P2,OP2(s)) .

Using the short exact sequence

(2.12) 0→ OP2(−2s)→ OP2(−s)⊕2 → IZ′ → 0 ,

we get that h0(P2, IZ′(2s)) = 2h0(P2,OP2(s))− 1. Using equation (2.11) we
get

h0(X, IZ(2s)) = 3h0(P2,OP2(s))− 1 .

Next we will compute H0(X, E). Taking dual of (2.8) we get an exact
sequence

0→ det(E)∨ → E∨ → IZ → 0 .

Since det(E) = OX(s) and E is of rank 2, we get E∨ = E ⊗ det(E)∨, which
gives

0→ OX → E → IZ(s)→ 0 .

Applying π∗ to this we get

(2.13) 0→ π∗OX → π∗E → π∗IZ(s)→ 0 .

Using (2.12) we get h0(P2, IZ′(s)) = 2 and using (2.10) we get that

h0(P2, π∗IZ(s)) = 3 .

From this it follows that h0(P2, π∗E) = 4. Applying π∗ to (2.9) and taking
cohomology we get

h1(P2, π∗E) = h0(P2, π∗IZ(2s)) + h0(P2, π∗E)− 3− 3h0(P2,OP2(s))

= 3h0(P2,OP2(s))− 1 + 4− 3− 3h0(P2,OP2(s))

= 0 .

Consider the commutative diagram

H0(P2, π∗E) //

((QQ
QQQ

QQQ
QQQ

QQ
H0(P2, π∗IZ(s))

��
H0(P2,OP2)

The vertical arrow is the projection in equation (2.10) and is surjective. The
horizontal arrow is surjective as is easily seen by taking cohomology of the
sequence (2.13). Thus, we have a map π∗E → OP2 which induces a surjection
on global sections. This shows that this map is split. Thus,

π∗E = G ⊕OP2 ,
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where G is a locally free sheaf and sits in a short exact sequence

0→ π∗OX → G → IZ′(s)→ 0 .

We will now show that G is trivial. Consider the following pullback diagram.

0 // π∗OX // F //

a

��

O⊕2P2
//

b
��

0

0 // π∗OX // G // IZ′(s) // 0

From this it follows that F = O⊕3P2 ⊕ OP2(−s) since Ext1(OP2 , π∗OX) = 0.
We may split the top row and compose the splitting with a to get a diagram

0 // OP2(−s) //

d

��

O⊕2P2
//

c

��

IZ′(s) // 0

0 // π∗OX // G // IZ′(s) // 0

Suppose Ker c 6= 0, then the image of c is a sheaf of rank 1, which surjects
onto IZ′(s). This forces that the image is isomorphic to IZ′(s), which defines
a splitting of the bottom row. However, since G is locally free, this is not
possible. Thus, Ker c = 0.

Now let us consider the left vertical arrow d : OP2(−s)→ OP2 ⊕OP2(−s).
If the cokernel is OP2 then we get that G is the trivial bundle. The only
other possbility for the cokernel is OC⊕OP2(−s), where C is a hypersurface
of degree s in P2. In this case, G sits in a sequence

0→ O⊕2P2 → G → OC ⊕OP2(−s)→ 0 .

Since G is a summand of π∗E andH1(P2, π∗E) = 0, it follows thatH1(P2,G) =
0. This forces that

H1(P2,OC) = 0 .

But now using 0 → OP2(−s) → OP2 → OC → 0 we get 0 = H1(P2,OC) =
H2(P2,OP2(−s)) = H0(P2,OP2(s − 3))∨, which is not possible if s ≥ 3.
Thus, the cokernel of d is OP2 and so G and π∗E are trivial. This proves
that E is an Ulrich bundle on X.

Recall from (3) that the canonical line bundle of X is OX(s − 3). Since
det(E) ∼= OX(s) = OX(s − 3) ⊗OX(3), it follows that E is a special Ulrich
bundle. �

Proof of Theorem 1.2. For the convenience of the reader we recall the state-
ment from [CCG08] that we are using. Their main result gives a description
of all the possible complete intersections of codimension r that can be found
on a general hypersurface of degree d in Pn when 2r ≤ n+2. In our situation
n = r = 2 and d = 2s. In this situation the first point in [CCG08, Theorem
5.1] enables us to conclude that for the general degree 2s hypersurface F we
can find degree s hypersurfaces F1 and F2 such that F ∈ (F1, F2). Now we
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apply Theorem 2.7 and get that X supports a special Ulrich bundle of rank
2. This proves Theorem 1.2. �
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