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Abstract. Let k be an algebraically closed field of characteristic p > 3.
Let X be an irreducible smooth projective surface over k. Fix an integer
n ≥ 1 and let Hilbn

X be the Hilbert scheme parameterizing effective 0-
cycles of length n on X. The aim of the present article is to find the
S-fundamental group scheme and Nori’s fundamental group scheme of
the Hilbert scheme Hilbn

X .

1. Introduction

Let X be a connected, reduced and complete scheme over a perfect field k
and let x ∈ X be a k-rational point. In [Nor76], Nori introduced a k-group
scheme πN (X,x) associated to essentially finite vector bundles on X. In
[Nor82], Nori extends the definition of πN (X,x) to connected and reduced
k-schemes. In [BPS06], Biswas, Parameswaran and Subramanian defined
the notion of S-fundamental group scheme πS(X,x) for X a smooth projec-
tive curve over any algebraically closed field k. This is generalized to higher
dimensional connected smooth projective k-schemes and studied extensively
by Langer in [Lan11, Lan12]. In general, πS(X,x) carries more information
than πN (X,x) and πét(X,x). There are natural faithfully flat homomor-
phisms of affine k-group schemes πS(X,x) → πN (X,x) → πét(X,x). The
reader is referred to the introductions in [Nor82] and [Lan11] for more de-
tails. Precise definitions of the above objects are given in the next section.
It is an interesting problem to determine πét(X,x), πN (X,x) and πS(X,x)
for well-known varieties.

Let k be an algebraically closed field of characteristic p > 0. Let HilbnX
be the Hilbert scheme of n points on an irreducible smooth projective sur-
face X over k. It is known that HilbnX is an irreducible smooth projective
variety of dimension 2n over k. The geometry of HilbnX has been exten-
sively studied, see [Fog73, FGA05, Iar72] and the references therein. It
follows from [BH15, Theorem 1.1, Theorem 1.2] that the étale fundamental
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group πét(HilbnX , n[x]) is isomorphic to the abelianization of πét(X,x), for
any x ∈ X(k). Therefore, it is natural to ask if a similar result holds for
πN (HilbnX , n[x]) and πS(HilbnX , n[x]). In this paper we answer this question
affirmatively when the base field k has characteristic p > 3. The following
two theorems are the main results in this article.

Theorem (Theorem 5.3.11). Let char(k) > 3. Then there is an isomor-
phism

f̃ : πS(X,x)ab
∼−→ πS(HilbnX , n[x]).

Theorem (Theorem 5.4.3). Let char(k) > 3. Then there is an isomorphism

f̃N : πN (X,x)ab
∼−→ πN (HilbnX , n[x]).

We can easily deduce from the above the same assertion about πét(HilbnX , n[x]).
This is sketched in subsection 5.5. This assertion about πét(HilbnX , n[x]) is
a corollary of the main result in [BH15], which is proved using a different
method.

We briefly describe the organization of this paper. In §2 we recall the
main definitions and results on fundamental group schemes that we need
from [Nor82] and [Lan11]. In §3 we recall and prove results that we need
about the Hilbert scheme and the Hilbert-Chow map. The main input in
this paper is the construction in §4, which we briefly explain here. Let
ϕ : HilbnX → Sn(X) denote the Hilbert-Chow morphism and let ψ : Xn →
Sn(X) denote the quotient map under the natural action of Sn on Xn.
Given a numerically flat sheaf E on HilbnX , we can associate to it a coherent
sheaf on Xn, namely, ψ∗ϕ∗E. However, it is not clear if this coherent sheaf
is locally free. To remedy this, we associate to E a locally free sheaf on a
large open subset of Xn and take its unique reflexive extension. Then we
use the criterion [Lan12, Theorem 2.2] (this criterion is proved in [Lan11]
but stated more precisely in [Lan12]) to check that this reflexive sheaf is
locally free. From this construction we are able to define a homomorphism
πS(X,x)ab → πS(HilbnX , n[x]). In §5, we use the criterion in [DMOS82,
Proposition 2.21] to show that this homomorphism is an isomorphism.

Acknowledgements. We thank Indranil Biswas for suggesting this ques-
tion to us.

2. Fundamental Group Schemes

In the rest of this article, unless mentioned otherwise, k will denote an
algebraically closed field of characteristic p > 3.

2.1. Nori’s fundamental group scheme. Let X be a connected, proper
and reduced k-scheme. We denote by QCoh(X) the category of quasi-
coherent sheaves of OX -modules on X. Consider the full subcategory whose
objects are locally free coherent sheaves of OX -modules (vector bundles)
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of finite rank and denote it Vect(X). A vector bundle E is said to be fi-
nite if there are distinct non-zero polynomials f, g ∈ Z[t] with non-negative
coefficients such that f(E) ∼= g(E).

Let C be a connected smooth projective curve over k. The degree of a
vector bundle E on C is defined to be the number

deg(E) := c1(E) · [C] .

A vector bundle E on C is said to be semistable if for any non-zero proper
subbundle F ⊂ E, we have

µ(F ) :=
deg(F )

rank(F )
≤ deg(E)

rank(E)
=: µ(E) .

Definition 2.1.1. Let X be a connected, projective and reduced k-scheme.
Let Cnf(X) denote the full subcategory of QCoh(X) whose objects are coher-
ent sheaves E on X satisfying the following two conditions:

(1) E is locally free, and
(2) for any smooth projective curve C over k and any morphism f :

C −→ X, the vector bundle f∗E is semistable of degree 0.

We call the objects of the category Cnf(X) numerically flat vector bundles
onX. In the literature these are also referred to as semistable vector bundles,
see [Lan11, Remark 5.2]. However, we reserve the term semistable to refer
to slope semistable.

Definition 2.1.2. A vector bundle E on X is said to be essentially finite if
there exist two numerically flat vector bundles V1, V2 and finitely many finite

vector bundles F1, . . . , Fn on X with V2 ⊆ V1 ⊆
n⊕
i=1

Fi such that E ∼= V1/V2.

Let EF(X) be the full subcategory of Vect(X) whose objects are essen-
tially finite vector bundles on X. Let Vectk be the category of finite dimen-
sional k-vector spaces. Fix a closed point x ∈ X and let

Tx : EF(X) −→ Vectk

be the fiber functor defined by sending an object E ∈ EF(X) to its fiber
Ex at x. Then the quadruple (EF(X),

⊗
, Tx,OX) is a neutral Tannakian

category. The affine k-group scheme πN (X,x) representing the functor of
k-algebras Aut⊗(Tx) is called Nori’s fundamental group scheme of X based
at x (see [DMOS82, Section 1] for definition of the functor Aut⊗(Tx)). It
is shown in [Nor82, Proposition 4, p. 88] that πN (X,x) ∼= πN (X, y) for any
two closed points x, y ∈ X.

2.2. S-fundamental group scheme. A coherent sheaf G is said to be
reflexive if the natural OX -module homomorphism G → G∨∨ is an isomor-
phism.
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Definition 2.2.1. Let X be a connected, smooth and projective variety over
k of dimension d and let H be an ample divisor on X. Let Vects0(X) be the
full subcategory of QCoh(X) whose objects are coherent sheaves G on X
satisfying the following three conditions:

(1) G is reflexive,
(2) G is strongly H-semistable, and
(3) ch1(G) · Hd−1 = ch2(G) · Hd−2 = 0, where chi(G) denote the i-th

Chern character of G, for all i = 1, 2.

Since X is smooth, it follows from [Lan11, Proposition 4.1] that the ob-
jects of Vects0(X) are in fact locally free sheaves and all of their Chern classes
vanishes. Moreover, the category Vects0(X) does not depend on choice of am-
ple divisor H [Lan11, Proposition 4.5]. One of the main results in [Lan11,
Theorem 5.1, p. 2094] is that the categories Cnf(X) and Vects0(X) are the
same when X is smooth. This is stated very precisely in [Lan12, Theorem
2.2].

Assume that X is smooth. Fix a k-valued point x ∈ X. Let Tx :
Vects0(X) −→ Vectk be the fiber functor defined by sending an object E
of Vects0(X) to its fiber Ex ∈ Vectk at x. Then (Vects0(X),⊗, Tx,OX) is
a neutral Tannaka category [Lan11, Proposition 5.5, p. 2096]. The affine
k-group scheme πS(X,x) Tannaka dual to this category is called the S-
fundamental group scheme of X with base point x [Lan11, Definition 6.1,
p. 2097].

The following result may be well-known to experts, but we could not find
a precise reference, so we include a proof.

Lemma 2.2.2. Let X be a connected, smooth and projective k-scheme.
Then πS(X,x1) ∼= πS(X,x2), for all x1, x2 ∈ X(k).

Proof. Since πS(X,x) is the affine k-group scheme representing the functor
of k-algebras Aut⊗(Tx), where Tx is the fiber functor Tx : Vects0(X) −→
Vectk, it suffices to show that, for any two points x1, x2 ∈ X(k), the fiber
functors Tx1 and Tx2 are isomorphic. Given any object V ∈ Vects0(X), we
need to define a natural k-linear isomorphism

ηV : Tx1(V) = Vx1 −→ Vx2 = Tx2(V) ;

meaning that for any morphism f : V → V ′ of objects in Vects0(X), the
following diagram should commute.

(2.2.3) Tx1(V)
Tx(f) //

ηV
��

Tx1(V ′)
ηV′

��
Tx2(V)

Ty(f) // Tx2(V ′)
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For any group scheme H over k, denote by Repk(H) the category of repre-
sentations of H into finite dimensional k-vector spaces. Let G = πS(X,x1).

Then there is an equivalence of categories ζ : Vects0(X)
∼−→ Repk(G) and

the inverse of this equivalence of categories defines a principal G-bundle
p : P → X, (see [Nor76, Proposition 2.9] for the construction), known as
the S-universal cover of X (see [Lan11, p. 2097]). This associates to a
G-module V an object V := P ×G V in the category Vects0(X); moreover,
any morphism V → V ′ in the category Vects0(X) comes from a G-module
homomorphism V → V ′ in Repk(G).

Fix two points x̃1, x̃2 ∈ P such that p(x̃i) = xi, for i = 1, 2. Then we
have isomorphisms

ξi : G −→ Pxi , i = 1, 2 .

Let ρ : G → GL(V ) be a finite dimensional linear representation and let
V := P ×G V be the associated vector bundle on X. Then we have k-linear
isomorphisms

Vxi = Pxi ×G V
ξi∼= G×G V −→ V , i = 1, 2.

This gives a k-linear isomorphism of the fibers

ηV : Vx1 −→ Vx2 .
Since any homomorphism f : V → V ′ of objects in Vects0(X) comes from a

G-module homomorphism f̃ : V → V ′, it follows from above construction
that the above diagram in (2.2.3) commutes. �

3. Hilbert-Chow Morphism

3.1. Hilbert scheme of length n cycles. From now on we denote by X
an irreducible smooth projective surface over k. For an integer n ≥ 2, let
Sn be the permutation group of n symbols. Then Sn acts on the product
Xn and the associated quotient Sn(X) = Xn/Sn is a normal projective
variety of dimension 2n over k. Note that Sn(X) is not smooth. Its smooth
locus Sn(X)sm ⊂ Sn(X) is the open dense subscheme consisting of reduced
effective 0-cycles of length n in X. Since dimk(X) = 2, the singular locus
Sn(X)sing := Sn(X) \ Sn(X)sm is a closed subscheme of codimension 2 in
Sn(X).

Let HilbnX be the Hilbert scheme parametrizing effective 0-cycles of length
n in X. This is an irreducible smooth projective scheme of dimension 2n
over k. Note that, Hilb1

X
∼= X, and so we always assume that n ≥ 2.

Consider the Hilbert-Chow morphism

(3.1.1) ϕ : HilbnX −→ Sn(X) ,

given by sending Z ∈ HilbnX to∑
p∈Supp(Z)

`(OZ,p)[p] ∈ Sn(X),
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where
Supp(Z) = {p ∈ X : OZ,p 6= 0}

denotes the support of the 0-cycle Z in X and `(OZ,p) the length of the local
ring OZ,p as a module over itself.

3.2. Stratification of Sn(X). A point y ∈ Sn(X) can be written as
r∑
j=1

njxj ,

where x1, . . . , xr ∈ X are distinct points with multiplicities

(3.2.1) n1 ≥ n2 ≥ · · · ≥ nr ∈ Z>0,

respectively, such that
∑r

j=1 nj = n. The r-tuple of positive integers

〈n1, n2, . . . , nr〉
is called the type of y. Let Z〈n1,n2,...,nr〉 denote the locus of points in Sn(X)

of type 〈n1, n2, . . . , nr〉. The fiber ϕ−1(y) has dimension n − r, for all y ∈
Z〈n1,n2,...,nr〉 (see [Fog73, p. 667]). The dimension of the locus of points of
type 〈n1, n2, . . . , nr〉 is 2r. From this the following lemma follows.

Lemma 3.2.2. The dimension of the subset ϕ−1(Z〈n1,n2,...,nr〉) is n+ r.

3.3. Fibers of Hilbert-Chow morphism. Let W ⊂ Sn(X) denote the
open subset consisting of points of type 〈1, 1, 1, . . . , 1〉 and 〈2, 1, 1, . . . , 1〉.
Let V denote the open subset ϕ−1(W ) and let

(3.3.1) ϕ : V −→W

be the restriction of the morphism ϕ in (3.1.1) to V . It follows from Lemma
3.2.2 that the dimension of HilbnX \V is n + n − 2 = 2n − 2 and hence
codimHilbnX

(HilbnX \V ) = 2.

It was shown in [Fog73, Lemma 4.3, p. 668] that for any point q ∈ Sn(X)
of type 〈2, 1, 1, . . . , 1〉, the schematic fiber ϕ−1(q), with its reduced structure,
is isomorphic to P1

k. We need that ϕ−1(q) is reduced. We could not find a
precise reference for Proposition 3.3.3, which maybe well known to experts,
so we include a proof.

First we recall the following result.

Lemma 3.3.2. Let I be an ideal of a commutative ring A with identity. Let

A[It] :=
∞⊕
i=0

Iiti ⊂ A[t] be the Rees algebra of I in the polynomial ring A[t].

Let π : Proj(A[It])→ SpecA be the associated projective A-scheme. For an
A-algebra B, consider the graded A-algebra structure on A[It] ⊗A B given
by (A[It] ⊗A B)d := (Id ⊗A B)td, for all d ≥ 0. Then we have a canonical
isomorphism of A-schemes

ψ : Proj(A[It]⊗A B)
'−→ Proj(A[It])×SpecA SpecB .
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Proof. Follows from [Stk, Lemma 26.11.6., Tag 01MX]. �

Proposition 3.3.3. Assume that char(k) 6= 2. Let q ∈W be a point of type
〈2, 1, 1, . . . , 1〉. The scheme theoretic fiber ϕ−1(q) is a reduced subscheme of
V .

Proof. Let q̃ ∈ Xn be a point such that q̃ 7→ q under the natural map
ψ : Xn → Sn(X). The formal neighbourhood of q̃ is given by the spectrum
of the local ring

ÔXn,q̃ = k[[x1, y1, x2, y2, . . . , xn, yn]] .

There is an inclusion ÔW,q ↪→ ÔXn,q̃. By the discussion in the paragraph
just before [FGA05, Theorem 7.3.4, p. 170], we have

(3.3.4) ÔW,q = k[[u, v, w, x′, y′, x3, y3, . . . , xn, yn]]/(uw − v2) ,

where x = x1 − x2, y = y1 − y2, x′ = x1 + x2, y′ = y1 + y2, u = x2, v = xy
and w = y2. Here we are using the assumption char(k) 6= 2.

Let Z ⊂ W denote the irreducible closed subset consisting of points of
type 〈2, 1, 1, . . . , 1〉. Let J denote the stalk at q of the ideal sheaf of Z in

the local ring OW,q and let Ĵ denote its image in ÔW,q. Now Z is contained
in the image ψ(Xn−1) ⊂ Sn(X), where the inclusion Xn−1 ↪→ Xn is given
by

(x, x3, x4, . . . , xn) 7−→ (x, x, x3, . . . , xn) .

Clearly, the ideal of Xn−1 in ÔXn,q̃ is given by x1− x2 = y1− y2 = 0. From

this, we conclude that Ĵ is the kernel of the composite homomorphism

ÔW,q ↪→ ÔXn,q̃ � ÔXn,q̃/(x, y) ,

where x = x1 − x2 and y = y1 − y2. This proves that Ĵ = (u, v, w).

By [Fog73, Lemma 4.4] the map ϕ is the blowup of W along Z. Let
OW,q[tJ ] denote the Rees algebra of the ideal J . By Lemma 3.3.2, the
schematic fiber ϕ−1(q) is

Proj (OW,q[tJ ])×Spec(OW,q)Spec(OW,q/mq) ∼= Proj (OW,q[tJ ]⊗OW,q
(OW,q/mq)) ,

where mq is the maximal ideal of the local ring OW,q at q. It follows from
the isomorphism

OW,q[tJ ]⊗OW,q
(OW,q/mq) ∼= OW,q[tJ ]⊗OW,q

(ÔW,q/m̂q)

∼= ÔW,q[tĴ ]⊗ÔW,q
(ÔW,q/m̂q)

that the schematic fiber ϕ−1(q) is

Proj (ÔW,q[tĴ ]⊗ÔW,q
(ÔW,q/m̂q)) ∼= Proj (ÔW,q[tĴ ])×

Spec(ÔW,q)
Spec(ÔW,q/m̂q) .

Write

A := ÔW,q = k[[u, v, w, x′, y′, x3, y3, . . . , xn, yn]]/(uw − v2) .

https://stacks.math.columbia.edu/tag/01MX
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It is clear that the maximal ideal m := m̂q of A is given by

m = (u, v, w, x′, y′, x3, y3, . . . , xn, yn)A.

First let us understand the scheme Proj(A[tĴ ]). This scheme is covered by
affine open subsets given by Spec of the following three affine k-algebras:

R1 :=
(
k[[u, v, w, x′, y′, x3, y3, . . . , xn, yn]]/(uw − v2)

) [v
u
,
w

u

]
,

R2 :=
(
k[[u, v, w, x′, y′, x3, y3, . . . , xn, yn]]/(uw − v2)

) [u
v
,
w

v

]
,

R3 :=
(
k[[u, v, w, x′, y′, x3, y3, . . . , xn, yn]]/(uw − v2)

) [ u
w
,
v

w

]
.

Let us first consider the ring R1. In this ring, w
u = wu

u2
= v2

u2
. Therefore, we

get that

R1 =
(
k[[u, v, w, x′, y′, x3, y3, . . . , xn, yn]]/(uw − v2)

) [v
u

]
.

Similarly, since u
w = uw

w2 = v2

w2 , we get that

R3 =
(
k[[u, v, w, x′, y′, x3, y3, . . . , xn, yn]]/(uw − v2)

) [ v
w

]
.

Further, in R2 we have u
v
w
v = 1. Therefore,

R2 =
(
k[[u, v, w, x′, y′, x3, y3, . . . , xn, yn]]/(uw − v2)

) [v
u
,
u

v

]
.

It is now clear that the scheme Proj(A[tĴ ]) is covered by SpecR1 and
SpecR3, since SpecR2 is an open subset of each of these. Now we need
to compute

R1 ⊗A (A/m) and R3 ⊗A (A/m).

Let us first write

R1 = A[T ]/(Tu− v).

Now note that (Tu − v) ⊂ mA[T ] since m contains u and v. Therefore we
get

R1 ⊗A (A/m) ∼= R1/mR1

∼= A[T ]/mA[T ] ∼= k[T ].

Similarly, we have R3 ⊗A (A/m) ∼= k[T ]. Thus we have proved that the
scheme theoretic fiber ϕ−1(q) is reduced and is isomorphic to P1

k. �

4. Homomorphism of S-fundamental Group Schemes

In this section we construct a homomorphism of S-fundamental group
schemes

πS(X,x)ab −→ πS(HilbnX , n[x]) ,

where πS(X,x)ab is the abelianization of πS(X,x).
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4.1. A group theoretic lemma. We need the following group theoretic
result for later use. See also [Lan12, Lemma 5.7].

Lemma 4.1.1. Let G and H be two group schemes over k. For an integer
n ≥ 2, we denote by Gn the group scheme G× · · ·×G (= the n-fold product
of G with itself). Then Sn acts on Gn by permuting the factors. Let f0 be
the following composite group homomorphism

f0 : Gn
αn

−→ (Gab)n
m−→ Gab ,

where α : G → Gab := G/[G,G] denotes the abelianization homomorphism
and m denotes the multiplication homomorphism. Then a homomorphism
of k-group schemes f : Gn −→ H is Sn-invariant if and only if there is a
homomorphism f̃ : Gab −→ H of affine k-group schemes such that f̃◦f0 = f .
In other words, the following diagram commutes.

Gn
f //

f0 ""

H

Gab

f̃

==

Proof. For any k-group scheme G, we denote by

• mG : G×G −→ G the multiplication morphism of G,
• iG : G −→ G the inversion morphism of G, and
• eG ∈ G(k) the identity of G.

We sketch the proof for n = 2; the general case is similar and left to the
reader as an exercise. We have a homomorphism f : G×G −→ H such that
f ◦ σ = f , where σ : G × G → G × G is the homomorphism switching the
factors. Let p1, p2 : G × G → G denote the projections onto the first and
second factors, respectively. Then one can easily check that

f ◦ (mG, eG) = f ◦mG×G ◦ ((p1, e), (p2, e))

= mH ◦ (f ◦ (p1, e), f ◦ (p2, e))

= mH ◦ (f ◦ (p1, e), f ◦ (e, p2))

= f ◦ (p1, p2)

= f ◦ (mG ◦ σ, eG) .

Using this it easily follows that

(4.1.2) f ◦mG×G((mG, eG), (iG ◦mG ◦ σ, eG)) = eH .

Now one easily concludes that f factors through the map G×G→ Gab×Gab.
Let ∆′ : G → G × G denote the map g 7→ (g, g−1). Then one checks easily
that f ◦∆′ = eH . From these the lemma follows. �

A vector bundle E on Xn is said to be Sn-invariant if σ∗E ∼= E, for all
σ ∈ Sn ⊆ Aut(Xn).
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Corollary 4.1.3. Any vector bundle in the category Vects0(Xn), associated
to a representation of πS(X,x)n which factors through πS(X,x)ab (see the
statement of Lemma 4.1.1), is Sn-invariant.

4.2. A functor between Tannakian categories. Given a numerically
flat vector bundle E on HilbnX , we want to associate to it a numerically flat
vector bundle G on Xn. We first associate to E a reflexive sheaf G on Xn

and then use the criterion in [Lan11, Theorem 5.1] to show that G is locally
free and numerically flat.

Proposition 4.2.1. Let E be a numerically flat vector bundle of rank r on
HilbnX . Then ϕ∗(E|V ) is a locally free coherent sheaf on W . Moreover, the
natural map

(4.2.2) ϕ∗ϕ∗(E|V ) −→ E|V
is an isomorphism.

Proof. Let q ∈W be a point of type 〈2, 1, 1, . . . , 1〉. Let I ⊂ OV denote the
reduced sheaf of ideals of the closed subscheme ϕ−1(q). Let Iq be the ideal
sheaf of the closed point q ∈W . For each integer n ≥ 1, let I n

q be the ideal
sheaf of the n-th order thickening of q in W . By Proposition 3.3.3 we have

I = IqOV .
For each integer n ≥ 1, let Yn denote the closed subscheme of V correspond-
ing to the sheaf of ideals In. Since E is numerically flat and Y1

∼= P1
k (see

Proposition 3.3.3), it follows that the restriction of E to Y1 is trivial.

Consider the following short exact sequence of sheaves on V

(4.2.3) 0 −→ I ⊗ E −→ E −→ E|Y1 −→ 0.

Applying ϕ∗ to it we get the following exact sequence of sheaves on W .

(4.2.4) ϕ∗(E) −→ H0(Y1, E|Y1) −→ R1ϕ∗(I ⊗ E).

We claim that the completion of R1ϕ∗(I ⊗ E) at the maximal ideal mq

of q is 0. By the Theorem on Formal Functions (see [Har77, Chapter III,
Theorem 11.1]), we have

(4.2.5) (R1ϕ∗(I ⊗ E))̂ ∼= lim
←−

H1(Yn, I ⊗ E ⊗OV /In).

We will prove by induction on n that H1(Yn, I ⊗ E ⊗ OV /In) = 0. Since
I = IqOV , it follows that there is a surjection

(mn
q /m

n+1
q )⊗OW,q

OV ∼= I n
q /I

n+1
q ⊗OW

OV � In/In+1.

The locally free sheaf In/In+1 on Y1
∼= P1 is a direct sum of line bundles.

It follows that each of these line bundle has degree ≥ 0. For n = 1, the base
case of induction, we have

H1(Y1, I ⊗ E ⊗OV /I) = H1(Y1, I/I2 ⊗ E1) = 0 .
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Assume that we have proved the assertion for n. Then the assertion for
n+1 follows from the long exact cohomology sequence attached to the short
exact sequence of sheaves on Yn+1

0 −→ (In+1/In+2)⊗ E −→ (I/In+2)⊗ E −→ (I/In+1)⊗ E −→ 0 .

This proves the claim that R1ϕ∗(I ⊗ E) at the maximal ideal mq of q is 0.

This proves that the natural map

(4.2.6) ϕ∗(E) −→ H0(Y1, E|Y1)

in (4.2.4) is surjective in a neighborhood around q. Let s1, s2 . . . , sr be a
basis for H0(Y1, E|Y1). Let Spec(A) be an affine neighborhood of q on which
the map in (4.2.6) is surjective. Choosing lifts s̃i ∈ Γ(Spec(A), ϕ∗(E)) of si,
we get a homomorphism

(4.2.7) O⊕rV −→ E

over ϕ−1(Spec(A)), which is a surjection over the fiber Y1. Since ϕ is proper,
it follows that there is a smaller affine neighborhood W0 of q over which there
is an isomorphism O⊕rV0

∼→ E, where V0 = ϕ−1(W0). Applying ϕ∗, using

normality of Sn(X) and that ϕ is birational, the Proposition follows. �

Corollary 4.2.8. Let F denote the absolute Frobenius morphism. With the
above notations, we have an isomorphism F ∗ϕ∗(E|V )

∼−→ ϕ∗(F
∗E|V ).

Proof. Since F ∗E is numerically flat, it follows that both these sheaves are
locally free of the same rank. It suffices to show that the natural map

(4.2.9) F ∗ϕ∗(E|V ) −→ ϕ∗(F
∗E|V )

is surjective. This is clear over the smooth locus of Sn(X) since F is faith-
fully flat over the smooth locus. Let q ∈W be a point of type 〈2, 1, 1 . . . , 1〉.
It follows from Proposition 3.3.3 that the restriction of F ∗ϕ∗(E|V ) to q is
naturally isomorphic to H0(Y1, E1) and the restriction of ϕ∗(F

∗E|V ) at q is
naturally isomorphic to H0(Y1, F

∗E1). The restriction to q of the natural
homomorphism in (4.2.9) is the map

F ∗ : H0(Y1, E1) −→ H0(Y1, F
∗E1) ,

which is a surjection. From this the Corollary follows. �

Recall the quotient map ψ : Xn −→ Sn(X) defined in (3.1.1). Let j :
ψ−1(W ) ↪→ Xn denote the inclusion. Recall that the category Cnf(X) is
defined in Definition 2.1.1.

Proposition 4.2.10. If E is an object of Cnf(HilbnX), then

G (E) := (j∗ψ
∗ϕ∗(E|V ))∨∨

is an object of Cnf(Xn).
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Proof. It is proved in Proposition 4.2.1 that ϕ∗(E) is locally free on W .
Since Xn \ ψ−1(W ) has codimension ≥ 4, it follows that

(4.2.11) G (E) := (j∗ψ
∗ϕ∗(E|V ))∨∨

is a coherent reflexive sheaf on Xn. For notational simplicity, we denote by
G the sheaf G (E). Note that G|ψ−1(W ) = ψ∗E is locally free.

Choose m � 0 so that mH is very ample. Choose general hyperplanes

H1, . . . ,Hd−1 ∈ |mH| so that C = H1 ∩ H2 ∩ · · · ∩ Hd−1
i
↪→ ψ−1(W ) is a

smooth complete intersection curve whose image ψ(C) lies in the smooth
locus of Sn(X). We can lift i to a morphism ĩ which makes the following
diagram commute.

V

ϕ

��

� � // HilbnX

ϕ

��
C �
� i //

ĩ
//

ψ−1(W )
ψ // W �

� // Sn(X)

It follows from Proposition 4.2.1 that

i∗G ∼= ĩ∗ϕ∗ϕ∗(E|V ) ∼= ĩ∗(E|V ) .

Since E is in Cnf(HilbnX) it follows that i∗G is semistable of degree 0. This
shows that G is H-semistable.

In Corollary 4.2.8 we proved that the locally free sheaves F ∗ϕ∗(E|V ) and
ϕ∗(F

∗E|V ) are isomorphic. Since Xn is smooth the Frobenius is faithfully
flat and so F ∗G is reflexive (use the characterization that a coherent module
M over a local ring A is reflexive iff it sits in a short exact sequence 0 →
M → A⊕r → A⊕s). The restriction of F ∗G on ψ−1(W ) is

F ∗ψ∗ϕ∗(E|V ) ∼= ψ∗F ∗ϕ∗(E|V ) ∼= ψ∗ϕ∗(F
∗E|V ).

Since the reflexive extension on Xn is unique (see [Har80, Proposition 1.6,
p. 126]), we conclude that

F ∗G ∼= (j∗(ψ
∗ϕ∗(F

∗E|V )))∨∨ .

Since E ∈ Cnf(HilbnX) we have F ∗E ∈ Cnf(HilbnX); then following the argu-
ments in the preceding paragraph, we see that F ∗G is H-semistable. This
shows that G is strongly H-semistable.

It is clear from above that ch1(G) ·Hd−1 = 0. Choose general hyperplanes
H1, . . . ,Hd−2 in the linear system |mH| so that

S = H1 ∩H2 ∩ · · · ∩Hd−2 ⊂ ψ−1(W )

is a smooth surface. We can do this since Xn\ψ−1(W ) has codimension ≥ 4.
It suffices to show that ch2(G|S) = 0. Now G|S is locally free as S ⊂ ψ−1(W )
and G is locally free on ψ−1(W ). Therefore, in view of [Lan12, Theorem 2.2],
it suffices to show that G|S ∈ Cnf(S). But this follows from the arguments
as in the second paragraph of this proof. Therefore, we have G ∈ Vects0(Xn)
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and hence by [Lan11, Theorem 5.1] G is locally free and is in Cnf(Xn). This
proves the proposition. �

Proposition 4.2.12. With the above notations,

G : Cnf(HilbnX) −→ Cnf(Xn)

is a additive tensor functor.

Proof. Let f : E → E′ be a morphism in the category Cnf(HilbnX). We need
to find a canonical morphism G (f) : G (E) → G (E′) in Cnf(Xn). There is
a morphism ψ∗ϕ∗(f) : G (E)|ψ−1(W ) → G (E′)|ψ−1(W ). Since Xn \ ψ−1(W )

has codimension ≥ 4 and G (E), G (E′) are locally free, it follows that this
morphism extends uniquely to give a morphism G (E)→ G (E′).

The bundles G (E ⊕ E′) and G (E) ⊕ G (E′) are naturally isomorphic on
ψ−1(W ) and so they are naturally isomorphic. Similarly, G (E ⊗ E′) is
naturally isomorphic to G (E)⊗ G(E′). �

4.3. Homomorphism of group schemes. Fix distinct k-valued points
x1, . . . , xn ∈ X(k) ofX. Let x̃ ∈ HilbnX(k) be such that ϕ(x̃) = ψ(x1, · · · , xn) ∈
Sn(X)sm. For any locally free sheaf E on HilbnX , there are natural isomor-
phisms

Ex̃ ∼= (ϕ∗E)ϕ(x̃)
∼= (ψ∗ϕ∗(E))(x1,x2,...,xn).

Consider the following diagram.

(Cnf(HilbnX),⊗, Tx̃,OHilbnX
) // (Cnf(Xn),⊗, T(x1,...,xn),OXn)

��
(Cnf(HilbnX),⊗, Tn[x],OHilbnX

)

OO

(Cnf(Xn),⊗, T(x,...,x),OXn)

The horizontal arrow is a morphism of Tannakian categories due to Propo-
sitions 4.2.10 and 4.2.12. The two vertical arrows are due to Lemma 2.2.2.
Thus, we get a homomorphism of S-fundamental group schemes

f : πS(Xn, (x, . . . , x)) −→ πS(HilbnX , n[x]) .

For σ ∈ Sn we get an automorphism σ∗ of πS(Xn, (x, . . . , x)). It is easily
checked that f ◦ σ∗ = f . By [Lan12, Theorem 4.1, p. 842] there is an
isomorphism

πS(Xn, (x, . . . , x))
∼−→ πS(X,x)×k · · · ×k πS(X,x).

By abuse of notation, denote the composite of f and the inverse of this
isomorphism by f . Thus, we have a homomorphism

(4.3.1) f : πS(X,x)×k · · · ×k πS(X,x) −→ πS(HilbnX , n[x])

which satisfies f ◦ σ∗ = f . It follows from Lemma 4.1.1 that the homo-
morphism of the S-fundamental group schemes in (4.3.1) factors through a
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homomorphism

(4.3.2) f̃ : πS(X,x)ab −→ πS(HilbnX , n[x]) .

This completes the construction of our homomorphism of k-group schemes.

5. Isomorphism of Group Schemes

In this section we will prove that the homomorphism (4.3.2) is an isomor-
phism.

5.1. Sn-invariant line bundles. We begin with a discussion on why a
numerically flat Sn-invariant line bundle on Xn descends to a line bundle on
Sn(X). A more general result is proved in [Fog77, Proposition 3.6]. For the
benefit of the authors and the reader we include a proof of the statement
that we need.

Proposition 5.1.1. Let L be a numerically flat Sn-invariant line bundle
on Xn. Then there is a numerically flat line bundle L′ on Sn(X) such that
ψ∗L′ = L.

Proof. The assertion that L′, if it exists, is numerically flat follows easily.
We now prove its existence.

Let Picτ denote the subscheme of the Picard scheme whose closed points
parametrize numerically trivial line bundles. By [Lan12, Corollary 4.7] we
have

(Picτ (Xn))red =
n∏
i=1

(Picτ (X))red.

Thus, there is a numerically trivial line bundle L0 on X such that L =
n⊗
i=1

p∗iL0.

The rest of the proof is a more detailed version of the first para of the
proof in [Fog77, Proposition 3.6]. Let H ⊂ Sn denote the subgroup Stab(1).
Let D ⊂ X be an ample divisor such that L0 is trivial on U = X \D. Let
s ∈ Γ(U,L0) be a global section which generates L0 over U . Then p∗1s is a
generating section of p∗1L0 over the open subset U ×X × . . . ×X and this
section is invariant under the action of the subgroup H. In particular, the
section p∗1s also generates the line bundle p∗1L0 over the smaller open subset
Un and is invariant under the action of the subgroup H.

Given (x1, x2, . . . , xn) ∈ Xn, let D be an ample divisor in X which does
not contain any of the xi. If U = X \D, then it is clear that (x1, . . . , xn) is
in the Sn-invariant open subset Un. Thus, we can cover Xn by open subsets
of this type. Using this observation, we can find a finite collection of ample
divisors Dα ⊂ X (set Uα = X \Dα) and sections sα ∈ Γ(Uα, L0) such that

(1) tα := p∗1sα generates p∗1L0 on the open subset Unα ,
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(2) tα is invariant under H, and
(3) Xn =

⋃
α U

n
α .

Define functions fαβ ∈ OX(Unα ∩ Unβ )× by

tα = fαβtβ.

It follows that fαβ are invariant under H. Let σi := (1, i) for 1 ≤ i ≤ n be
left coset representatives of H in G. The functions

∏n
i=1 σ

∗
i (fαβ) are clearly

invariant under Sn and satisfy the cocyle condition. Let Vα ⊂ Sn(X) be
ψ(Unα ). It is clear that Vα is open and ψ−1(Vα) = Unα . Thus, using the
above cocycle we get a line bundle on Sn(X) which is trivial on Vα. It is
clear that the pullback of this line bundle is isomorphic to

⊗n
i=1 p

∗
iL0, which

completes the proof of the proposition. �

5.2. Faithfully flatness. In this section we use [DMOS82, Proposition

2.21] to show that the homomorphism f̃ in (4.3.2) is an isomorphism. We be-
gin by recalling this result for the convenience of the reader. Let θ : G −→ G′

be a homomorphism of affine group schemes over k and let

(5.2.1) θ̃ : Repk(G
′) −→ Repk(G)

be the functor given by sending ρ′ : G′ → GL(V ) to ρ′ ◦ θ : G→ GL(V ). An
object ρ : G → GL(V ) in Repk(G) is said to be a subquotient of an object
η : G → GL(W ) in Repk(G) if there are two G-submodules V1 ⊂ V2 of W
such that V ∼= V2/V1 as G-modules.

Proposition 5.2.2 (Proposition 2.21, [DMOS82]). Let θ : G −→ G′ be a
homomorphism of affine algebraic groups over k. Then

(a) θ is faithfully flat if and only if the functor θ̃ in (5.2.1) is fully faithful

and given any subobject W ⊂ θ̃(V ′), with V ′ ∈ Repk(G
′), there is a

subobject W ′ ⊂ V ′ in Repk(G
′) such that θ̃(W ′) ∼= W in Repk(G).

(b) f is a closed immersion if and only if every object of Repk(G) is iso-

morphic to a subquotient of an object of the form θ̃(V ′), for some V ′ ∈
Repk(G

′).

Proposition 5.2.3. The homomorphism

f̃ : πS(X,x)ab → πS(HilbnX , n[x])

defined in (4.3.2) is faithfully flat.

Proof. We will apply [DMOS82, Proposition 2.21 (a)]. Let E1 be an object
in the category Vects0(HilbnX) = Cnf(HilbnX). Let G1 := G (E1) be the vector
bundle as defined in (4.2.11). Clearly G1 has the same rank as that of E1.
If G2 ⊂ G1 is a subbundle corresponding to a representation of πS(X,x)ab,
we need to show that there is a subbundle E2 ⊂ E1 such that G2 = G (E2).
We will prove this by induction on the rank of E1. If rank(E1) = 1, there is
nothing to prove. Assume that rank(E1) ≥ 2.
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The vector bundles Gi correspond to representations

πS(Xn, (x, . . . , x))
f0−→ πS(X,x)ab

ρi−→ GL(Vi).

Since πS(X,x)ab is an abelian k-group scheme, it follows from [Wat79, The-
orem 9.4, p. 70], that we can find a surjective πS(X,x)ab-module homo-
morphism V1 → L1, where L1 is one dimensional and V2 is a πS(X,x)ab-
submodule of the kernel of this homomorphism. Let L be the line bundle on
Xn corresponding to the representation L1. Then it is clear that L is Sn-
invariant (see Corollary 4.1.3) and there is an Sn-equivariant exact sequence
of bundles

0 −→ K −→ G1 −→ L −→ 0

on Xn such that G2 ⊂ K.

It follows from Proposition 5.1.1 that L′ := (ψ∗L)Sn is a locally free line
bundle on all of Sn(X) and satisfies ψ∗L′ = L. Let L := ϕ∗L′, then it is
easy to check that L is numerically flat on HilbnX .

We claim that the following complex of sheaves on W

(5.2.4) 0→ (ψ∗K)Sn

∣∣∣
W
→ (ψ∗G1)Sn

∣∣∣
W
→ (ψ∗L)Sn

∣∣∣
W
→ 0

is exact. The sequence (5.2.4) can fail to be exact only on the right. Note
that ψ∗(G1)Sn restricted to W is ϕ∗(E1|V ). Let J be the cokernel:

ϕ∗(E1|V )→ L′
∣∣∣
W
→ J → 0 .

Pulling this back by ψ we get the following commutative diagram on ψ−1(W )
with exact rows.

ψ∗ϕ∗(E1|V ) // ψ∗L′
∣∣∣
ψ−1(W )

// ψ∗J // 0

G1

∣∣∣
ψ−1(W )

// L
∣∣∣
ψ−1(W )

// 0

This shows that ψ∗J = 0. It is easy to conclude that J = 0, since ψ
is surjective. This proves the exactness of (5.2.4). It follows that K ′ :=
(ψ∗K)Sn is locally free on W . Applying ϕ∗ to (5.2.4), we get the following
short exact sequence of locally free sheaves on V .

0 −→ (ϕ∗K ′)|V −→ E1|V −→ L|V −→ 0 .

Since both E1 and L are locally free on a smooth variety and HilbnX \V has
codimension ≥ 2, it follows that this morphism on V extends to a morphism
E1 → L. This being a nonzero morphism of numerically flat vector bundles
and L being of rank one, it follows that E1 → L is surjective.

It is clear that on Xn we have G (L) = L. Let K denote the kernel of the
homomorphism E1 −→ L. It is clear that G (K) = K. Since G2 ⊂ K the
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assertion that there is E2 ⊂ E1 such that G2 = G (E2) follows by induction
on rank.

To complete the proof of the proposition we need to show that if E1 and
E2 are numerically flat vector bundles on HilbnX then the natural map

HomHilbnX
(E1, E2) −→ HomXn(G1,G2)

is bijective. It is clear that this natural map is injective (faithful). Therefore,
it suffices to show the following. If G = G (E), where E is a numerically flat
vector bundle on HilbnX , then any nonzero homomorphism φ : OXn −→ G
comes from a nonzero homomorphism φ̃ : OHilbnX

−→ E. Since the homo-

morphism πS(Xn, x) −→ πS(X,x)ab is faithfully flat, and G arises from a
representation of πS(X,x)ab, it follows that φ is a map between two rep-
resentations of πS(X,x)ab. This shows that φ is Sn-equivariant on Xn.
Now from the preceding discussion it follows that φ arises from a morphism
OHilbnX

−→ E. �

5.3. Closed immersion. In this subsection we show that the homomor-
phism f̃ in (4.3.2) is a closed immersion. For this, we will apply [DMOS82,
Proposition 2.21 (b)].

Let q ∈ Sn(X) be a point of type 〈n1, n2, . . . , nr〉. Let q̃i, for i =
1, 2, . . . ,m, denote the points in the fiber ψ−1(q). The stabilizer of q̃i, de-
noted St(q̃i), is isomorphic to Sn1 × Sn2 × . . .× Snr . Let A denote the local
ring OSn(X),q and let B denote the semilocal ring OXn ⊗OSn(X)

A. Then B

is a finite A module and A = BSn .

Let M be a B-module such that the action of Sn on B lifts to an action
of Sn on M . There is a short exact sequence of A modules

0→MSn →M →
⊕
g∈Sn

M ,

where the last map is given by m 7→ (g ·m−m)g∈Sn . Let Â be the completion

of A with respect to its maximal ideal. Applying the functor − ⊗A Â, we
conclude that the following natural map is an isomorphism.

M̂Sn
∼−→ M̂Sn .

The ring B̂ = B ⊗A Â decomposes as

(5.3.1) B̂ ∼=
m⊕
i=1

B̂i ,

where B̂i denotes the completion of B at the maximal ideal corresponding
to the point q̃i, for all i = 1, . . . ,m. Applying the functor M ⊗B − to the
above isomorphism (5.3.1) we see that

(5.3.2) M̂ ∼=
m⊕
i=1

M̂i ,
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where Mi is the localization of M at the maximal ideal corresponding to the
point q̃i. Taking Sn-invariants in (5.3.2), it easily follows that

M̂Sn ∼= M̂
St(q̃i)
i , ∀ i .

Proposition 5.3.3. With notation as above, whenever char(k) > n1, any
Sn-equivariant surjective B-module homomorphism f : M −→ N of finitely
generated B-modules descends to surjective A-module homomorphism of their
Sn-invariants MSn −→ NSn.

Proof. Suppose we have an Sn-equivariant exact sequence of B-modules

M −→ N −→ 0 .

Taking Sn-invariants we get a homomorphism of A-modules

(5.3.4) MSn −→ NSn .

To check this is surjective, it suffices to check that the map (5.3.4) is sur-
jective after passing to the completion. From the preceding discussion, it
follows that it suffices to check that

(5.3.5) M̂
St(q̃i)
i −→ N̂

St(q̃i)
i

is surjective for one (and hence any) i. We know that M̂ → N̂ is surjective.
Thus, the above map in (5.3.5) will be surjective if we can lift a section of

N̂
St(q̃i)
i to M̂ and average it, that is, apply the operator

1

#St(q̃i)

∑
g∈St(q̃i)

g.

This is possible if char(k) = p > n1 (c.f. inequalities (3.2.1)). �

Proposition 5.3.6. Let G be a numerically flat Sn-invariant locally free
sheaf on Xn.

(1) Let q ∈ Sn(X) be a point of type 〈n1, n2, . . . , nr〉. Assume that
char(k) = p > n1. Then the sheaf (ψ∗G)Sn is locally free in a neigh-
borhood of q.

(2) Let U0 denote the largest open subset where (ψ∗G)Sn is locally free.
Then on ψ−1(U0) the natural homomorphism

(5.3.7) ψ∗((ψ∗G)Sn) −→ G

is an isomorphism.

Proof. If G has rank 1 then ψ∗(G)Sn is locally free on all of Sn(X) and of
rank one, see Proposition 5.1.1. Since G corresponds to a representation of
an abelian group scheme, it follows that there is an Sn-equivariant exact
sequence of locally free sheaves on Xn

0 −→ K −→ G −→ L −→ 0 ,
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with rank(L) = 1. By induction on rank of G, it suffices to show that the
homomorphism on the right of the following exact sequence

0 −→ (ψ∗K)Sn −→ (ψ∗G)Sn −→ (ψ∗L)Sn

is surjective in a neighbourhood of q. This surjection can be checked after
passing to a formal neighbourhood of q. Now the first assertion of the
Proposition follows from the above Proposition 5.3.3.

To prove the second assertion, note that both sheaves are locally free of the
same rank over ψ−1(U0). The locus where the natural homomorphism (5.3.7)
is not an isomorphism is either empty or a closed subset of codimension 1
in ψ−1(U0). However, we know that the morphism ψ is finite étale over the
smooth locus of Sn(X), hence the homomorphism (5.3.7) is an isomorphism
on the inverse image of the smooth locus of Sn(X). Since the complement
of the smooth locus of Sn(X) has codimension 2, it follows that the natural
map in (5.3.7) is an isomorphism over ψ−1(U0). �

Lemma 5.3.8. Let T ⊂ Sn(X) be open. If δ : E1 → E2 is a morphism be-
tween locally free sheaves on T , such that ψ∗δ is an isomorphism on ψ−1(T ),
then δ is an isomorphism.

Proof. For a locally free sheaf E on T , we have E ∼= [ψ∗(ψ
∗E)]Sn . Thus,

if δ : E1 → E2 is a morphism on T , such that ψ∗δ is an isomorphism on
ψ−1(T ), then taking pushforward and Sn invariants, it follows that δ is an
isomorphism. �

Proposition 5.3.9. Let char(k) > 3. Then the homomorphism f̃ in (4.3.2)
is a closed immersion.

Proof. By [DMOS82, Proposition 2.21(b)] it suffices to show that every Sn-
invariant numerically flat bundle G on Xn arises in the way described in
Proposition 4.2.10. In other words, we have to show that there is a numeri-

cally flat bundle E on HilbnX such that G =
(
j∗(ψ

∗ϕ∗(E|V ))
)∨∨

.

Let T ⊃ W be the open subset of Sn(X) containing W and points of
type 〈3, 1, 1, . . . , 1〉 and 〈2, 2, 1, . . . , 1〉. Then ϕ−1(T ) is an open subset of
HilbnX such that HilbnX \ϕ−1(T ) has codimension at least 3 in HilbnX . Let
i : ϕ−1(T ) ↪→ HilbnX denote the inclusion. Define

E := (i∗ϕ
∗(ψ∗(G|T )Sn))∨∨.

By Proposition 5.3.6 we see that (ψ∗G)Sn is locally free on T and on ψ−1(T )
the natural homomorphism ψ∗

(
(ψ∗G)Sn

)
→ G is an isomorphism. Consider

the natural homomorphisms

(5.3.10) F ∗
(
(ψ∗G)Sn

)
−→ (F ∗ψ∗(G))Sn −→ (ψ∗(F

∗G))Sn ,

where F denotes the absolute Frobenius morphism. We claim that the above
composite homomorphism is an isomorphism over T . Applying ψ∗ to the
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above exact sequence, we get the following commutative diagram.

ψ∗F ∗
(
(ψ∗G)Sn

)
//

o
��

ψ∗ (ψ∗(F
∗G))Sn

o
��

F ∗G F ∗G

The two vertical arrows are isomorphisms on T because of Proposition 5.3.6.
It follows from Lemma 5.3.8 that the composite homomorphism in (5.3.10) is

an isomorphism over T . It follows that F ∗E ∼=
(
i∗ϕ
∗(ψ∗(F

∗G|T )Sn)
)∨∨

. Now
imitating the proof of Proposition 4.2.10 we see that E is locally free and
numerically flat on HilbnX . It is clear that G (E) = G (see the construction
in the proof of Proposition 4.2.10). This proves the Proposition. �

Theorem 5.3.11. Let char(k) > 3. Then the homomorphism

f̃ : πS(X,x)ab −→ πS(HilbnX , n[x])

in (4.3.2) is an isomorphism.

Proof. Since f̃ is faithfully flat by Proposition 5.2.3 and closed immersion
by Proposition 5.3.9, it is an isomorphism. �

5.4. Nori’s fundamental group scheme of HilbnX . Let E be an essen-
tially finite vector bundle over a connected, reduced and proper k-scheme X.
Then there is a finite k-group scheme G, a principal G-bundle p : P → X
and a finite dimensional k-linear representation ρ : G → GL(V ′) such that
E is the vector bundle associated to the representation ρ. It follows from
the proof of [Nor76, Proposition 3.8] that there is a finite vector bundle V
on X such that E is a subbundle of V.

As before, let X be an irreducible smooth projective surface over k and
HilbnX the Hilbert scheme of n points on X. It is clear that the functor G
in Proposition 4.2.10 takes a finite vector bundle to a finite vector bundle.
Thus, G (E) ⊂ G (V), which shows that G takes essentially finite vector
bundles to essentially finite vector bundles. It is easily checked, using [Lan11,
Lemma 6.2], that there is a commutative diagram

πS(X,x)ab
∼ //

��

πS(HilbnX , n[x])

��
πN (X,x)ab

f̃N // πN (HilbnX , n[x])

where the vertical arrows are faithfully flat. It follows that f̃N is faithfully
flat.

Now let G be an essentially finite Sn-invariant vector bundle on Xn. It is
easy to find a finite and Sn-invariant bundle V on Xn and an Sn-equivariant
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inclusion G ⊂ V. Then following the proof of Proposition 5.3.9, we define E

and Ṽ by

(5.4.1) E := (i∗ϕ
∗(((ψ∗G)|T )Sn))∨∨ ⊂ (i∗ϕ

∗(((ψ∗V)|T )Sn))∨∨ =: Ṽ .

Proposition 5.4.2. Let E1, E2 be two Sn-invariant numerically flat vector
bundle on Xn. There there are canonical isomorphisms

(1) ((ψ∗E1)|T )Sn ⊗ ((ψ∗E2)|T )Sn
∼−→ ((ψ∗(E1 ⊗ E2))|T )Sn, and

(2) ((ψ∗E1)|T )Sn ⊕ ((ψ∗E2)|T )Sn
∼−→ ((ψ∗(E1 ⊕ E2))|T )Sn.

Proof. Apply Lemma 5.3.8 and Proposition 5.3.6 (ii). �

It follows from Proposition 5.4.2 and the definition of Ṽ in (5.4.1) that Ṽ
is a finite vector bundle, since its restriction to ϕ−1(T ) satisfies the definition
of finite vector bundle. So E is essentially finite and G (E) = G. This shows,

imitating the proof of the Proposition 5.3.9, that f̃N is a closed immersion
whenever char(k) > 3. Thus, we have the following.

Theorem 5.4.3. Let char(k) > 3. There is a natural isomorphism of affine
k-group schemes

f̃N : πN (X,x)ab −→ πN (HilbnX , n[x]).

5.5. Étale Fundamental Group Scheme of HilbnX . In this subsection we
sketch how to deduce from Theorem 5.4.3 the same assertion for πét(HilbnX , n[x]).
This result is already contained in [BH15]. Note that there is a commutative
diagram of homomorphisms of affine k-group schemes

πN (X,x) // //

����

πN (X,x)ab
∼ //

����

πN (HilbnX , n[x])

d����
πét(X,x) // // πét(X,x)ab

// πét(HilbnX , n[x]) .

From this it follows that πét(X,x)ab −→ πét(HilbnX , n[x]) is faithfully flat.
Consider a homomorphism πét(X,x)ab → GL(V ). It follows using [Nor76,
Proposition 3.10] that this homomorphism factors through a finite and re-
duced k-group scheme G. Now consider the diagram

πN (X,x)ab
∼ //

����

πN (HilbnX , n[x])
d // //

��

πét(HilbnX , n[x])

uu
πét(X,x)ab

// G // GL(V ) .

The right vertical arrow is the unique map which makes the square commute.
It factors through d since G is finite and reduced. Now it follows from
[DMOS82, Proposition 2.21 (b)] that πét(X,x)ab → πét(HilbnX , n[x]) is a
closed immersion.
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